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Despite the increasing number of regulatory proteins identified in
clathrin-independent endocytic (CIE) pathways, our understanding
of the exact functions of these proteins and the sequential manner
in which they function remains limited. In this study, using the
Caenorhabditis elegans intestine as amodel, we observed a unique
structure of interconnected endosomal tubules, which is required
for the basolateral recycling of several CIE cargoes including hTAC,
GLUT1, and DAF-4. SEC-10 is a subunit of the octameric protein
complex exocyst. Depleting SEC-10 and several other exocyst com-
ponents disrupted the endosomal tubules into various ring-like
structures. An epistasis analysis further suggested that SEC-10 oper-
ates at the intermediate step between early endosomes and recy-
cling endosomes. The endosomal tubules were also sensitive to
inactivation of the Rab GTPase RAB-10 and disruption of microtu-
bules. Taken together, our data suggest that SEC-10 coordinates
with RAB-10 and microtubules to form the endosomal tubular net-
work for efficient recycling of particular CIE cargoes.
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There has been increased interest in clathrin-independent
endocytic (CIE) pathways over the past 10 y, and a growing

list of endogenous plasma membrane (PM) proteins that enter
cells by CIE pathways has been identified (1–3). Many CIE cargo
proteins, such as the major histocompatibility complex class I
(MHCI), the α-chain of the IL-2 receptor (TAC), CD59, CD44,
and CD147, have been confirmed to follow the Arf6-associated
CIE pathway, which is highly conserved from Caenorhabditis
elegans to mammalian cells (3). Several players, including Rab10,
Rab22, Rab35, Hook1, ALX-1, and RME-1/EHD-1, have been
identified to modulate the recycling of CIE cargoes through dif-
ferent itineraries (3–8).
Notably, CIE is under differential regulation on the apical and

basolateral poles of polarized cells, and evidence points to a
larger fraction of CIE on the basolateral pole of MDCK cells (9).
Human TAC (hTAC) has been used to study canonical CIE
pathway in the C. elegans intestine, which is an attractive model
system for studying polarized intracellular trafficking (6, 10). In-
terestingly, a rapid basolateral recycling pathway has been revealed
and several factors involved in the recycling of CIE cargoes have
been identified, such as RAB-10, RME-1/EHD-1, ALX-1, and
EHBP-1 (6–8, 11). However, it remains unclear how these proteins
coordinate and regulate the trafficking of CIE cargoes through
different endosomal intermediates.
The exocyst is an evolutionarily conserved octameric complex

composed of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and
Exo84 (12, 13). This complex was originally proposed to function
in post-Golgi secretion/exocytosis by tethering exocytic vesicles
with the PM (12–14). Consistent with this idea, the exocyst lo-
calizes to the PM where exocytosis actively occurs and has been
implicated in many cellular trafficking processes including po-
larized budding in yeast (14), neurite growth in neurons (15),

GLUT4 membrane insertion in fat cells (16), and cell migration
(17–19). Recent studies have revealed an association between
the exocyst and recycling endosome-localized proteins, such as
Arf6 (20), AP1B (21), and Rab11 (22), and the presence of
exocyst on multiple populations of endosomes (23). Interfering
with exocyst functions affects several endocytic pathways, such as
transferrin receptor (TfR) recycling in nonpolarized cells (20),
and apical and basolateral recycling in polarized cells (23, 24).
However, the mechanisms of how the exocyst participates in
membrane recycling remain poorly understood. Attempts to ex-
amine the exact function of the exocyst in higher organisms using
gene knockout methods have not been fruitful because exocyst
mutations lead to embryo or larval lethality both in Drosophila
and mice (25–27).
Taking advantage of the powerful genetic tools available for

C. elegans, we previously isolated a novel sec-10 C-terminal
truncated mutation (28). The homozygous mutant is sterile but
survives to adulthood. Here, using high-resolution live imaging
of the C. elegans intestine, we show that sec-10 mutants display
defects in basolateral recycling of particular CIE cargoes. We
identified an extensive network of endosomal tubules used for
efficient basolateral recycling. We propose that the concerted
action of SEC-10, RAB-10, and microtubules is required to form
interconnected endosomal tubules.

Significance

Understanding how clathrin-independent endocytic (CIE) cargo
proteins are sorted into and transported within endosomes has
attracted growing interests. Here, in Caenorhabditis elegans in-
testine, a well-established genetic system for deciphering endo-
cytic trafficking in multicellular organisms, we report direct
visualization of dynamic endosomal tubules as carriers for baso-
lateral recycling of certain CIE cargoes. We unveil the coor-
dination of the Rab GTPase RAB-10, the exocyst component
SEC-10, and the microtubule cytoskeleton to form a network of
interconnected tubules. We demonstrate that RAB-10 leads the
growing tubules and that SEC-10 is required for tethering/
fusion of tubular carriers. Our results provide previously un-
identified insights into the regulation of CIE pathways.
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Results
The Exocyst Is Required for Basolateral Recycling in the C. elegans
Intestine. To address the function of the exocyst, we previously
generated a deletion mutant of the exocyst component sec-10(txu1)
in C. elegans (Fig. S1A) (28). The transcriptional expression profile
of sec-10 was ubiquitous (Fig. S1B) (28), in agreement with other
exocyst subunits such as sec-5 (29), exoc-7, and sec-6 (30).
The worm intestine is a highly polarized epithelial tube with

the apical microvillar surface facing the lumen and the basolateral
surface facing the pseudocoelom (body cavity), where three pairs
of coelomocytes are located (Fig. 1A). To test the involvement of
exocyst in postendocytic intracellular trafficking, we used the well-
established in vivo endocytic assay in the C. elegans intestine (7).
Internalization of the fluid-phase marker rhodamine-dextran
(Rhod-Dex) or lipophilic dye FM4-64 from the apical side was not
different in sec-10mutants from that in wild-type (WT) N2 worms,
and both markers reached the so-called gut granules (Fig. S2 A
and B). Gut granules are lysosome-related organelles (LROs) that
can be identically identified by both autofluorescence and the ly-
sosome marker, LysoTracker (31, 32). In contrast, the fast recy-
cling of basolaterally applied Rhod-Dex was blocked in sec-10
mutants and accumulated in LROs, whereas lysosome-destined
FM4-64 was not affected (Fig. 1B and Fig. S2 C and D). A similar
blockade of fluid-phase marker recycling was observed in the
absence of SEC-5, another component of the exocyst complex

(Fig. S2 E and F). These data indicate that the SEC-10 and SEC-5
exocyst components are specifically involved in the basolateral
recycling of internalized fluid-phase cargoes.

Dual Involvement of SEC-10 in Apical and Basolateral Endosomal
Recycling in the C. elegans Intestine. A previous study on MDCK
cells suggested that the exocyst, through its Sec15 component,
may function as a Rab11 effector to regulate basolateral-to-apical
transcytosis (23). The sec15mutant in the fly photoreceptor results
in strong accumulation of Rab11 within the apical membranes
of the photoreceptor (22). We confirmed the accumulation of
RAB-11–positive vesicles at the apical PM in sec-10 mutants
(Fig. 2 A and B) or after sec-15 RNAi knockdown (Fig. S3 A and
B) (10). The accumulation was caused by unsuccessful tethering
or fusion of RAB-11–positive vesicles with the PM (Fig. 2C and
Movie S1) in the absence of SEC-10.
Next, we sought to dissect the role of the exocyst in basolateral

recycling. Using a 150× oil objective lens, we observed the en-
richment of RME-1, which labels basolateral recycling endo-
somes (BREs) (7, 33), in unique tubulovesicular arrays immedi-
ately underneath the basolateral PM and to a much lesser extent
in the subapical domains (Fig. 2D) (6). However, the morphology
of the RME-1–positive structures was altered from extensive
tubulovesicular structures to isolated puncta at the basolateral

Fig. 1. Mutation in sec-10 causes missorting of basolaterally uptaked fluid
cargoes into LROs in the C. elegans intestine. (A) Illustration showing the
arrangement of the intestine. The basolateral and apical membranes of the
intestine are indicated. RME-1– and RAB-11–labeled REs align along the baso-
lateral and apical membrane, respectively. (B) Rhod-Dex was injected into the
pseudocoeloms of animals that were prestained with LysoTracker Green to
label intestinal LROs. Images were taken 1 h after injection. After injection,
Rhod-Dex will follow the fast basolateral recycling pathway: Be endocytosed
via the CIE pathway, pass through RAB-5–postive early endosome and RME-1–
positive recycling endosome, be efficiently recycled out of the intestines, and
finally be uptaked by the pseudocoelom scavenger cells, coelomocytes. Hence,
no Rhod-Dex signal will be observed in the intestine of WT animals. If this fast
basolateral recycling pathway is blocked, i.e., in sec-10 mutants, Rhod-Dex will
be accumulated in the intestine and be missorted into LysoTracker-stained
LROs. Asterisk depicts the lumen of the intestine. Arrowheads point to
coelomocytes with internalized Rhod-Dex. The contours of intestines are
outlined in red channels. (Scale bar: 20 μm.)

Fig. 2. The apical and basolateral recycling endosomal systems were dif-
ferentially affected in sec-10 mutants. (A) Micrographs of intestinal GFP-RAB-
11 inWT and sec-10mutant worms. (B) The average fluorescence intensity (FI)
ratio of apical PM-associated RAB-11 signals relative to cytoplasma signals.
n = 142/125 areas from 40/41 animals (WT/sec-10). ***P < 0.001 (Student’s
t test). (C) Individual mobile RAB-11 vesicles approaching the apical PM in
WT and sec-10 animals. Arrowheads in the tile view indicating a translocating
event from the cytoplasm to the apical PM. (C, Right) Kymograph of the red
dash lines indicated in C, Left. (D) GFP-RME-1–labeled basolateral structures in
WT and sec-10. Arrowheads indicate the aberrant increase of GFP-RME-1 on
the apical domain. Asterisks depict the lumen of the intestine. (E) Coverage
percentage of the basolateral surface by GFP-RME-1, as the magnified regions
shown in D, was quantified. n = 28/20 areas from 14/10 animals (WT/sec-10).
***P < 0.001 (Student’s t test). (F) FI ratio of GFP-RME-1 between apical and
basal side. A 20-pixel-wide and a 10-pixel-wide region along apical and basal
PM, as shown in D, Lower, were selected for the quantification. n = 49/36
areas from 20/14 animals (WT/sec-10). ***P < 0.001 (Mann–Whitney rank sum
test). Error bars represent SEM. (Scale bars: 10 μm.)
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side in sec-10 mutants, with shrinkage of approximately one-half
of the occupied area (Fig. 2 D and E). In contrast, the number
of RAB-5–positive early endosomes and RAB-7–positive late
endosomes was increased (Fig. S3 C–G), along with the RME-1
intensity at the apical side (Fig. 2 D and F), in sec-10 mutants.
Thus, sec-10 mutation seems to block basolateral recycling at a
step upstream of BRE, which causes partial redistribution of
RME-1 to the apical side. Our data suggest that SEC-10 plays
different roles in apical and basolateral recycling, including the
accumulation of RAB-11–positive vesicles on the apical side,
while reducing RME-1–positive structures on the basolateral
side. A similar reduction of BRE was observed by depleting
SEC-15 (Fig. S3 H–J).

SEC-10 Regulates Basolateral Recycling in a Cargo-Specific Manner.
Next, to understand how the exocyst acts in the basolateral
recycling pathway, we explored the intermediate transporting
structures of two typical recycling cargo proteins: hTAC, an
Arf6-dependent CIE cargo, and hTfR (human transferrin re-
ceptor), a classical clathrin-dependent endocytic (CDE) cargo (34).
Under low magnification imaging (60× objective), prominent

localization of hTAC-GFP was observed with intracellular sig-
nals along the basolateral PM (6), which decreased by ∼60% in
sec-10 mutants (Fig. 3 A and J). Under high resolution (150×
objective) imaging, most of the subplasmalemmal hTAC-GFPs
existed in a delicate tubular network (Fig. 3B). To confirm the
endosomal identity of this tubular network, the mCherry-TRAM
transgene, which labels the endosomal reticulum (ER) (35, 36),
was introduced into hTAC-GFP transgenic worms (Fig. S4). The
ER tubular network was distributed both underneath the PM
(top layer) and to the deeper cytosol (middle layer), whereas the
hTAC tubular network was enriched underneath the basolateral
PM (Fig. S4A). The diameter of ER tubules was approximately
two times that of the hTAC-positive tubules (Fig. S4B). A linear
profile analysis revealed no overlapping between these two tu-
bular networks (Fig. S4 C and D). Mutation in sec-10 had no
effect on either the morphology or intensity of mCherry-TRAM
(Fig. S4 E and F). Therefore, the majority of subplasmalemmal
hTAC-positive tubules were endosomal, and not ER derived.

Live imaging of intestinal hTAC-GFP showed that a small
portion of these endosomal tubules were dynamic, with tubules
extending and fusing into adjacent structures (Fig. 3C and Movie
S2), which has not been observed before (6, 11, 37, 38). Strik-
ingly, the delicate tubular network collapsed in sec-10 mutants,
with a concomitant increase in various ring-like structures (Fig. 3
B and D–G and Movie S3). This phenotype was fully rescued by
the transgenic expression of T7-tagged SEC-10 (Fig. S5 A and
B). More than 70% of the hTAC tubular structures were frag-
mented (Fig. 3G), whereas the number of ring-like structures
increased by approximately sixfold in sec-10 mutants (Fig. 3F).
A similar disruption of the hTAC-positive tubular network was
demonstrated following RNAi treatment of seven of eight exo-
cyst components (Fig. S5 C–E). In contrast, no detectable dif-
ferences in the number, distribution, or morphology of the hTfR-
GFP–containing vesicular structures (6) were observed in sec-10
mutants (Fig. 3 H, I, and K).
The finding that hTAC and hTfR are localized largely on tu-

bular and vesicular structures, respectively, is reminiscent of re-
cent progress in cultured mammalian cells (39). It is also con-
sistent with notions that the pleiomorphic and tubular carriers
account for the entry and trafficking of many cargo proteins fol-
lowing different CIE pathways (3, 5, 40). To verify the generality
of our finding, we further examined two other endogenous CIE
cargo proteins: GLUT1 and DAF-4 (dauer formation-defective-4),
the C. elegans homolog of type II BMP (bone morphogenetic
protein) receptor. Both proteins are CIE cargoes that are
transported via the Arf6-associated itinerary (2, 35, 41). As shown
in Fig. S6A, C. elegansGLUT1 colocalized perfectly with hTAC in
tubular structures. The subplasmalemmal tubular structures of
GLUT1 and DAF-4 were similarly fragmented in sec-10 mutants
(Fig. S6 B and C) as hTAC-positive tubular structures. As a
comparison, localization of MIG-14, another endogenous CDE
cargo (42–44), was confined to vesicular structures and was not
altered in sec-10 mutants (Fig. S6 B and D).

SEC-10 Is Specifically Involved in Intermediate Step(s) in the Basolateral
Recycling Pathway.Next we elucidated the step at which SEC-10 acts
in the basolateral recycling pathway. Most of the subplasmalemmal
hTAC tubular structures colocalized with RME-1–labeled BREs

Fig. 3. The distribution and patterns of hTAC-con-
taining endosomal structures are altered in sec-10
mutants. (A and H) Micrographs magnified at 60×
show loss of basolateral PM-associated hTAC-GFP (A)
and no detectable difference for the endosomal
localization of hTfR-GFP in sec-10 (H). Arrows in A
indicate basolateral PM-associated hTAC. (B and I)
Micrographs magnified at 150× provide detailed
architectures for hTAC (B) and hTfR (I) signal. (C) A
live worm imaging of the WT intestine shows a dy-
namic hTAC-containing tubule. Arrowheads mark
the extending tip of a tubule. (D–G) Profiles of the
hTAC-containing transport intermediates in sec-10
(D). The number of puncta (E), ring-like structures (F),
and the length of tubules (G) per 100 μm2 were cal-
culated for WT and sec-10 worms. n = 37/103 areas
from 25/45 animals (WT/sec-10). ***P < 0.001, puncta
and tubule (Student’s t test), ring-like structure
(Mann–Whitney rank sum test). (J) Average FI of
hTAC per unit length along the basolateral PM in A.
(K) Quantification of the number of hTfR-containing
puncta in I. n = 10 animals for each group in J and
K. ***P < 0.001 (Student’s t test). Error bars represent
SEM. (Scale bars: A and H, 20 μm; B and I, 5 μm.)
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with a Pearson’s correlation coefficient (45) of 0.57, suggesting the
recycling of hTAC en route through BRE (Fig. 4 A and B). The
coefficient decreased to 0.33 in sec-10 mutants, implying less
colocalization of hTAC with BREs (Fig. 4B). RAB-10 is required
at an early step in the basolateral recycling pathway upstream of
RME-1 (6). RFP-RAB-10 displayed punctate distribution and
was localized mostly to the tip or the junction of hTAC tubules
(Figs. 4A and 5 A and B). The Pearson’s coefficient between
RAB-10 and hTAC increased slightly from 0.32 in WT to 0.40
in sec-10 mutant intestines (Fig. 4B).
We then took another approach to determine the endocytic step

controlled by the exocyst by generating rme-1(b1045); sec-10(txu1)
double mutants. Consistent with a previous study (7), we verified
that rme-1 single mutants generated enlarged vacuoles of BRE
origin (Fig. 4C, Upper and Fig. S7B) caused by the blockade of
transport out of BRE to PM. The sec-10 mutation largely pre-
vented BRE vacuolation observed in rme-1 mutants (Fig. 4C).
Large intestinal vacuoles (approximately >20 μm2) almost dimini-
shed in rme-1; sec-10 double mutants (Fig. 4E), and the influx of
Rhod-Dex into vacuoles was also substantially reduced (Fig. 4C;
integrated Rhod-Dex intensity dropped by 62% in rme-1; sec-10
double mutants). This result suggests that SEC-10 possibly acts
upstream of RME-1 to control the influx of cargo to BRE.
A single mutation in rab-10 also generated enlarged vacuoles

(Fig. 4D, Upper) of early endosome origin (Fig. S7A) by blocking
export from the basolateral early endosomes (BEEs) (6, 11).
However, BEE vacuolation and trapping of Rhod-Dex in the
rab-10 vacuoles were not prevented by sec-10 in rab-10(q373);
sec-10(txu1) double mutants (Fig. 4 D and F), suggesting a role
for SEC-10 downstream of RAB-10. Taken together, the epistasis
analysis suggested that SEC-10 regulates intermediate step(s) in
the basolateral recycling pathway between BEE and BRE, rather
than at the PM, as observed for the apical side.

RAB-10 and SEC-10 Coordinate the Extension and Tethering of hTAC-
Positive Tubules. Although RAB-10 has been implicated in
basolateral recycling, the carrier it regulates remains unresolved.
Using time-lapse imaging of the live-worm intestine, we found
that RAB-10 was located at most (∼90%) tips of the hTAC-GFP
tubules (Fig. 5A). In particular, RAB-10 was located at the tips
of newly budding tubules, during the extension process, and until
the final fusion with adjacent tubules (Fig. 5B and Movie S4).

Moreover, a constitutively active RAB-10 mutant (GTP-locked
Q68L mutation) generated more extensive networks of hTAC-
GFP tubules and displayed strong punctate labeling at the tubule
tips (Fig. 5 A and C). In contrast, a dominant negative RAB-10
mutant (GDP-locked T23N mutation) diffused in the cytoplasm
and caused large vacuoles delimited with hTAC-GFP (Fig. 5A),
a phenotype similar to that in rab-10 mutants (Fig. 4D) (6).
Hardly any hTAC-positive tubules were observed in the rab-10
mutant or the RAB-10(T23N) transgene (Figs. 4D and 5A), sug-
gesting an essential role for RAB-10 GTPase in the budding and
generation of tubules from BEEs.
In contrast to the minimal tubule extension in rab-10 mutants,

we observed remnant tubule extension at a significantly reduced
rate in sec-10 mutants compared with that in WT animals (mean
1.5 vs. 8.8 events per 100 μm2 per 10 min, respectively) (Fig. 5 D
and E). However, we noticed that the ratio of successful teth-
ering/fusion decreased by approximately fivefold in the remnant
extended tubules in sec-10 mutants, although RAB-10 was still
located at the leading tip (Fig. 5 D and F and Movie S5).
We verified by immunofluorescence microscopy that endoge-

nous SEC-15, a vesicle-associated component of the exocyst (22,
46), partially colocalized with hTAC tubules at the branching point
or at/near the end of a tubule (Fig. S8A). However, SEC-15 in rab-10
(dx2)mutants accumulated prominently around large BEE vacuoles
(Fig. S8B), suggesting the association of certain exocyst components
with the endosomal membrane even in the absence of RAB-10.

The Generation of hTAC-Positive Tubules Requires Microtubule
Cytoskeletons. Accumulating evidence suggests that cytoskele-
tons have profound roles guiding and segregating membrane
trafficking intermediates (5, 47–49). To further unravel the ma-
chinery underlying the dynamic hTAC tubules, we tested their
dependence on the cytoskeleton. Nocodazole (Noc) was injected
into the body cavity to acutely depolymerize the intestinal micro-
tubules. This treatment abrogated the hTAC-positive tubular net-
work in a manner similar to the sec-10 mutation, causing tubule
fragmentation (Fig. S9 A and B). In contrast, neither latrunculin
B (LatB) treatment, which disrupts actin filaments, nor knockdown
of actin by RNAi altered the hTAC-positive tubules (Fig. S9 A–C
and Movie S6). The density and patterns of hTfR-containing ve-
sicular structures were not altered in worms treated with either Noc
or LatB (Fig. S9D).

Fig. 4. SEC-10 functions between BEEs and BREs
during basolateral recycling. (A) Colocalization
images of hTAC-GFP with RFP-RME-1 or RFP-RAB-10
in WT and sec-10 mutant intestines. (B) Quantifica-
tion of the colocalization by Pearson’s colocaliza-
tion coefficient. RFP-RME-1 group, n = 18/19 areas
from seven animals (WT/sec-10), ***P < 0.001; RFP-
RAB-10 group, n = 16/21 areas from seven animals
(WT/sec-10), **P = 0.002, Student’s t test. Error bars
represent SEM. (C and D) Confocal images of baso-
laterally internalized Rhod-Dex in hTAC-GFP-express-
ing intestines of various mutants as indicated. Ar-
rowheads mark endosomes larger than 20 μm2,
asterisks depict the lumen of the intestine. (E) Quan-
tification of hTAC-GFP-accumulated vacuole size in
rme-1 single (688 vacuoles from 31 animals) and rme-1;
sec-10 double mutants (284 vacuoles from 24 animals).
(F) Quantification of hTAC-GFP–accumulated vacuole
size in rab-10 single (542 vacuoles from 25 animals)
and rab-10; sec-10 double mutants (280 vacuoles from
30 animals). (Scale bars: A, 5 μm; C and D, 20 μm.)
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Discussion
Ultrastructural studies have identified morphologically distinct
pleiomorphic and tubular carriers for both entry and trafficking
of CIE cargo proteins (5, 40). Endosomal tubules, with a high
ratio of membrane surface to luminal volume, afford an effective
way to concentrate recycling cargoes and ensure efficient trans-
port of CIE cargoes within endosomes (3–5). However, it re-
mains a challenge to delineate how these tubules are generated
and regulated. In the current study, we discovered in the intact
C. elegans intestine using high magnification (150×) live worm
confocal imaging that several Arf6-dependent CIE cargoes
(hTAC, GLUT1, and DAF-4) reside on basolateral endosomal
tubules. The current model proposes that cargo sorted into
tubules will undergo vesiculation and fission, allowing the for-
mation of transport vesicles that move along microtubules and
return to the cell surface (50). However, we failed to observe
fission and vesiculation of extending tubules following the ex-
tension of hTAC tubules. These newly formed tubules rather
fused with adjacent tubular carriers (Figs. 3C and 5B) or BREs to
form an extensive network that bridged between BEE and BRE.
We verified that the tubular network observed here was not ER
(Fig. S4). It remains to be tested whether this tubular network is

exclusive to polarized intestine in C. elegans or it also exists in
mammalian cells. It should be noted that this itinerary may only
be followed by a subset of CIE cargoes due to the existence of
different CIE trafficking pathways (3).
Formation of this tubular network clearly requires co-

ordination of protein machinery at various stages during mem-
brane budding, extension, and tethering/fusion of the tubules. In
this study, we identified three players, including RAB-10, exo-
cyst, and cytoskeleton microtubules that are required to form the
basolateral recycling tubular network. Although RAB-10 is im-
plicated in controlling the exit of cargo from EE (Fig. S7A) (6, 51),
it is unclear as to which exiting carriers are regulated by RAB-10
and how they operate. Here, we demonstrated that RAB-10 was
localized at the “leading edge” of the dynamic hTAC tubules and
predicted the path where the growing tubules would travel (Fig.
5B). Inactivating RAB-10 nearly completely abolished the tubule
extensions and gave rise to giant EE vacuoles (Figs. 4D and 5A
and Fig. S7A). A similar leading function has been proposed for
Rab10 in ER dynamic tubules of COS-7 cells (52). Considering
the broad subcellular distribution of Rab10 GTPase, it is not
surprising that Rab10 may be a versatile membrane transportation
regulator in different cellular contexts (6, 52–54).
The canonical function of the exocyst complex is thought to

tether exocytic or recycling vesicles to the PM for subsequent
fusion (23, 55). Here, we demonstrated that SEC-10 tethered the
apical recycling vesicles to the PM, which is not the case for
basolateral postendocytic trafficking. In the absence of SEC-10,
the basolateral endosomal tubules were largely fragmented into
small ring-like structures (Fig. 3B). This phenotype is different
from the complete disappearance of hTAC-positive tubules and
the appearance of giant vacuoles in rab-10 mutants, suggesting
different involvement of RAB-10 and SEC-10 in generating
endosomal tubules. Our epistasis analysis placed the SEC-10 action
site between RAB-10 and RME-1 (Fig. 4). We also demonstrated
increased failure of tethering/fusion between hTAC-positive tubules
caused by the sec-10mutation (Fig. 5D and F). Thus, it is likely that
SEC-10 functions to stabilize the growing tubule by tethering it to
other tubules, thereby forming a tubular network structure. Without
stable tethering, the growing tubule is prone to fragmentation by
a RAB-10–mediated pulling force. This SEC-10 function is remi-
niscent of the Hook1 tethering protein (5), which specifically par-
ticipates in sorting of other CIE cargoes that directly recycle from
the sorting endosomes back to the PM. RNAi knockdown seven out
of the eight exocyst components resulted in similar disruption of
hTAC-positive endosomal tubules (Fig. S5 D and E), suggesting
that the tethering function is likely carried out by most of the
exocyst components.
Our results also revealed that microtubules are required to

stabilize the hTAC tubules, suggesting the importance of the
microtubule cytoskeleton in the formation of basolateral endo-
somal tubules (Fig. S9). The pulling force during the generation
of hTAC tubules is likely mediated by RAB-10 through a motor
protein moving along the microtubules. Rab proteins allow the
directional movement of various membrane carriers along the
microtubule cytoskeleton through a direct or indirect association
with motor proteins (56). In addition, a connection of the exocyst
as adaptors with microtubules and actin-based transport has
been suggested (15, 57–59).
Collectively, our data propose a model of sequential actions:

RAB-10 functions in the budding of membrane tubules and
provides the pulling force for extension along the microtubules.
Subsequently, the exocyst complex mediates tethering/fusion of
endosomal tubules to form a stable tubular network. However,
alternatives should also be considered, i.e., the exocyst could
work together with RAB-10 during the budding and extension of
endosomal tubules. Indeed, numerous proteins have been iden-
tified to interact with the exocyst, and it has been assumed that
the exocyst is involved in multiple trafficking stages (55, 60).

Fig. 5. SEC-10 regulates the tethering/fusion of RAB-10–guided hTAC tubules.
(A) The C. elegans intestine coexpressing RFP-tagged WT, Q68L, or T23N mu-
tant RAB-10 and hTAC-GFP were imaged by confocal fluorescence microscopy,
respectively. Note the decoration of RAB-10 on the tip or junction of hTAC
tubular network (arrows). (B) Live worm imaging of the transgenic animals
coexpressing hTAC-GFP and mRFP-RAB-10. A series of frames are shown
depicting the generation and extension of a hTAC-containing tubule (green)
that is guided by the RAB-10 (red) at the leading edge and the tethering/
fusion of the newly growing tubule to an adjacent tubule. Arrowheads mark
the dynamic events. (C) The average length of hTAC-positive tubules, in RFP-
RAB-10 WT and Q68L mutant background, was calculated. n = 14/16 areas
from 11/8 animals (WT/sec-10). ***P < 0.001 (Mann–Whitney rank sum test).
(D) As in B from a sec-10 mutant worm. Arrowheads mark a dynamic event
depicting the unsuccessful fusion of a newly growing hTAC tubule. (E)
Quantification of the number of hTAC-positive tubule extension events as in B
and D that occurred in a 100-μm2 square over a 10-min time course. (F) Fusion
efficiency was calculated to divide the number of successful fusion events by
the number of total extension events as in E. n = 31/35 regions (WT/sec-10), 20
animals for each group. ***P < 0.001 (Mann–Whitney rank sum test). Error
bars represent SEM. (Scale bars: A, 5 μm; B and D, 2 μm.)
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Although no direct interaction was detected between RAB-10
and exocyst by the yeast two-hybrid assay or coimmunoprecipi-
tation (Fig. S8 C–E), transient or indirect interactions cannot be
excluded. The less severe phenotype of the sec-10 mutant could
also be explained by incomplete loss of function of the exocyst
complex in the absence of SEC-10. Future studies will be re-
quired to determine exactly how RAB-10, the exocyst, molecular
motors, and microtubules coordinate to construct the tubular
network during basolateral recycling of CIE cargoes.

Materials and Methods
Full methods, including plasmid and transgenic strain construction, yeast
two-hybrid assay, immunostaining and endocytosis assay in intestines,

coimmunoprecipitation analysis, RNA interference, quantitative PCR analysis,
microscopy, image analysis, Pearson’s colocalization coefficient, and statistical
analysis are found in SI Materials and Methods.

General Methods and Strains. All C. elegans strains were derived originally
from the wild-type Bristol strain N2. Worm cultures, genetic crosses, and other
strain manipulation methods were essentially those described by Brenner
(61). A complete list of strains used in this study can be found in Table S1.
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