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Abstract

Purpose of review—HIV enters the brain after initial infection, and with time can lead to HIV 

associated neurocognitive disorders (HAND). While the introduction of combination antiretroviral 

therapy (cART) has reduced the more severe forms of HAND, milder forms are still highly 

prevalent. The “gold standard” for HAND diagnosis remains detailed neuropsychological 

performance (NP) testing but additional biomarkers (including neuroimaging) may assist in early 

detection of HAND.

Recent findings—We review the application of recently developed non-invasive magnetic 

resonance imaging (MRI) and positron emission tomography (PET) techniques in HIV+ 

individuals. In particular, magnetic resonance spectroscopy (MRS) may be more sensitive than 

conventional MRI alone in detecting HIV associated changes. Diffusion tensor imaging (DTI) has 

become increasingly popular for assessing changes in white matter structural integrity due to HIV. 

Both functional MRI and PET have been limitedly performed but could provide keys for 

characterizing neuropathophysiologic changes due to HIV.

Summary—It is hoped that continued progress will allow novel neuroimaging methods to be 

included in future HAND management guidelines.
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Introduction

More than one million individuals in the United States and over forty million people 

worldwide are infected with the human immunodeficiency virus (HIV). Combination 

antiretroviral treatment (cART) has transformed HIV from a rapidly fatal disease to a more 

manageable chronic condition [1–3]. As a result, HIV-infected (HIV+) individuals receiving 

cART have almost as long a lifespan as HIV-uninfected (HIV−) individuals [4]. A majority 

of HIV+ patients will be greater than 50 years old by 2015 [5].

Despite these advances, HIV cannot be eradicated from the brain with persistent reservoirs 

often remaining [6]*. The continued presence of HAND despite cART could result from 

non-mutually-exclusive factors including irreversible injury prior to initiating cART, 

persistent HIV-1 RNA in the brain [7], antiretroviral treatment toxicities [8–10], and/or 

persistent low level inflammation [11]. Currently, the diagnosis of HAND requires 

neuropsychological performance (NP) testing and self-reported assessment of activities of 

daily living with the following classifications used: neuropsychologically normal, 

asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), or 

HIV associated dementia (HAD) [12]. Compared to other neurodegenerative disorders (e.g. 

Alzheimer’s disease (AD)), additional biomarkers have yet to be added to HAND research 

criteria.

Neuroimaging could have increased utility in the diagnosis and management of HAND. A 

variety of novel neuroimaging techniques have been developed and are currently performed 

in the research setting. Of note, magnetic resonance imaging (MRI) techniques (including 

magnetic resonance spectroscopy (MRS), volumetrics, diffusion tensor imaging (DTI), and 

functional) and positron emission tomography (PET) have been utilized in HIV+ 

individuals. This review is not meant to be comprehensive. Instead, it briefly discusses 

recent results using some of these neuroimaging methods.

Magnetic resonance spectroscopy (MRS)

The most common neuroimaging method for studying neuroHIV in the pre and post cART 

eras has been MRS [13–16]. MRS detects the signal produced by protons of specific 

molecules within a volume of brain. Molecules that are typically measured include: 1) n-

acetyl aspartate (NAA)- a neuronal marker, 2) choline (Cho)- a marker of cellular 

proliferation and inflammatory response, 3) creatine (Cr)- a measure of brain energy 

metabolism and reference marker, and 4) myo-inositol (MI)- a marker of gliosis. MRS can 

provide key insights into longitudinal changes in brain metabolites as an individual 

progresses from primary (≤ 1 year since seroconversion) to chronic (> 1 year since 

seroconversion) infection. Soon after seroconversion, MRS metabolites are affected [14,17–

19] with observed neuroimaging changes correlating with inflammation [17] and neuronal 

injury [19]. Changes seen due to HIV are often observed within both subcortical (basal 

ganglia) and cortical (frontal grey/white matter and parietal grey matter) compared to HIV− 

controls. HIV+ patients with chronic infection have reduced NAA and concomitant 

increased Cho and MI [15,20–23]. MRS metabolite changes in chronically infected HIV+ 
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patients vary according to HAND status with HAD patients showing the greatest changes 

[15,21].

cART can lead to significant improvements, but not normalization of MRS metabolite levels 

[23–25]. Early treatment with cART may be neuroprotective and mitigate some of the 

changes seen soon after seroconversion. However, certain anti-retrovirals may cause 

mitochondrial toxicity and impair neuronal function [9,26].

HIV+ patients are living longer and growing older due to cART. A number of MRS studies 

have therefore investigated the interaction between HIV and aging [27]. HIV+ patients have 

significant changes in brain metabolites with levels measured equivalent to those seen in 

HIV− controls at least 10–15 years older [28]. In general, no interaction has been observed 

between HIV and aging [2].

Overall, MRS changes may be more sensitive than conventional MRI alone in detecting 

changes associated with HIV. MRS could augment current neuroimaging protocols but local 

implementation of sequences is required. In the future, MRS could be used to evaluate the 

efficacy of certain therapeutics. However, most MRS studies have been cross-sectional and 

have primarily focused on specific regions of interest. Additional longitudinal studies that 

focus on HIV+ patients as they transition across different disease states are needed [29].

Structural Neuroimaging- volumetrics and diffusion tensor imaging (DTI)

Volumetric MRI can assess brain structural differences between HIV+ and HIV− 

individuals [30]. This technique can concentrate on either specific brain structures or 

relatively large brain areas [31]. In the pre-cART era, significant volume loss was seen in 

the basal ganglia, posterior cortex, and white matter of HIV+ patients compared to HIV− 

controls [32–34]. The greatest changes in volumetrics were seen in more advanced stages of 

HAND [35]. In the cART era, both subcortical and cortical atrophy have been observed in 

HIV+ patients [36–38] suggesting that brain volume loss can still occur despite the initiation 

of effective treatment [20,30]. More recently, volumetric changes have been shown to 

correlate with the degree of cognitive impairment and virologic markers. Poorer 

neurocognitive performance has been associated with smaller brain volumes [22,37,39–46] 

and greater viral burden. In addition, impaired immune response (nadir CD4+ T lymphocyte 

counts) has been associated with greater atrophy [20,38,40,41,46–49]*. Cortical brain 

atrophy and expansion of the third ventricle has been observed soon after seroconversion 

[50].

Diffusion tensor imaging (DTI) technique has become increasingly popular in the 

assessment of white matter structural integrity in the setting of HIV. This neuroimaging 

technique measures the diffusion of water molecules [45,51–53]**. In the isotropic state 

water motion is equal in all directions (e.g. cerebrospinal fluid). In brain tissues the 

movement of water is anisotropic, with diffusion greater along the length of fiber tracts 

compared to perpendicular to them [54]. For each voxel, a tensor is calculated that describes 

the 3-dimensional shape of water diffusion. Fiber direction is indicated by the tensor’s main 

eigenvector. Mean diffusivity (MD) reflects the average diffusion in three axes. Fractional 

anisotropy (FA) assesses the general shape of the ellipsoid [55].
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Most studies have shown that HIV leads to an increase in MD and a decrease in FA within 

white matter tracts. However, subtle differences may exist as to where changes are observed 

depending on the study [56–59]*. To date, no studies have assessed DTI changes soon after 

seroconversion. Typically HIV+ individuals receiving cART (HIV+/cART+) and those 

naïve to cART (HIV+/cART−) have been merged and compared to HIV− controls. 

Conflicting results have been observed in the few studies that have investigated the impact 

of cART using DTI [60–62]*.

Overall, quantitative volumetric changes may be more sensitive than current conventional 

MRI evaluation. In the future, DTI could be used to evaluate the efficacy of certain 

therapeutics but additional longitudinal studies that focus on HIV+ patients soon after 

seroconversion are needed.

Functional magnetic resonance imaging (fMRI)

Studies are now starting to utilize blood oxygen level dependent (BOLD) fMRI to 

investigate the effects of HIV on brain function [63]. Changes in the BOLD response for a 

particular stimulus can indirectly reveal the coupling between neuronal activity and cerebral 

blood flow (CBF) within certain brain regions [64]. HIV+ patients have greater BOLD 

activity in the parietal lobes for a simple attention task and greater frontal and parietal 

activation during more complex attention tasks [65]. These BOLD changes in HIV+ patients 

may reflect the recruitment of surrounding areas to meet cognitive requirements 

[24,28,42,65–73]. A recent systematic meta-analysis of BOLD fMRI studies using various 

functional tasks in HIV+ patients was recently performed using activation likelihood 

estimation. HIV+ patients had greater functional activation within the left inferior frontal 

gyrus and caudate nucleus compared to HIV− controls [74]*. Dysfunction in the fronto-

striatal network was qualitatively related to degree of neurocognitive impairment. 

Differences between HIV+ and HIV− individuals can also be seen at rest using BOLD 

imaging. In particular, functional correlations between brain networks are significantly 

reduced in HIV+ patients and a signature of the disease may be present that is different than 

other neurodegenerative disorders. The effects of HIV and aging on BOLD resting state 

functional correlations were shown to be independent of each other [75]*. However, the 

effects of cART have not been assessed using BOLD imaging. Additional studies of CBF 

have nicely complemented existing BOLD studies and have demonstrated a reduction in 

resting CBF in HIV+ individuals compared to HIV− controls [76,77].

Overall, functional neuroimaging studies have been performed in a limited number of HIV+ 

patients. Additional longitudinal fMRI studies are needed to determine if these techniques 

could be used to follow HIV+ individuals. Future BOLD studies could evaluate the efficacy 

of various treatment regimens for HAND.

Positron Emission tomography (PET)

Fluorodeoxyglucose (FDG) PET imaging is a commonly used technique that measures the 

metabolic activity of various cells/tissues, such as in neoplastic diseases. In the brain, 

evaluation of FDG uptake by neurons has been utilized in multiple CNS disorders such as 

AD and Parkinson’s disease [78]. In neuroHIV, early FDG-PET studies demonstrated lower 
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cerebral metabolic rate for glucose consumption in HIV+ patients compared to age-matched 

HIV− subjects, despite the lack of structural abnormalities on MRI [79]. This probably was 

the first insight into early metabolic changes can occur with HIV infection without gross 

structural volumetric loss. Subsequent FDG-PET studies [80–82] have described two unique 

metabolic signatures of glucose abnormalities associated with HIV infection. The first was a 

hypermetabolic state, particularly in the striatum, which appeared to provide a disease-

specific measure of early central nervous system (CNS) involvement, despite normal motor 

function on NP testing. This was assumed to reflect abnormal functional connectivity within 

subcortical areas [82]. A second pattern was seen during chronic stages and was 

characterized by generalized hypometabolism in both cortical and subcortical regions. These 

changes correlated with age, cerebral atrophy, and neurocognitive status [81]. A switch from 

the hypermetabolic to hypometabolic states in subcortical areas (e.g. basal ganglia) was 

associated with changes in functional deficits and progression to dementia [82].

In the cART era, more subtle FDG-PET changes have been observed [83,84] ** and can still 

be seen in optimally treated HIV+ patients with virologic suppression. At least half of HIV+ 

patients on cART can have varying degrees of hypometabolism in the mesial frontal lobes 

[83]. These abnormalities are accentuated by drug abuse and can lead to extensive cortical 

hypometabolism [85]. In contrast to some MRI studies, a synergistic interaction has been 

observed between aging and HIV with changes primarily seen in the frontal regions [84]**.

Ongoing CNS injury observed despite peripheral virologic suppression may reflect 

persistent low level neuroinflammation. A few studies have attempted to characterize 

neuroinflammation using PET ligands that specifically target microglia activation. The most 

commonly used ligand has been 11C-PK11195 which binds to the translocator protein 

(TSPO), a mitochondrial receptor known to be significantly upregulated in activated 

microglia [86,87]. Early studies showed significantly higher 11C-PK11195 binding in HIV 

associated dementia (HAD) patients compared to HIV− controls within five out of eight 

brain regions of interest. However within a subgroup of non-demented HIV+ patients, no 

significant increases in binding were seen when compared to HIV− controls [88]. A 

subsequent larger study using 11C-PK11195 failed to show increases in ligand retention in 

the brain parenchyma of HIV+ subjects compared to HIV− controls [89]. One possible 

explanation for observed differences could be due to the variability of the HIV+ patient 

populations recruited for these studies. While Hammoud and colleagues [88] included 

cognitively impaired HIV+ who were not receiving cART, Wiley and colleagues [89] only 

evaluated cognitively normal HIV+ patients receiving treatment [89]. A subsequent study by 

Garvey and colleagues [90] compared chronically infected HIV+ patients with and without 

concomitant HCV infection. No significant differences were noted between these two 

groups. However, HIV+/cART+ individuals had lower ligand binding potentials in the 

parietal and frontal regions than HIV+/cART− patients. A follow-up paper by the same 

group compared HIV+/cART+ patients to HIV− controls and showed clusters of increased 

ligand binding within the corpus callosum, anterior and posterior cingulate gyrus, temporal 

gyrus, and frontal regions [91]**.

Limitations of 11C-PK11195, including its’ high non-specific binding and high lipophilicity, 

have led some to question the reliability of this ligand. Subsequent attempts have been made 
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to use second generation TSPO-PET ligands with higher specific to non-specific binding 

ratios. However, these second generation agents have different binding affinities within HIV

− controls. In particular, a genetic polymorphism of the TSPO receptor has been discovered 

and could affect the binding potential of these various ligands [92,93]**. This discovery has 

further complicated the analysis of TSPO-PET imaging as patients must be stratified as low-

affinity binders (LL), high affinity binders (HH), or heterozygous (HL) [92]. Cross-sectional 

comparisons, in theory, cannot be done except within the same binding affinity group. 

Despite these limitations, one study used a second generation TSPO ligand (11C-DPA713) 

to compare HIV+/cART+ individuals and HIV− controls [94]. Adapting a new method of 

data analysis based on assessing the volume-of-distribution ratios relative to overall gray 

matter, HIV+ patients were noted to have higher binding in specific brain regions that may 

reflect localized rather than diffuse glial cell activation. A novel gray matter normalization 

approach was employed that improves test-retest reproducibility and may uncover abnormal 

regional findings not seen using traditional methods [94]. However, additional studies are 

needed to validate this method for other TSPO ligands.

A third use of PET imaging in the setting of neuroHIV is the evaluation specific 

neurotransmitter systems. The first system to be evaluated was the dopaminergic system. 

Significantly lower dopamine transporters (DAT) availability was seen in the putamen of 

HIV+ patients with HAD compared to non-demented HIV+ patients. In addition, lower 

DAT levels were seen in the ventral striatum of HIV+ patients when compared to HIV− 

subjects [95]. These findings suggested dopaminergic terminal injury occurs in HIV+ 

patients with significant cognitive impairment. Within the HIV+ demented group, higher 

plasma viral load correlated with lower DAT binding in the caudate and putamen. This 

inverse relationship between plasma viral burden and DAT availability further support an 

HIV mediated neurotoxicity within dopaminergic nerve terminals [95]. A subsequent DAT 

imaging study assessed the cofounding effects of drug abuse (specifically cocaine) and HIV 

infection [96]*. While HIV+ patients showed lower DAT binding in the putamen compared 

to HIV− subjects, irrespective of drug abuse, HIV+ patients with a previous history of drug 

abuse problems had the lowest DAT values in the caudate. These results further support the 

theory of drug abuse contributing to CNS injury observed in HIV+ patients. Previous 

cocaine use may increase the release of dopamine, resulting in microglial activation, and 

possibly increases in viral replication [97]. Besides the dopaminergic system, only one study 

has targeted the serotonergic system in HIV+ patients. Using a serotonin transporter 

ligand, 11C-DASB, Hammoud and colleagues [98] showed dysregulated serotonergic 

transmission in HIV+ patients with depression compared to non-depressed HIV+ subjects. 

This observation may reflect increased density of serotonin, leading to increased clearance 

of this neurotransmitter from the synapse, which could subsequently lead to depressive 

symptoms [98]. However, additional longitudinal studies using these compounds and other 

recently developed ligands are needed in HIV+ patients.

A fourth approach to using PET in neuroHIV has investigated the role of amyloid. Previous 

pathological studies have shown increases in diffuse plaques in HIV+ patients [99–101]. 

With a greying of the HIV+ population, increasing concerns have arisen as to whether older 

HIV+ patients are at increased risk for developing Alzheimer’s disease (AD). PET imaging 

using the amyloid-binding agent 11C-labeled Pittsburgh Compound B (11C-PiB) has 

Ances and Hammoud Page 6

Curr Opin HIV AIDS. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



demonstrated amyloid deposition in preclinical AD [102]. However, 11C-PiB studies in HIV

+ individuals failed to show increased amyloid accumulation, even in symptomatic (HAND) 

patients [103,104]. A more recent study looking at HIV+ patients across a range of ages also 

did not show significant increases in amyloid typically seen with AD [105]. Observed 

differences between HAND and AD could potentially reflect variances in amyloid 

metabolism between the two disease entities or the lack of affinity of current amyloid 

ligands for more diffuse amyloid plaques. Additional studies using more recently developed 

amyloid agents (e.g. florbetapir) are needed.

Conclusion

In conclusion, PET imaging has been used rather limitedly in neuroHIV. However, PET 

methods have great potential for further characterizing the neuropathophysiological changes 

associated with HIV, especially in the setting of optimal cART. Evaluation of various 

neurotransmitter systems besides the dopaminergic and serotonergic systems might shed 

more light on selective vulnerability of various neuron subtypes to the virus. Evaluation of 

the effect of drug abuse on the course of neuroHIV is needed. Most importantly, PET 

imaging might help finding reliable non-invasive biomarkers of neuronal injury in HIV that 

could potentially be used in the evaluation of response to treatment and/or neuroprotective 

measures.
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Abbreviations

ANI asymptomatic neurocognitive impairment

cART combination antiretroviral therapy

Cr creatine

DTI diffusion tensor imaging

FA fractional anisotropy

fMRI functional magnetic resonance imaging

HAD HIV associated dementia

HAND HIV associated neurocognitive disorders

HIV Human immunodeficiency virus

HIV+ HIV-infected

HIV− HIV-uninfected

MD mean diffusivity

MI myoinositol
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MND mild neurocognitive disorder

MRS magnetic resonance spectroscopy

NAA n-acetyl aspartate

PET positron emission tomography

DAT dopamine transporter

NP neuropsychological performance

AD Alzheimer’s disease

FDG fluorodeoxyglucose

CBF cerebral blood flow

CNS central nervous system

TSPO translocator protein
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Key points

• The effects of HIV in the brain can be non-invasively assessed by structural 

(e.g. volumetrics and diffusion tensor imaging) and functional (e.g. blood 

oxygen level dependent imaging) magnetic resonance imaging (MRI).

• Positron emission tomography (PET) of glucose metabolism, neurotransmitter 

systems’ abnormalities, or amyloid deposition could provide additional 

understanding of the neuropathophysiological changes associated with HIV.

• Novel neuroimaging methods could be added to current criteria for defining 

HIV associated neurocognitive disorders (HAND). These methods may also 

help in evaluating the efficacy of combination anti-retroviral therapy (cART) 

regimens.

• Neuroimaging studies that are longitudinal; have larger sample sizes of both 

HIV infected (HIV+) and HIV uninfected (HIV−); and include HIV+ patients of 

different disease durations are needed.
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