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Abstract

Cancer primarily develops due to somatic alterations in the genome. Advances in sequencing have 

enabled large-scale sequencing studies across many tumor types, emphasizing discovery of 

alterations in protein-coding genes. However, the protein-coding exome comprises less than 2% of 

the human genome. Here, we analyze complete genome sequences of 863 human tumors from The 

Cancer Genome Atlas and other sources to systematically identify non-coding regions that are 

recurrently mutated in cancer. We utilize novel frequency and sequence-based approaches to 

comprehensively scan the genome for non-coding mutations with potential regulatory impact. We 

identified recurrent mutations in regulatory elements upstream of PLEKHS1, WDR74, and SDHD, 

as well as previously identified mutations in the TERT promoter. SDHD promoter mutations are 

frequent in melanoma and associated with reduced gene expression and poor patient prognosis. 

The non-protein-coding cancer genome remains widely unexplored and our findings represent a 

step towards targeting the entire genome for clinical purposes.

Introduction

Large-scale cancer genomics projects such as The Cancer Genome Atlas (TCGA)1 and the 

International Cancer Genome Consortium (ICGC)2 have spent significant effort 

characterizing the cancer genome. So far, these projects have put their focus on genomic 

variation in the coding sequences of tumor genomes, and have identified a number of novel 

alterations, such as recurrent mutations in the exonuclease domain of the DNA Polymerase 

epsilon3,4. Since most studies rely heavily on targeted exome sequencing, our understanding 

of somatic variation in coding regions has improved significantly. However, the protein-

coding component of the genome accounts for less than 2% of the total sequence and there 
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is very little information on how non-coding variation affects cancer development. 

Furthermore, even well-studied cancer types such as non-small-cell lung cancer still have 

significant sub-populations with no observable “driver” mutation5,6.

The Encyclopedia of DNA Elements (ENCODE) project estimates that roughly 80% of the 

human genome has some sort of biochemical functionality7. It is well known that somatic 

mutations in non-coding regions are frequent8, but their effect is poorly understood. Recent 

efforts to understand non-coding variation in the human population have shown that disease-

associated genomic variation is commonly located in regulatory elements9,10. Taken 

together, it is reasonable to expect that a substantial portion of recurrent non-coding somatic 

mutations observed in cancer could have a regulatory effect. To date, the most notable 

example is the recent discovery of mutations in the promoter of the TERT gene11,12. Other 

computational approaches to systematically characterize non-coding variation have 

primarily focused on nucleotide conservation9,13. Further progress in this area has been 

hampered by the relatively high cost of whole genome sequencing for large numbers of 

tumor samples, which are necessary to screen various regulatory regions for significant 

events. Indeed, previous studies on non-coding mutations in cancer have been limited by 

sample size12,14. The maturation of sequencing technologies now allows us to systematically 

sequence whole genomes and so it is only now that we can begin to appreciate the role non-

coding mutations might play in the formation and development of cancer.

We performed a comprehensive analysis of somatic mutations from whole-genome 

sequences (WGS) from 863 cancer patients collected from The Cancer Genome Atlas 

(TCGA) and other public sources15 (Figure 1a, Supplementary Tables 1, 2). Our approach 

targets genomic variation in the non-coding part of the genome, which is poorly 

characterized, and rarely implicated in cancer. We called somatic mutations in tumor-normal 

pairs across the whole genome and annotated the mutations focusing on those most likely to 

affect regulatory elements. We then utilized multiple independent approaches to identify 

functional non-coding alterations.

Results

Assessing the genomic landscape of non-coding mutations

The genome-wide mutation burden varied between different cancer types (Supplementary 

Figure 1) and the trend was generally consistent with previous observations in exome 

sequencing studies16. In the tumors from TCGA, most genomes had between 1.000 and 

50.000 total somatic mutations. Mutations in transcribed regions, including coding 

sequences (CDS), introns, and 3′ and 5′ UTRs were observed at similar frequencies (Figure 

1b). This observation is consistent with previous studies, suggesting a role for transcription-

coupled repair8,17. Interestingly, promoter and enhancer regions were mutated at a rate 

similar to the transcribed genic regions. In contrast, intergenic regions, which by and large 

should be less implicated in gene regulation and possibly under weaker selective constraint, 

carry the highest mutational burden across all regions investigated here (Mann-Whitney P < 

2.2e-16). Taken together, these observations suggest a functional role for a subset of 

mutations in annotated regulatory regions.
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We used three distinct approaches to identify non-coding mutations that may play a role in 

tumor development and progression (Figure 1c). First, a “hotspot” analysis identified small 

regions with frequent mutations by detecting clusters of mutations within 50 bp of each 

other (see Methods for details). This approach returns very focal regions that are 

significantly recurrently mutated compared to a random distribution of mutations across the 

genome. Next, we targeted annotated regulatory regions that are mutated more frequently 

than expected by chance using a regional recurrence approach. This method takes into 

account the length and replication timing of different regulatory regions. It computes two 

measures of significance by comparing the observed frequency of mutations within a region 

of interest to the mutation frequency in neighboring areas (local P-value), as well as 

mutation frequencies of similar genomic regions elsewhere in the genome (global P-value). 

We validated both of these approaches in the TCGA breast cancer exome dataset by re-

identifying genes that are frequently mutated in breast cancer (Supplementary Tables 3, 4)18. 

In the third approach, motivated by the discovery of the TERT promoter mutations, we 

specifically searched for mutations in ETS-family transcription factor binding sites, which 

have previously been implicated in cancer11. This approach considers evolutionary 

conservation of putative binding sites and separately evaluates mutations that disrupt or 

create ETS binding sites. Overall, we found that many of the most significant events 

identified by the three methods presented here (Supplementary Tables 5-16) occurred in 

regulatory regions of known cancer genes19 (P = 3.4e-4 when compared to all Ensembl 

genes using Fisher's exact one-tailed test), suggesting a possible functional role for these 

mutations in cancer.

Mutation hotspot in PLEKHS1 promoter

TERT promoter mutations constitute the most significant hotspot in our data (P = 1.1e-127, 

Figure 2a). The hotspot analysis identified a focal region in the promoter of the TERT gene, 

the catalytic subunit of telomerase, which is mutated in 56 samples. This hotspot contains 

two highly recurrent mutations at chr5:1295228 and chr5:1295250, which were found in 38 

samples and 15 samples, respectively. Both sites had C->T substitutions, which is consistent 

with previous reports of TERT promoter mutation11,12. Here we found mutations in these 

two recurrent sites in 7 cancer types (glioblastoma (16), melanoma (10), bladder (10), low-

grade glioma (9), liver (5), medulloblastoma (2), lung (1)), at frequencies similar to other 

recent reports20,21. We also observe a corresponding increase in TERT gene expression in 

mutated samples (Supplementary Figure 2). Our results suggest that these may be among the 

most prevalent functional non-coding mutations across all cancers.

In addition to the hotspot in the TERT promoter, hotspot analysis identified a number of 

other recurrently mutated hotspots (Figure 2a). The next most significant is a small hotspot 

in the promoter of PLEKHS1 (P = 4.6e-80). This hotspot contains 23 mutations distributed 

over 20 samples, with two mutated sites at the far end of the promoter (∼50 bp into the first 

intron). The two sites were mutated in 11 (chr10:115511590) and 12 samples 

(chr10:115511593), both of which are predominantly C->T transitions (Figure 2b). 

Interestingly, these two mutations are flanked by stretches of 10 base pairs on both sides, 

which are palindromic to each other (Supplementary Figure 3). This hotspot was found in 

five cancer types and mutated samples appear to have lower expression of PLEKHS1 
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(Supplementary Figure 4). In bladder cancer, 40% of samples were affected by a mutation in 

this hotspot (8 out of 20 samples). PLEKHS1 is a largely uncharacterized gene that has not 

previously been linked to tumorigenesis. The gene contains a pleckstrin homology domain, 

which suggests a role for the protein in intracellular signaling22.

This analysis identified several other significant hotspots linked to STAG3, BCL2, TCL1A, 

AGAP5, TRMT10C, TNK2, and WDR74 (Supplementary Tables 5-8). Interestingly, many of 

these genes have been associated with cancer previously23-26. In contrast to PLEKHS1 and 

TERT, which mostly have one hotspot mutation per sample, hotspots in the promoter and 5′ 

UTR of BCL2 are significant, but seem to occur as clusters of several mutations within the 

same sample (average 2.2 mutations per mutated sample). Closer examination revealed that 

these are all in B-cell lymphoma samples and are likely a result of targeted somatic 

hypermutation at hypervariable regions27.

WDR74 promoter is frequently mutated

Protein-coding regions of many tumor suppressor genes display frequent inactivating 

somatic mutations, not at specific sites, but instead distributed across the entire open reading 

frame. To identify genes with frequent mutations across an entire regulatory region, we 

developed a statistical framework that evaluates the mutation rates of annotated regulatory 

regions in both a local and global genomic context. Briefly, the local approach compares 

regional mutation rates to the overall mutation frequency in the immediate genomic 

neighborhood, whereas the global approach compares mutation rates for regions in the same 

category (e.g. promoter or 3′ UTR) and with similar DNA replication timing (see Methods).

This approach identified larger, more frequently mutated genomic regions, thus 

complementing the hotspot analysis, which focused on much smaller regions. Apart from 

frequent promoter mutations in TERT (P < 1.3e-17), we observed a number of regulatory 

regions that were significantly enriched for non-coding mutations (Figure 3a). In particular, 

the 5′UTR (P < 5.1e-8) and promoter of WDR74 (P < 3.6e-9) were highly enriched for 

mutations. In contrast to the hotspot mutations in PLEKHS1, mutations in WDR74 were 

broadly distributed across numerous positions (Figure 3b) and WDR74 transcript levels 

were not significantly different in mutated samples (Supplementary Figure 5). While the 

coding sequence of WDR74 did not contain any mutations, our analysis revealed 35 non-

coding mutations in a ∼1kb window near the 5′ end of WDR74 gene, most of which 

clustered at the start of the untranslated region.

WDR74 contains a WD40 repeat, which has enzymatic activity and has been shown to be 

involved in a variety of biological processes, including cell cycle control and apoptosis28. 

The promoter region of WDR74 was previously found to be under purifying selection and 

likely sensitive to mutation9. Khurana et al. also reported WDR74 promoter mutations in 

2/20 analyzed prostate cancer genomes. Here we demonstrate that mutations in this region 

are more common than previously known. We identified a total of 52 mutations in the 

promoter region of WDR74 (Figure 3b), including four distinct single nucleotides with 

recurrent mutations in up to four samples. Overall, 39/863 samples (5%) harbored at least 

one mutation in the regions.
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Other frequently mutated regions were found in non-coding regions of genes such as SGK1, 

DHX16, and SDHD (Supplementary Tables 9-12). Interestingly, the 5′ end of the SDHD 

gene contained multiple mutations in putative ETS (E26 transformation-specific) family 

transcription factor binding sites. We next used transcription factor analysis to specifically 

assess the significance of mutations in ETS response elements on a genome-wide scale.

Promoter mutations in ETS binding site alter regulation of SDHD

As mentioned above, hotspot analysis identified two known, highly recurrent sites in the 

promoter of TERT11,12. Both hotspot mutations create novel binding sites for ETS 

transcription factors by substituting a cytosine nucleotide with a thymine nucleotide (C->T), 

thereby generating the TTCC response element, which is highly conserved for ETS 

transcription factors. Both elements are located on the minus strand, which is the coding 

strand for TERT (CTCC>TTCC at chr5:1295228 and TCCC>TTCC at chr5:1295250). Here, we 

systematically screened regulatory regions of interest for mutations that either create novel 

ETS binding sites, or disrupt existing ones (see Methods for details). Apart from TERT, 

promoter mutations in ANKRD53 were the most significant mutations that created novel 

ETS binding sites (P < 0.0049). Several regulatory regions contained a significant number of 

mutations that disrupted ETS binding sites including TAF11, ERLIN2, MEF2C, KRT4, and 

SDHD, among others (Supplementary Tables 13-16). SDHD, which encodes the succinate 

dehydrogenase complex subunit D, was also observed in the regional recurrence analysis 

above. SDHD promoter mutations (C->T) occurred exclusively in melanoma samples and 

potentially disrupted two separate putative ETS binding sites in a small genomic region 

upstream of the coding sequence (Figure 4a). The recurrent mutations are located at 

chr11:111957523 (TTCC>TTTC) and chr11:111957541 (TTCC>TTTC), close enough to the start 

codon to allow further examination using TCGA melanoma whole-exome data, which exists 

for a larger number of samples. The exome data revealed a third putative ETS binding site in 

the SDHD promoter, located at chr11:111957544, which had a mutation just outside of the 

core response element, converting CTTCC>TTTCC. The mutated base is not conserved in all ETS 

family transcription factors, but it is highly conserved in ELF1 (Supplementary Figure 6), 

the only ETS transcription factor that correlated with SDHD gene expression, and also binds 

the SDHD promoter according to ENCODE data7,29. Out of 128 samples with read-depth 15 

or higher, 13 had a mutation in the promoter region (10%), 10 of which had recurrent 

mutations in ETS binding sites. In contrast to recurrent mutations in the TERT promoter, 

which create a novel ETS binding site, mutations in the SDHD promoter damage existing 

ETS binding sites. Since TERT promoter mutations led to increased expression of the TERT 

gene, we expected expression of SDHD to be lower when compared to a group of ‘wild-

type’ melanoma samples without SDHD promoter mutation. Using whole exome sequencing 

data and gene expression data from the TCGA, we compiled a set of 42 samples that did not 

present promoter mutations in SDHD (Methods). Analysis of expression data revealed that 

tumors with SDHD promoter mutations indeed have significantly reduced expression of the 

SDHD gene (P = 0.004, Figure 4b). Based on CHiP-Seq data from the ENCODE project, we 

were able to identify three ETS family transcription factors with binding activity in the 

SDHD promoter (EHF, ELF1, and ETS1). Among these three transcription factors, only 

ELF1 expression exhibited significant positive correlation with the SDHD expression data in 

the subset of 42 SDHD proficient samples without promoter mutation (Figure 4c, 
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Supplementary Figure 7, P < 0.0035), indicating that SDHD could be under control of the 

ELF1 transcription factor under normal circumstances. Interestingly, tumor samples with 

SDHD promoter mutation do not exhibit a correlation between SDHD and ELF1 mRNA 

levels (P = 0.35), suggesting a possible adverse effect SDHD promoter mutation has on 

transcriptional regulation by ELF1 (Figure 4c). In addition to the apparent changes on gene 

expression, we observed that samples with SDHD mutation had a significantly shorter 

overall survival compared to a reference group of 88 melanoma samples (P = 0.005, Figure 

4d). SDHD, which encodes the subunit D of the succinate dehydrogenase tetramer, is of 

particular interest since succinate dehydrogenase is the only protein that participates in the 

citric acid cycle as well as electron transport chain. It has been shown that SDHD mutations 

can cause paraganglioma30,31, a benign tumor of the head and neck. Previous studies 

suggest that SDHD acts like a tumor-suppressor30, which is consistent with our observation 

of reduced mRNA expression in tumor samples with SDHD promoter mutation.

Discussion

Here we present a comprehensive analysis of whole genome sequencing data from 863 

cancer patients to characterize the landscape of non-coding mutations in cancer. We show 

that intergenic regions are more often affected by mutation than other transcribed regions in 

close proximity to the coding sequence, such as introns, promoters, enhancers, and 

untranslated regions. In addition, our data suggests that regulatory regions at the 5′ end of 

genes, such as promoters and 5′UTRs, are recurrently mutated more often than 3′ UTRs or 

distal enhancers (Figure 3a).

We used three complementary types of analysis to identify regions of interest that are 

significantly affected by mutation: hotspot analysis focused on small regions that frequently 

contain mutations; regional recurrence analysis identified annotated regions that contained 

numerous mutations; transcription factor analysis nominated regions with ETS transcription 

factor binding sites that were disrupted or created by mutation. These three methods used 

clearly distinct approaches, and as result found different regions of interest, in general. 

However, the most significant findings, which are highlighted in this study, were identified 

by multiple methods. Promoter mutations in the TERT gene were found by all three 

methods. Hotspot analysis identified highly recurrent mutations in PLEKHS1, which 

contains a pleckstrin homology domain. The mutations occur at the center of a perfectly 

palindromic sequence. This observation is striking, even though it is not known if this 

particular palindrome is functional. However, it is also known that transcription factor 

binding sites can be palindromic32,33. The finding of SDHD promoter mutation was 

moderately significant in regional recurrence analysis, but was subsequently substantiated 

by transcription factor binding site analysis. Recurrent mutations in three distinct ETS 

response elements were associated with loss of correlation with ETS transcription factor 

(ELF1) on mRNA level, and shorter patient survival. Although our study focused 

exclusively on ETS transcription factor binding sites, we believe that such an approach will 

be valuable when carefully applied towards all known conserved binding sites.

It has been shown that large sample sizes are required to accurately detect low frequency 

cancer mutations34. Here we used data from multiple cancer types across a wide range of 
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studies, most of which had fewer than 50 samples. Our analysis is therefore limited to 

detecting regions that are mutated at high frequencies in individual tumor types, or across 

several different tumor types. It is likely that similar analyses on larger sets of samples in 

individual tumor types will reveal additional insights (Supplementary Figures 8, 9, 

Supplementary Tables 17, 18). Even with this initial analysis, we observe many mutations at 

clinically relevant frequencies, which are interesting from a therapeutic perspective. Our 

results suggest that important tumorigenic mutations occur in non-coding regions, even 

though large numbers of passenger mutations exist in these regions as well, and the 

interpretation of such mutations remains a challenge. However, interrogation and 

interpretation of non-coding mutation will become more accurate and more important as 

availability of WGS data increases.

URLs

CGHub, https://cghub.ucsc.edu/; Broad GDAC Firehose, http://gdac.broadinstitute.org/; 

Data from Alexandrov et al.15, ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl

Methods

Calling mutations

Whole-genome sequencing data was downloaded from CGHub in the form of tumor and 

matched normal BAM files. Mutations were called across the whole genome using 

MuTect35 and Strelka36 with default parameters. The intersection of somatic mutation calls 

made by both programs was used as the mutation list for each sample.

To investigate promoter mutations in SDHD, whole-exome sequencing data for SKCM was 

downloaded from CGHub and allele counts were generated for SDHD 5′ coordinates 

chr11:111957523 and chr11:111957541. Samples without whole-genome sequences but 

whose whole-exome sequence data exhibited two or more mutant alleles (T instead of the 

reference C) in these positions were considered to be mutated.

We excluded 5 samples with more than 500,000 mutations each, limiting the data set to 858 

samples. All analyses focused on single nucleotide substitutions, and did not consider 

insertions, deletions, or other structural variants.

Defining non-coding ROIs

We used gene annotation from Ensembl37 (v70) for transcripts of all protein coding genes 

(having at least one annotated open reading frame). 5′ UTR and 3′ UTR regions were used 

as defined by Ensembl. Promoter regions were defined as the genomic intervals ranging 

from 2000 bp upstream to 200 bp downstream of all transcription start sites. We used 66 944 

enhancer-region to gene associations (27493 unique regions) from a previous 

comprehensive study38 in which inferred mid positions of enhancer regions were extended 

200 bp up- and downstream. To avoid mutation bias from protein coding regions, we 

removed ORFs (extended by 5 bp to also account for splice sites) from the collection of 

ROIs. Furthermore, to avoid bias from immune system coupled somatic hypermutation, we 
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also removed regions of 429 annotated immunoglobulin loci (each region extended by 50 

kb, Ensembl v73).

Identification of hotspot mutations

All mutations within 50bp of each other were merged using BEDTools into hotspot 

“clusters” until no clusters were within 50bp of another39. Clusters with only 1 or 2 

mutations were removed from further consideration. A p-value was calculated for each 

cluster using the negative binomial distribution, taking into account the length of the 

candidate hotspot, the number of mutations in the cluster, and a “background mutation rate” 

for the cluster. The cluster “background mutation rate” is calculated as the mean of the 

background mutation probability for each sample that has a mutation represented in the 

cluster. The background mutation probability of each sample is calculated as the total 

number of mutations divided by the genome size. P-values were adjusted for multiple testing 

with the multtest R package40 using the Benjamini-Hochberg method and hotspot clusters 

are ranked accordingly.

Testing ROIs for mutation recurrence

All ROIs longer than 50 bp were tested for recurrence of mutations using both a global and 

local statistical approach. Both approaches assumes that the observed number of mutated 

samples, k, for a given ROI follows a binomial distribution, Bin(n,pi), where n is the total 

number of samples with mutation data, and pi is the estimated sample mutation rate for ROI 

i under the null hypothesis that the region is not recurrently mutated. We can therefore 

compute the following p-value:

Here we assume that pi depends on the effective length Li of the ROI (with any ORF overlap 

subtracted, see above) and the estimated nucleotide mutation rate qi for the region under the 

null hypothesis:

The background mutation frequency qi is not readily available and needs to be estimated 

before we can compute a p-value using the above equation. We estimate both a local and a 

global background mutation frequency, which form the basis for the local and global tests, 

respectively. For the local approach we extracted 10kb flanking regions upstream and 

downstream of the ROI, excluding ORFs from the flanks to reduce mutation bias from 

nearby protein coding regions. The local background nucleotide mutation frequency was 

then estimated by dividing the total number of observed mutations with the effective length 

of the flanking region. In the global approach, we estimated nucleotide mutation frequencies 

from other regions of the same ROI category (e.g. promoter, 3′ UTR, etc.). Because DNA 
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replication timing has previously been shown to affect somatic mutation rates in tumors16,41, 

we further stratified ROIs of the same category by their replication timing in 5 cancer cell 

lines (HeLa, K562, HEPG2, MCF7, SKNSH, data from the UW ENCODE group7,42). We 

first computed average replication time values in 100 kb bin sizes for each cell line, and for 

each ROI we computed a single replication time value (average if spanning >1 bins) for each 

cell line. For a given ROI in category C, we identified the top 5% ROIs in C with most 

similar replication timing profiles (Euclidian distance between vectors of replication time 

values across the 5 cell lines). The global background nucleotide mutation frequency was 

then estimated by dividing the total number of observed mutations in the top 5% ROIs with 

the effective length of these regions. P-values were computed using the equation above, and 

adjusted for multiple testing with the multtest R package using the Benjamini-Hochberg 

method. For each region/gene we selected the maximum FDR of the individual global and 

local tests.

Transcription factor analysis

All mutations were annotated if they affected ETS transcription factor binding sites. 

Mutations were considered to create ETS transcription factor binding sites, if the nucleotide 

substitution created a novel ETS transcription factor core response element on either strand 

(e.g. TGCC>TTCC). Mutations were considered to disrupt ETS transcription factor binding 

sites if they altered an existing ETS core response element (e.g TTCC>TGCC). Using the 

regions of interest defined above, we then calculated a count statistic for each region of 

interest by summing up the number of mutations that created or disrupted ETS transcription 

factor binding sites within each ROI. For each region of interest that contained more than 1 

mutation in a ETS binding site, an empirical p-value was computed by comparing the 

observed count statistic (number of mutations creating/disrupting ETS binding sites within 

the region of interest) to a reference distribution of count statistics. Reference distributions 

were generated for each region of interest by iteratively calculating the above count statistic 

on the same set of mutations after randomizing the ETS transcription factor annotations (i.e. 

the binary annotation whether of not mutations created novel binding sites were 

randomized) during each iteration. A p-value was derived by comparing the observed count 

statistic of a given region of interest to the distribution of count statistics of its 

corresponding reference distribution (based on 10000 iterations), and was defined as the 

fraction of count statistics in the reference distribution greater or equal to the observed count 

statistic. P-values were adjusted for multiple testing using the Benjamini-Hochberg method.

Expression analysis

Expression analysis was performed using RNASeq raw counts from TCGA. P-values are 

reported using a negative binomial test from the edgeR package43, which is available 

through Bioconductor44. In-depth analyses of SDHD promoter mutations (Figures 4b-c) 

were performed on a set of melanoma samples from TCGA (v20130923, Level 3) for which 

exome-sequencing data was available. The set of reference (‘wild-type’) samples consisted 

of melanoma samples, which had a read depth of 15 reads or higher in the SDHD promoter 

region. “Wild-type” samples with putative copy-number alterations at the SDHD locus were 

excluded. Survival analysis (Figure 4d) was performed on a set of 88 samples with read 
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depth of 15 reads or higher in the SDHD promoter region using the clinical data file for 

melanoma from TCGA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Tumor samples by disease type. Tumor types from TCGA are labeled in boldface; other 

published samples15 are shown in regular font. b) Mean mutation frequency and 95% 

confidence interval (n=858) across samples by type of genomic region. c) Workflow for 

identification of recurrent, non-coding mutations in regulatory regions of interest. Our 

approach integrates mutation calls from 863 tumor/normal pairs and regulatory regions of 

interest (ROIs), which are tested for non-coding mutations using three distinct analyses. 

Hotspot analysis detects recurrent mutations that are often very focal. Regional recurrence 

analysis identifies annotated regions of interest that are enriched for mutation throughout the 

entire region. Transcription factor analysis searches for regions that contain recurrent 

mutations within transcription factor binding sites.
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Figure 2. Hotspot Analysis
a) Significance of mutation hotspots in non-coding regulatory regions. Hotspots are shown 

according to statistical significance (false discovery rate adjusted p-value on x-axis) and 

number of mutations per sample (y-axis). Colors represent the types of regulatory regions in 

which hotspots were found. b) Mutation hotspot in the promoter region of PLEKHS1, 

including two highly recurrent sites (11 and 12 mutations, respectively) located at the center 

of a palindromic sequence. Mutation density across the region is shown as grey curve. The 

bar chart summarizes the frequency of the hotspot mutation in individual cancer types 

(colors correspond to Figure 1a).
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Figure 3. Regional Recurrence Analysis
a) Significance of recurrent mutations in regulatory regions of interest. Regulatory regions 

for individual genes are shown according to local (y-axis) and global (x-axis) measures of 

statistical significance (false discovery rate adjusted p-value). Colors represent types of 

regulatory region. b) Strong enrichment of mutations in the promoter region of WDR74 in 

contrast to the remainder of the gene sequence. The bar chart summarizes the frequency of 

the hotspot mutation in individual cancer types (colors correspond to Figure 1a).
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Figure 4. Transcription Factor Analysis
Mutations in the promoter region of SDHD disrupt ETS transcription factor binding sites in 

melanoma cancer genomes. a) Three recurrently mutated sites in the promoter region of 

SDHD, each one altering a separate ETS recognition site, which are highly conserved and 

highlighted in red. b) SDHD mRNA expression is lower in melanoma samples with SDHD 

promoter mutations (n = 13, red) compared to ‘wild-type’ tumor samples (n = 42, blue). The 

box plot displays first and third quartiles (top and bottom of boxes), median (band inside 

boxes), and lowest/highest point within 1.5 × IQR of the lower/higher quartile (whiskers). c) 

mRNA expression between ELF1 (ETS transcription factor) and SDHD is positively 

correlated in samples without SDHD promoter mutations (n = 42, blue) and not in samples 

with SDHD promoter mutation (n = 13, red). d) Survival analysis shows that overall patient 

survival is significantly lower in samples with SDHD promoter mutations (n = 12, red) 

compared to the reference group (n = 88, blue).
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