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Abstract

A practical impediment in adaptive clinical trials is that outcomes must be observed soon enough
to apply decision rules to choose treatments for new patients. For example, if outcomes take up to
six weeks to evaluate and the accrual rate is one patient per week, on average three new patients
will be accrued while waiting to evaluate the outcomes of the previous three patients. The question
is how to treat the new patients. This logistical problem persists throughout the trial. Various ad
hoc practical solutions are used, none entirely satisfactory. We focus on this problem in phase I-I1
clinical trials that use binary toxicity and efficacy, defined in terms of event times, to choose doses
adaptively for successive cohorts. We propose a general approach to this problem that treats late-
onset outcomes as missing data, uses data augmentation to impute missing outcomes from
posterior predictive distributions computed from partial follow-up times and complete outcome
data, and applies the design’s decision rules using the completed data. We illustrate the method
with two cancer trials conducted using a phase I-11 design based on efficacy-toxicity trade-offs,
including a computer stimulation study.
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1 Introduction

Phase I-II clinical trial designs combine conventional phase | and phase I trials by
determining a dose of a new agent based on both toxicity and efficacy (Gooley et al., 1994;
Thall and Russell, 1998; O’Quigley et al., 2001; Braun, 2002; Thall and Cook, 2004; Bekele
and Shen, 2005; Zhang et al., 2006; Yin et al., 2006; Yuan and Yin, 2011a). Most
commonly, a small phase | trial based on toxicity (Storer, 1989; O’Quigley et al., 1990;
Babb et al., 1998; Conaway et al., 2004) first is conducted to choose a putatively safe dose,
the “maximum tolerated dose” (MTD), and a phase Il trial then is conducted (Gehan, 1969;
Fleming, 1982; Simon, 1989; Thall and Simon, 1994; Thall et al., 1995; Bryant and Day,
1995), using the MTD, with efficacy the primary outcome. This conventional approach may
lead to several problems. (1) Informal dose adjustments often are made in phase Il if
excessive toxicity is observed, which invalidates assumed properties of any efficacy-based
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design. (2) Operating characteristics of the entire phase | — phase Il process are seldom
computed. (3) Separate designs ignore the trade-off between efficacy and toxicity that often
underlies therapeutic decision making. Since phase I-I1 designs address these problems
explicitly, a natural question is why such designs are used infrequently for actual trials.
While these are complex issues, the following logistical problem may play a prominent role.

In outcome-adaptive clinical trials, a major practical impediment arises if patient outcomes
are not observed quickly enough to apply decision rules that choose treatments or doses for
newly accrued patients. Because it is undesirable, and often impossible, to delay a new
patient’s treatment while waiting for previous patients’ outcomes to be scored so that an
adaptive statistical rule can be applied, outcome-adaptive rules may be at odds with clinical
practice. In phase I-I1, this problem arises if either toxicity or efficacy is not scored quickly,
relative to the accrual rate. One solution is to turn away new patients and treat them off
protocol. This may be less desirable than giving the experimental regimen, or impossible if
no alternative treatment exists. Another solution is to give all new patients the dose or
treatment that is optimal based on the most recent data. This may have very undesirable
consequences if the most recent optimal dose later turns out to be overly toxic, and it is the
main reason that dose-finding usually is done sequentially with small cohorts of 1, 2, or 3
patients. In Phase I-I1, the opposite effect can occur if the most recent optimal dose is safe
but inefficacious. A third solution when some patients’ outcomes have not yet been
evaluated fully is to treat all new patients immediately, but use a dose one level below the
design’s current optimal dose. In Phase I, the problem of dealing with delayed (“late onset™)
toxicity was first addressed by Cheung and Chappell (2000), who introduced the time-to-
event continual reassessment method (TiTE-CRM), and later by Braun (2006), Bekele et al.
(2008), and Yuan and Yin (2011b).

As an illustration, consider a phase I-I1 clinical trial of chemotherapy for acute leukemia,
both toxicity and efficacy events may occur at any time during a common 6-week evaluation
period, doses chosen adaptively for cohorts of size 3, and accrual rate 1 patient per week. On
average, the first cohort will be accrued in 3 weeks with all of their outcomes scored by
week 9, when adaptive rules are applied using their data to choose the second cohort’s dose.
Since one also can expect to accrue 6 new patients between weeks 3 and 9, the question is
how to deal therapeutically with these new patients. A second example is an autologous
stem cell transplantation trial for multiple myeloma (MM) where toxicity may occur at any
time during the first 30 days, but efficacy is evaluated only at 90 days post-transplant, and is
defined as no detectable MM protein in the urine or blood serum and < 5% plasma cells in
the bone marrow. If the accrual rate is 3 patients per month, one may expect to accrue 9
patients before efficacy is scored for any patients, so applying an adaptive rule to choose a
dose for patients 4, 5, and 6, (cohort 2), using the data from patients 1, 2, and 3, (cohort 1),
is not possible without delaying the second cohort’s therapy. The severity of this problem
increases with accrual rate and persists throughout the trial.

In this paper, we consider phase I-11 designs where both efficacy (E) and toxicity (T) are
characterized as binary variables, Yg and Y, evaluated either during or at the end of
specified time intervals, [0, Ug] for Yg and [0, U] for Y1. We refer to Yg and Y as “delayed
outcomes” because they are not observed immediately. Denote accrual rate by a. We
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quantify the severity of the problem using the logistical difficulty indexes j = Uja for each
outcome j = E, T, and overall index £ = max{Cg, {7}. For example, if a = 1 patient/month
and Ug = Ut = 3 months, then £ = 3. Doubling the accrual rate to a = 2 gives the
problematic value { = 6.

We propose a methodology that handles the problem of delayed outcomes in phase I-11 by
accounting for each patient’s follow up time prior to evaluation of Yg and Y, and treating all
Yj’s that have not yet been observed as missing values. We use data augmentation (Tanner
and Wong, 1987) to impute each missing Y; using partial follow-up times and complete
outcome data. Combining observed and imputed (Yg, Yt) data for all patients who have been
treated, we then apply the phase I-11 design’s decision rules. Our approach of treating
delayed outcomes as missing data is similar to that of Yuan and Yin (2011b), who deal with
the phase | setting with Y1 but not Yg. Key differences are that the bivariate distribution and
missingship patterns of (Yg, Yt) are much more complicated than those of Yt alone. In
addition, Yuan and Yin (2011b) use the EM algorithm under a frequentist framework to
estimate toxicity probabilities, whereas we rely on predictive probabilities and imputatation
to obtain a completed data set under a Bayesian formulation.

In Section 2, we propose a general approach to delayed outcomes in phase I-I1 trials. In
Section 3, we present imputation and Bayesian data augmentation methods. Section 4
illustrates the method with two trials designed using an extended version of the efficacy-
toxicity (Eff-Tox) trade-off based design of Thall and Cook (2004). In Section 5, we present
simulations of the proposed method and comparison with alternative methods. We conclude
with a discussion in Section 6.

2 Observed Outcomes and Missing Values

2.1 Data Structures

The data structure assumed by most phase I-11 dose-finding method consists of assigned
doses and two binary outcomes. We denote this by %(Y) = {(d[y}, Y1,& Y1,7), ---» (d[n}, YnEs
Yn1)}, where djj; is the dose given to the ith patient and interim sample size n=1, -+, Nyax.
To account for the fact that, at any interim decision, one or both of Yg and Yt may not yet be
observed for a given patient, we denote the data including only the observed Y;’s by Zops(Y)
and the unobserved (“missing™) Yj’s by Zp;s(Y). Our strategy will be to use Zqps(Y) and
partial follow up time data to impute any missing Yj’s in %p;s(Y) and thus construct a
completed version of Z4p5(Y) that has the form of Z(Y), and then apply the phase 1-I1
method.

Let Xj denote time to outcome j = E, T. Corresponding to the acute leukemia trial and the
stem cell transplantation trial described previously, we distinguish between two data
structures, depending on how Yg is observed. In Case 1, Yg is observed in real time, and Yg
= 1(Xg < Ug). In Case 2, Yg is evaluated only at Ug, and there is no Xg. In both cases, Y1 =
(X1 < U7). To simplify exposition, we focus primarily on Case 1 since it is more complex,
and later explain how to deal with Case 2. For trials where efficacy is evaluated periodically
Xg is interval censored. We include this by smoothing the interval censored data, placing Xg
at the midpoint or a randomly chosen value of the interval where efficacy was known to
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occur. We accommodate patient death during therapy by defining Xy as the time to either
non-fatal toxicity or death. For efficacy, if the patient dies prior to Ug we define Yg =0,
which is implied by defining Xg = oo. Denote U = max {UT, Ug} and V = follow up time,
where by design V < U.

2.2 Missingship Mechanism

Denote mj(d, 0) = Pr(Yj =1 d, ) for j = E, T, where 0 is the model parameter vector. In the
sequel, we often will suppress d and 6 for brevity. The observed follow up time of Xj during

the evaluation interval [0, Uj] is X7=V"A X;. We assume that V is independent of X;. The
key to our method is that X7 provides useful information about Yj, because

Pr(U;<X;)

Pr(}/}zl‘X;:‘/<Xj):]. — m
J B

must decrease as X7 increases from 0 to Uj. This fact also underlies the TITE-CRM (Cheung
and Chappell, 2000). To account for missing values, we use V to extend the previous
definitions of Yg and Yr, as follows. We define

missing ifX;>VandV <U; (XJ?:V),
Yj= L X <V<U; (XP=XG),
0 leJ>‘/:U] (XJO:UJ)

That is, Y; = missing if the patient has not yet experienced the event and has not been fully
followed to Uj, while j is observed if the patient either has experienced the event (Y; = 1) or
has completed the defined follow-up time without the event (V = Uj and Yj = 0). Denote the
missingship indicators M; = I(Yj = missing) for j = E, T, and M = (Mg, My). The ith patient’s
data are Zi=(d[;), Y, 5, Y. 7, X;,, X7 ), and 2; determines M;. Our methodology uses the
actual interim data from n patients, by = (%1, ---, 9p), to impute missing Y;’s and construct
a completed binary data set 2(Y) for implementing the phase I-11 method.

2.3 Event Time Distributions

To construct flexible survival functions, we assume piecewise exponential marginals for [X|
d, Yj=1],j = E, T, by partitioning [0, U] into Kj intervals, [0, hj 1), [N 1, j2), -+ [hj’Kj_l,
hj'Kj], and assuming hazard A x on [hj k-1, hj k). The marginal survival function for X; is

K
Sj(x|Y;=1,\j)=exp { —ijyk(x))\ ~,k} ,2>0,
k=1

denoting Aj = (Aj 1, -+ xijj), and weights W i(X) = hj k = hj k-1 I X > hj ), Wj k(X) = X = hj k-1
if x € [N k-1, hj K, and wj K(xX) = 0 otherwise. Initially, we considered a more elaborate form

of §, in which each ; x was replaced by Aj,w;l where yj > 1, so that the event time
distributions varied with dose in a proportional hazard model with piecewise exponential
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baseline hazard. However, we found that fixing yg = yt = 1 did not change the method’s
operating characteristics, due to the fact that there is little or no information to estimate the
Yj’s. To determine whether a more parsimonious survival model might give a design with

similar performance, we replaced the piecewise exponential with a Weibull. However,

simulations across eight dose-outcome scenarios (Supplementary Table S9) showed that the
Weibull gave larger probabilities of incorrectly stopping early, and either similar or lower
probabilities of selecting desirable doses.

Our imputation method requires the joint conditional survival probabilities Sxg, X7 |a, b) =
Pr(Xg > xg, X7 > x7 |[Yg = &, Y7 =Db) for (a, b) = (0,1), (1,0), (1,1). Assuming conditional
independence, S(X; |Yg, Y1) = §(; |Yj) for j = E, T, implies that S(xg, Xt |1, 0) is determined
by the marginal of Xg and S(xg, x1 |0, 1) is determined by the marginal of Xy. Determining

S(Xg, X111, 1) requires accounting for association between Xg and Xt. We do this by

defining a joint distribution using the Clayton copula (Clayton, 1978), given for ¢ = 0 by

S(z,,z,|1,1)

={S,,(x,V,=1) V48, (. |V =1)" V¢ — 1}

:{exp{

K

E
Z)\E,kwE,k /¢
k=1

} - {

K

T
Z)\TAkwT,k/(ﬁ
k=1

—¢

)

The likelihood of 2 depends on Yg, YT, and the censoring patterns of Xg and X1. Denote
A=(Ag, Ap), E=(0+1) /¢, e;=I(X7=X}), the pdf of X; by fj(), and

W (X%, X0)=S5, (X [Y,=1)" 448, (X2|v,=1)"1¢ — 1.

When Yg = Y1 = 1, there are four possible likelihoods,

L(@P‘v ¢):

, —om ¢
EW (X5, X2) ™ T, £ (X5 1Y =1{IT . S;(X7[Y;=1)}

T"""(X,f;’ X;)iqsﬁifb‘ (XZ* |YE:1)SE (XZ |YE:1)5
11’7(X27 X;)_¢_ fT(X; ‘YTzl)ST(X; |YT:1)£
W(X°,X°)~?

For the cases (Yg, Y1) = (1,0) or (0,1), the likelihoods are given by

Y, (1-Y,

D (XY =) F T {Sp (X2 Vy=1)} 7]

Denoting the likelihood for n patients by L(Z|, ¢):Hj:1L(%I>\, ¢), the posterior is f(\,
0|%) o f(Wf(@)L(Z|\, @), for priors f(\) and f(¢) of X and ¢.
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3 Imputation Method

Let map(d, 0) = Pr(Ye = &, Y7 =b|d, 0) for a, b € {0, 1} denote the joint distribution of [Yg,
Yt | d], so mg(d, 0) = mq 1(d, 0) + 71 o(d, 6) and wr(d, 6) = 71 1(d, 6) + 7 1(d, 0). If no
outcomes are missing the likelihood is the usual product

L(2(Y)|0) HHH{w(dz],e)}”(w J=@h

i=1a=0b=0

with posterior f(0|2(Y)) o« L(Z(Y)|0)f(0); for prior f(6). Since L(#(Y)|6) cannot be computed
if some Y;j’s are missing, we obtain a completed version of the likelihood, of the form (1),
by using Bayesian data augmentation (Tanner and Wong, 1987). We iterate between an
imputation step sampling missing Y;’s from their full conditionals, and a step computing the
posterior using the completed data. Importantly, the imputation depends on the dose-
outcome model.

Missing Y;’s are nonignorable because, at follow up time V, a patient who will not
experience outcome j by Uj is more likely to have Yj = missing (M;=1) than a patient for
whom outcome j will occur (Yuan and Yin, 2011b). By Bayes’ Law, Pr(M; = 1|Y; = 0) >
Pr(M; = 1]Yj = 1) implies that

mj _Pr(yj=1M=1)
1—m; " Pr(Y;=0|M;=1)

This says that the odds that Yj = 1 decreases if Y is missing, so the missingship indicator M;
contains information about the future value of ;.

A complication in carrying out the imputation is that there are three possible missingship
patterns: (1) Yg = missing and Yt is observed, (2) Yt = missing and Yg is observed, and (3)
both Yg = missing and Yt = missing. Since we impute missing values by sampling from their
full conditional posteriors, these distributions must be specified for each missingship pattern.
These posteriors are defined in terms of the following conditionals for Xg and X, given
each of the four possible future outcome pairs, which for brevity we denote by

Sap=Pr(X,>V, X, >V|Y,=a,Y,=b),a,b € {0,1}. (2)

In any case, Syo = 1 due to the fact that Pr(Xj > V[Y; = 0) = 1 for 0 < V < U;, which also
implies that S;g=Pr(Xg >V |Yg =1, YT =0) and §; = Pr(Xt >V |Yg =0, Yy =1). Thus,
only S;; involves a joint distribution for (Xg, X1) given Y = Yt = 1.

To obtain consistent estimates when imputing the missing Y;j’s, we condition on the actual
data 2. The following posterior conditional distributions are derived in the Appendix. When
Ye = missing and Y7 is observed, we impute Yg from its conditional posterior

Y, 1-Y,
KV, =1|2)= m1,1510 r 71,0510 T
P e 71,1510+ 70,1 1,0510+T0,0 .
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When Yt = missing and Yg is observed, we impute Y from its conditional posterior

Y 1Y
71,1501 i T0,1501 "
PR

m1,1501+71,0 70,1501 +70,0

When both Yg and Y are missing, we impute (Yg, Y1) from the joint conditional posterior

Ty,z5yz

T T
a=02-b=0Ta,bSab

pr(YE :y’ YT :Z|9): 7f0ry) Z:O? 1

At the posterior step using the completed data, we sample parameters from their full
conditional posteriors in two steps: (1) Sample 6 from f(6|%(Y)) and (2) sample ¢ and A; i for
eachk=1, ---, Kjandj = (E, T) from f(A, 0|%). This is iterated until the Markov chain
converges, with posteriors computed using adaptive rejection Metropolis sampling (Gilks et
al., 1995).

We now turn to Case 2, in which Yg is evaluated only at Ug. Analytically, Case 2 is much
simpler than Case 1 because in Case 2 efficacy is Yg with no random event time involved,
and Yg is missing completely at random (MCAR) at all V < Ug. For the same reason, trial
conduct in Case 2 is much harder logistically than in Case 1. This is because there is ho Xg
in Case 2 and hence no partial information about Yg when V < Ug. Inference for mg relies
entirely on observed Yg values from previously treated patients, while Yt may be imputed by

exploiting the event time data (X?, d..) using the marginal of X.

T’ T

Our proposed method can be applied to any phase I-11 combination of probability model and
decision rules based on [Yg, Y7 | d] with delayed outcomes. To make things concrete, we
apply the method to the Efficacy-Toxicity (EffTox) trade-off method of Thall and Cook
(2004). Case 1 is illustrated by the trial of chemotherapy for acute leukemia where Ut = Ug
= 42 days, and Case 2 by the stem cell transplantation trial with Ut = 30 days and Ug = 90
days.

4 EffTox Designs

4.1 The Design Assuming Complete Data

We first briefly review the EffTox phase I-11 design (Thall and Cook, 2004) assuming
complete data Z(Y). The model for [Yg, Y1 | d] assumes marginal probabilities g =
logit ™ {pg + Be 1d + B 202} and w1 = logit™*{ut + P 1d + B d?} and uses a Gumbel copula
(Murtaugh and Fisher, 1990) to obtain a joint distribution,

a —a - a —¢ —1
Tap=(m5) (1 = 75)" " (77)° (1 = 7)o (=1) P, (17 )7 (1=, (ZV,H ) )

where y parameterizes association between Yg and Y. To prevent mis-estimation with small

sample sizes, we require that Bg 1 + 2Bg 2d > 0 and 1 1 + 2p72d > 0, corresponding to agents
where both 7t and mg increase with dose.

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.
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The desirability of a dose is defined by first defining the desirability 8(ng, 1) of each
probability pair 7 = (g, 77) in [0, 1]2; with 8(mg, 7) increasing in g and decreasing in 7.
Denoting the posterior means 7; ,=E{m;(d,0)|2(Y")} for j = E, T, the desirability of d is

6(m, .,y ), for use as a decision criterion. The function & may be obtained from a target
efficacy-toxicity tradeoff contour, %, in [0, 1]2 in several ways (cf. Thall, Cook and Estey,
2006). To avoid doses that are too toxic or inefficacious, two admissibility criteria are
imposed. Given elicited fixed lower limit g on g and upper limit m_- on 7T, a dose d is
acceptable if

Pri{m,(d,0)>m,|2(Y)}>ppand Prin,(d,0)<m.|2(Y)}>pr (4

for prespecified cutoffs pg and pt. The trial starts at a dose chosen by the physician and each
new cohort is treated with the acceptable dose having largest 8(d). An untried dose may not
be skipped when escalating, and when escalating to an untried dose only the toxicity
admissibility rule is imposed. If no dose is acceptable the trial is stopped with no dose
selected.

We refer to the new version of the EffTox design that incorporates our proposed imputation
methodology as the late onset (LO)-EffTox design. It differs from the EffTox design in one
fundamental way, namely that event time data are exploited to compute posterior decision
criteria using the Bayesian data augmentation methodology described in Section 3.

4.2 Prior Specification

In any model-based Bayesian adaptive clinical trial design, the prior must be sufficiently
vague that the accumulating data dominates the posterior distribution, and thus the adaptive
decisions. Thall and Cook (2004) provided a framework for establishing priors from elicited
mean values of ng(d, 0) and 7t (d, ) that solves for prior hyperparameters using nonlinear
least squares. We derive a prior based on the weakly informative prior for logistic regression
proposed by Gelman et al. (2008). Following Gelman et al. (2008), for priors we assume i,
ME: BT.1, BE 1, B2, BE2 ~ fid Cauchy(0, 2.5), and then shift the six Cauchy prior location
parameters from 0 to p~: (pLIT, “I;T,l' “I;T,Z' u;E, p[;Ell, “[;E,Z)’ to reflect prior opinion. To
obtain p,NsimiIarIy to Thall and Cook (2004), we first elicit the means mg g and my g of
me(dy, 0) and r(dy, 0) from the physician for each dose d;,r =1, ..., R Foreachj = E, T,
we use least squares to solve for (u;j, u,;jll, “l;j,z) by assuming

E{logit (172),a,) Y=/, + 15, dr+ig, ,d7.

To obtain a vague prior on A, we assume [X |Yj = 1] ~ Unif(0, U;), which~implies that the
hazard at the midpoint of the subinterval [hj x-1, hj i) of the partition is Aj x = Kj{Uj(K; - k
+0.5)}. We assume that ; x ~ Gam(}; \/C, 1/C), where Gam(a, b) denotes the gamma
distNribution with mean a/b and variance a/b?. Thus, Aj k has prior mean A \ and variance
CAj k so Cis a tuning parameter that determines var(3; \) and that can be calibrated by
simulation. In preliminary simulations, we found that C = 2 yields a reasonably vague prior
and a design with good operating characteristics. Finally, we assume v ~ Normal(0, 1) and ¢
~Gam(0.2, 0.2).

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.
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5 Computer Simulations

5.1 Clinical Trial Designs

We simulated our proposed methodology to study its behavior when applied to the EffTox
design for phase I-I1 trials in each of Cases 1 and 2. To assess robustness, we conducted a
second set of simulations in which we varied several model, design, and simulation scenario
parameters. In all simulations, we considered hypothetical phase I-I1 trials with five raw
doses (2.5, 5.0, 7.5, 10.0, 12.5). In the model, we replaced each raw dose 42 by the

standardized dose d,=(.5/s){log(d?) — log(d®)}, Where sis the standard deviation of the
centered log doses, so dy, ---, ds are centered around 0 and have standard deviation .5. The
trade-off contour, ¢, was determined by fitting a quadratic curve to the trade-off target
probability pairs (g, 1) = (0.15, 0), (0.45, 0.20), (1, 0.60), which gives target contour

function 7= — 0.0952+0.62397, +0.07137r]23. Figure 1 illustrates the target contour by a
solid line, with contours on which all (ng, 1) have the same desirability 6(ng, 1) shown as
dashed lines. Dose acceptability was determined by g = 0.25 for efficacy and n{ =0.35 for
toxicity, with decision cutoffs pg = pr = 0.10. In Case 2, a dose could be declared
inefficacious due to the first inequality in (4) being violated only after at least one cohort
was fully evaluated at that dose. In the first set of simulations, we considered trials with 16
cohorts of size three, so Nmax = 48. In practice, Nmax should be chosen via simulation by
doing a sensitivity analysis that evaluates a design’s properties over a range of practically
feasible Nyax values.

The following designs are constructed to mimic dose-finding trials of either chemotherapy
for acute leukemia in Case 1, or an agent that is part of a preparative regimen in the stem
cell transplantation trial for multiple myeloma in Case 2. Recall that, in Case 1, Xg may
occur at any time during [0, Ug], and, in Case 2, Yg is observed at Ug. For Case 1, we
assumed that Ug = Ut = 6 weeks with accrual rate o = 1.5 patients per week. For Case 2, we
assumed Ug = 90 days, (12.85 weeks), toxicity evaluation interval Ut = 30 days (4.3
weeks), and accrual rate a = 2.1 patients per week. The logistical difficulty indices are { =
1.5x 6 =9 for Case 1 and { = 2.1 x 12.85 = 27 for Case 2. We kept all other parameters for
Case 2 the same as those in Case 1.

We assumed prior means 0.15, 0.20, 0.25, 0.30, 0.35 for wg(dy, 0), ..., mg(ds, 6) and 0.15,
0.20, 0.27, 0.35, 0.45 for 77 (dq, 0), . 7T'|'(d5, 6) Applying the method described in Sectlon
4.2, this gave location parameters (qu, Mge 10 HpE, ,) =(-1.21, 0.96, 0.35) and (uuT, HpT 10
HpT. ,) = (=1.16, 1.39, 0.85) for the shifted Cauchy priors. For the Gamma piecewise
exponential event rate priors, we assumed K = 6. The formula in Section 4.2 gives (XE L
Agg) = (M1, - XT 6) = (0.182, 0.222, 0.286, 0.400, 0.667, 2.000) in Case 1, and (A1, -,
At6) = (0.364, 0.444, 0.571, 0.800, 1.333, 4.000) in Case 2. We used tuning parameter C =
2. Thus, for example, Ag 1 ~ Gam(0.093, 0.5) in Case 1.

5.2 Simulation Study Design

Each simulation scenario was specified in terms of assumed true efficacy and toxicity
probabilities at each dose, ﬂj(dr)”ue, forj=E, Tandr =1, ..., 5. We modeled association
between Xg and Xt by assuming a Clayton copula (Clayton, 1978) with ¢ = 1.0. We
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considered eight scenarios, illustrated in Figure 2. In Scenario 8, no dose is admissible, since
d = 1,2 are inefficacious and d = 3,4,5 are too toxic. For the first simulation study, we
generated Xg, Xt from Weibull distributions. For each j and d;, the Weibull scale and shape
parameters were chosen so that (1) Pr(X; < U; |d;)""® = m(d,)""® and (2) mj ate(d) Ve =
Pr(Ujl2 < X< U |d,)rue = 0.50, that is, 50% of the events occurred in the second half of the
evaluation interval. Because mg(d,)'“€ and 7y (d;)"U€ vary with d, in each scenario, the scale
and shape parameters of the corresponding true Weibull distributions both vary with d..
Each scenario was simulated 1000 times.

5.3 Simulation Results for Case 1

For Case 1, we compared the LO-EffTox design to three methods that are used in practice to
deal with the late onset problem. The first method is the “One Level Down” rule. With this
method, if some of the patients treated at the current optimal dose, d°Pt = d, have not yet
been evaluated fully, i.e. Yj g g, = missing or Y; 14, = missing, then any new patient is treated
at dy_1. The second method is the “Look Ahead” rule (Thall et al., 1999) which says that, for
each possible value @,;is(Y) that Zmis(Y) may take on, use the completed data Zgps(Y) U
@;nis(Y) to compute doPt. If this dose is the same for all possible @r;is(Y), then use that dose
to treat the next patient immediately. Otherwise, the only two options for new patients are to
make them wait to be treated, which usually is impossible in practice, or to turn them away
and treat them off protocol. The third method uses all complete cases, where both Yg and Yt
are observed, to compute d°Pt and treat the next patient immediately.

We will use two summary criteria to evaluate each method’s performance and compare the

three methods. Denote the true desirability of dose d, by 5/ and the true set of acceptable
doses by .«/!"U€, The first criterion is the desirability-weighted selected percentage,

5 Si Ot Pr(selectd, ) I(d, € &/')
B izléﬁrue]'(dr e Mtrue)

9

which quantifies dose selection reliability and thus potential benefit for future patients. The
second criterion is the ratio Ng/Nt where Ng and Nt denote the number of patients who
experienced efficacy and toxicity, respectively. This criterion quantifies benefit to the
patients in the trial, hence may be considered an index of ethical desirability.

Table 1 gives the operating characteristics of the LO-EffTox design and three competing
methods. The percentage of trials with no dose selected is denoted by “None,” with the
numbers of patients turned away from the trial by the Look Ahead method given in
parentheses. In general, LO-EffTox outperforms the One Level Down, Look Ahead rule,
and Complete Case method. The One Level Down rule has much smaller correct selection
rate and mean Ng. The Look Ahead rule design performs roughly equivalently to LO-
EffTox in terms of dose selection percentages and Ng/N, but the trial durations under the
Look Ahead rule are dramatically larger compared to LO-EffTox. This is because the Look
Ahead rule turns many patients away, while LO-EffTox treats all patients. Compared to the
Complete Case method, LO-EffTox has either similar or higher correct selection
percentages and more patients treated at doses with higher desirability. In Scenario 8, where
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all doses are inefficacious or too toxic, LO-EffTox has by far the largest probability of
correctly stopping early and selecting no dose.

Figure 3 illustrates the results in Table 1 in terms of 8_plotted on the vertical axis and Ng/Nt
on the horizontal axis, under each of Scenarios 1 — 7. Scenario 8 is not included in Figure 3
since in this case no dose is acceptable, so § is not relevant. Values in the upper right portion
of the figure are more desirable, while values in the lower left are less desirable. Figure 3
shows that the One Level Down rule produces designs with very poor properties, in terms of
both & and Ne/Nt. These two criteria are roughly equivalent for LO-EffTox and the Look
Ahead version of EffTox for each of Scenarios 1 — 6, In Scenario 7, which has true
desirability not monotone in dose, LO-EffTox has much greater § and much smaller Ng/Nt
compared to the “Look Ahead” version of EffTox, so in this case there is no clear winner.
However, since the Look Ahead rule turns away many patients and produces a very long
trial, the apparent equivalence in terms of the two criteria in Figure 3 only tells part of the
story. Compared to the Complete Case method, LO-EffTox has either similar or much larger
§ values and similar Ng/NT.

5.4 Simulation Results for Case 2

For Case 2, we compared the LO-EffTox design to the One Level Down, Look Ahead, and
Complete Case rules, and also the TiTE-CRM (Cheung and Chappell, 2000). We included
the TiTE-CRM because, when the efficacy indicator Yg is observed at Ug, the only time-to-
event variables are Xt and V, which are the basis for the TITE-CRM, so the TITE-CRM is a
reasonable alternative in Case 2. To implement the TiTE-CRM, we assumed the dose-

toxicity model . (d,.)=p=P(») with fixed skeleton (py, ---, ps) = (0.15, 0.20, 0.27, 0.35,
0.45), parameter a having N(0, o2 = 2) prior, and target toxicity probability 0.35.

The simulation results for the Case 2 under six of the eight scenarios are summarized in
Table 2. Results for the other two scenarios are summarized in Table S1. Table 2 shows that,
across all scenarios, LO-EffTox greatly outperforms the One Level Down, Look Ahead, and
Complete Case methods, in terms of both selection percentages and Ng/Nt. The “One Level
Down” rule is most likely to select dz or lower doses, and almost never selects d4 or ds,
regardless of their 5 values. It thus greatly sacrifices efficacy in many cases, as shown by the
extremely small Ng values. As in Case 1, the “Look Ahead” rule has selection percentages
similar to those of the LO-EffTox design, but the price is a much longer trial with many
patients turned away. Because the TITE-CRM design completely ignores efficacy, it is
unlikely to select doses having acceptable toxicity and high efficacy, which is the case in
nearly all scenarios. As in Case 1, for Scenario 8 LO-EffTox has by far the largest
probability of correctly stopping early and selecting no dose.

5.5 Sensitivity Analyses

To investigate robustness, we conducted additional simulations in which we varied each of
7rj1|ate(d)"“e, logistical difficulty index , Nmax, the event time distributions, K = number of
sets in the piecewise exponential event time distribution partition, and the association
parameter, ¢. Each sensitivity analysis was conducted for all scenarios, and the results are
summarized in Supplementary Tables S2 — S8. Table S2 shows that the design is not
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sensitive to changes in values of nj,|ate(d)tr“e over the range 0.10 to 0.90, illustrated in Figure
4a. Tables S3 and S4 summarize sensitivity to the logistical difficulty index for the values
=3.0t024.0in Case 1 and { =9.0 to 54.0 in Case 2. As { increases, the ratio Ng/Nt and §
both decrease, illustrated in Figure 4b. Table S5 shows, as expected, that the design’s
performance improves with larger Npmax, illustrated in Figure 4c. Simulations with Xg and Xt
generated from several combinations of the Weibull and Log-logistic(Table S6) showed that
LO-EffTox is robust to the true event time distributions. Table S7 shows that the number of
sets in the partition of the piecewise exponential has little effect on the method’s
performance for K = 6 to 12. Varying the association parameter from ¢ = 0.1 to 2.5 had
almost no effect on performance (see Table S8).

6 Discussion

We have proposed a general methodology to address the problem of late-onset outcomes in
phase I-11 clinical trials. The method treats unobserved binary outcomes are as nonignorable
missing data, uses data augmentation to impute the missing outcomes, and applies the
design’s decision rules using the completed data. Simulations show that, in most cases, the
proposed design performs better than alternative approaches to the late onset problem in
phase I-11 trials. Our results suggest that the general approach of imputing binary vectors Y
by utilizing time-to-event variables used to define Y may improve the logistics of any
outcome-adaptive procedure based on the distribution of Y.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The probability of Yg = 1 with the known Y7 value is

pr(Y,=1|X,>V.Y,)
Zzlzz()pr(YE:a)pr(YT X >V Y, =a)
o pr(YEzl)pr(YT|YE:1)pr(XE>‘/‘YT7YE:1)
 Yamopr(Ye=a)pr(Y, [V, =a)pr(X >V (Y, Y, =a)
pr(Yy, Y,=1)pr(X,>V[Y,=1)
Z(lzzopr(YTa Y, =a)pr(X,>V|Y,=a)

mapr(Xp>VI|Yp=1) 71510 Y. =1
_ m1,1Pr(X p >VI[Yp=1)+7m01~ 71,1510+70,1 T
- m1,0pr(X g >V[Y;=1) 71,0510 .
S = : ifY_.=0.
m1,0pr(X 5 >VIY=1)+m0,0  71,0510+70,0 T

where Sy, and T, are defined by equation (2) and (3), respectively.
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The probability of Y7 =1 with the known Yg value is

pr(Y,=1X,>V,Y),)
_ pr(YT:Dpr(YE?XT>V‘YT:1)
Zi:opr(YT:b)pr(YE X >VI|Y,=b)
_ pr(Y,=1)pr (Y, |[Y,=1)pr(X, >V|Y,,Y,=1)
lezzopr(YT:b)pr(YE IYT:b)pr(XT >V‘YE’ Y, =b)
_ pr(Yy, Y, =1)pr(X, >VI[Y,=1)
Si_opr(Yy, Y=b)pr(X, >V |Y,=b)
{ Tapr(X, >VIY,=1) m1So ifYE:L

m1,1pr (X >VIYr=1)+710 71,1801 +71,0
WO,lpr(XT>‘~7‘YT:1) _ 7T0,1501 lfY _O
70,1t (X >VI[Y,=1)+70,0 ~ 70,1501 +70,0 ET Y

where Syp and w5 are defined by equation (2) and (3), respectively.

When Y7 and Yg are unknown, the probability of (Yg, Y7) is

X >V, X >V|Y. =1,Y =1 Y =1.Y =1 S
pE(Y, =1, Y, =1|X, >V, X, >V)=er Lo Ep 2V Xy VIV =L ¥y =lpr(Vp =LYy =) madn
a=02b=0PT (X, >V, X, >VY, =a, Y, =b)pr(Y,=a, Y, =b) 37,03 p—0Ta,bSab
X >V, X >V|Y. =1Y = Y =1Y .= S
pr(Y, =1, Y, =0[X, >V, X, >V)= o PEeV X o V=L Yy =0pr(Vp =LY, =0) _ __ moSo
a:OZb:Opr(XF:>‘/7 X >‘/|YFJ =a,Y, :b)pr(YFJ =a,Y, :b) Za:Oszoﬂ'a,bSab
pr(X, >V, X >V|Y, =0,Y =1)pr(Y,=0,Y, =1) 70,1501

pr(Y,=0,Y,=1|X,>V, X >V)= = .
Ben o Ym0 boPr (X >V, X >V[Y =a, Y, =b)pr(Yy=a, Y, =b) 34— h—0TaSa

where where S;p and w5, are defined by equation (2) and (3), respectively, and Sy = 1.

References

Babb J, Rogatko A, Zacks S. Cancer phase | clinical trials: Efficient dose escalation with overdose
control. Statistics in Medicine. 1998; 17:1103-1120. [PubMed: 9618772]

Bekele BN, Ji Y, Shen Y, Thall PF. Monitoring late-onset toxicities in phase | trials using predicted
risks. Biostatistics. 2008; 9:442-457. [PubMed: 18084008]

Bekele BN, Shen Y. A Bayesian approach to jointly modeling toxicity and biomarker expression in a
phase I/11 dose-finding trial. Biometrics. 2005; 61:343-354. [PubMed: 16011680]

Braun TM. The bivariate continual reassessment method: Extending the CRM to phase | trials of two
competing outcomes. Controlled Clinical Trials. 2002; 23:240-256. [PubMed: 12057877]

Braun TM. Generalizing the TiTE-CRM to adapt for early- and late-onset toxicities. Statistics in
Medicine. 2006; 25:2071-2083. [PubMed: 16217853]

Bryant J, Day R. Incorporating toxicity considerations into the design of two-stage phase Il clinical
trials. Statistics in Medicine. 1995; 51:1372-1383.

Cheung Y, Chappell R. Sequential designs for phase I clinical trials with late-onset toxicities.
Biometrics. 2000; 56:1177-1182. [PubMed: 11129476]

Clayton D. A model for association in bivariate life tables and its application in epidemiological
studies of familial tendency in chronic disease incidence. Biometrika. 1978; 65:141-151.

Conaway M, Dunbar S, Peddada S. Design for single- or multiple-agent phase | trials. Biometrics.
2004; 60:661-669. [PubMed: 15339288]

Fleming TR. One-sample multiple testing procedure for phase I clinical trials. Biometrics. 1982;
38:143-151. [PubMed: 7082756]

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Jinetal.

Page 14

Gehan E. Estimating survival functions from the life table. Journal of Chronic Diseases. 1969; 21:629—
644. [PubMed: 5770430]

Gelman A, Jakulin A, Pittau MG, Su Y. A weakly informative default prior distribution for logistic
and other regression models. The Annals of Applied Statistics. 2008; 2:1360-1383.

Gilks WR, Best NG, Tan KKC. Adaptive rejection Metropolis sampling within Gibbs sampling.
Applied Statistics. 1995; 44:455-472.

Gooley TA, Martin PJ, Fisher LD, Pettinger M. Simulation as a design tool for phase I/11 clinical trials:
An example from bone marrow transplantation. Controlled Clinical Trials. 1994; 15:450-462.
[PubMed: 7851107]

Murtaugh P, Fisher I. Bivariate binary models of efficacy and toxicity in dose-ranging trials.
Communications in Statistics, Part A - Theory and Methods. 1990; 19:2003-2020.

O’Quigley J, Hughes MD, Fenton T. Dose-finding designs for HIV studies. Biometrics. 2001;
57:1018-1029. [PubMed: 11764240]

O’Quigley J, Pepe M, Fisher L. Continual reassessment method: A practical design for phase | clinical
trials in cancer. Biometrics. 1990; 46:33-48. [PubMed: 2350571]

Simon RM. Optimal two-stage designs for phase I1 clinical trials. Controlled Clinical Trials. 1989;
10:1-10. [PubMed: 2702835]

Storer BE. Design and analysis of phase I clinical trials. Biometrics. 1989; 45:925-937. [PubMed:
2790129]

Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation (with
discussion). Journal of the American Statistical Association. 1987; 82:528-550.

Thall P, Cook J. Dose-finding based on efficacy-toxicity trade-offs. Biometrics. 2004; 60:684—693.
[PubMed: 15339291]

Thall P, Lee J, Tseng C-H, EH E. Accrual strategies for phase | trials with delayed patient outcome.
Statistics in Medicine. 1999; 18:1155-1169. [PubMed: 10363337]

Thall PF, Russell KE. A strategy for dose-finding and safety monitoring based on efficacy and adverse
outcomes in phase I/11 clinical trials. Biometrics. 1998; 54:251-264. [PubMed: 9544520]

Thall PF, Simon RM. Practical bayesian guidelines for phase 11B clinical trials. Biometrics. 1994;
50:337-349. [PubMed: 7980801]

Thall PF, Simon RM, Estey EH. Bayesian sequential monitoring designs for single-arm clinical trials
with multiple outcomes. Statistics in Medicine. 1995; 14:357-379. [PubMed: 7746977]

Yin G, Li Y, Ji Y. Bayesian dose-finding in phase I/11 clinical trials using toxicity and efficacy odds
ratios. Biometrics. 2006; 62:777-787. [PubMed: 16984320]

Yuan Y, Yin G. Bayesian phase I/l adaptively randomized oncology trials with combined drugs. The
Annals of Applied Statistics. 2011a; 5:924-942. [PubMed: 22375162]

Yuan Y, Yin G. Robust EM continual reassessment method in oncology dose finding. Journal of the
American Statistical Association. 2011b; 106:818-831. [PubMed: 22375092]

Zhang W, Sargent DJ, Mandrekar S. An adaptive dose-finding design incorporating both toxicity and
efficacy. Statistics in Medicine. 2006; 25:2365-2383. [PubMed: 16220478]

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.



1duosnuely Joyny vd-HIN 1duosnuely Joyny vd-HIN

1duosnuely Joyny vd-HIN

Jinetal.

1.0

0.8

0.2

0.0

Efficacy—toxicity Trade—off Contours

0.0 0.2 0.4 0.6 0.8

Pr(efficacy)

Figure 1.

Desirability Contours: The target contour is represented by a solid line. Other contours on

which all (wg, 1) have the same desirability are shown as dashed lines.
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Illustration of scenarios: The solid lines with circles represent true probabilities of efficacy
and the dashed lines with triangles represent true probabilities of toxicity. The horizontal
lines represent 1 and ntg.

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.



1duosnuely Joyny vd-HIN 1duosnuely Joyny vd-HIN

1duosnuely Joyny vd-HIN

Jinetal.

Ne/Nr
1.0 15 2.0 25 3.0 3.5

0.5

0.0

Page 17

* LO-EffTox 1
A One Level Down u ]
| ® Look Ahead *.1
® Complete Case
1
A° 5 4 3
l49|64 Aﬁ.%é 8.6 4
* ay3
I7 04
N a4 5 2
a2 o2 ¥
7
o *
I I ] l I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Desirability Weighted Selection Percentage
Figure 3.

Comparison of the Late Onset Eff-Tox, One Level Down, Look Ahead, and Complete Case
methods. The X-axis is &, the desirability weighted selection percentage, and the Y-axis is
Ng/Nt. Simulation scenarios are identified by integers.
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