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Abstract

A practical impediment in adaptive clinical trials is that outcomes must be observed soon enough 

to apply decision rules to choose treatments for new patients. For example, if outcomes take up to 

six weeks to evaluate and the accrual rate is one patient per week, on average three new patients 

will be accrued while waiting to evaluate the outcomes of the previous three patients. The question 

is how to treat the new patients. This logistical problem persists throughout the trial. Various ad 

hoc practical solutions are used, none entirely satisfactory. We focus on this problem in phase I–II 

clinical trials that use binary toxicity and efficacy, defined in terms of event times, to choose doses 

adaptively for successive cohorts. We propose a general approach to this problem that treats late-

onset outcomes as missing data, uses data augmentation to impute missing outcomes from 

posterior predictive distributions computed from partial follow-up times and complete outcome 

data, and applies the design’s decision rules using the completed data. We illustrate the method 

with two cancer trials conducted using a phase I–II design based on efficacy-toxicity trade-offs, 

including a computer stimulation study.
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1 Introduction

Phase I–II clinical trial designs combine conventional phase I and phase II trials by 

determining a dose of a new agent based on both toxicity and efficacy (Gooley et al., 1994; 

Thall and Russell, 1998; O’Quigley et al., 2001; Braun, 2002; Thall and Cook, 2004; Bekele 

and Shen, 2005; Zhang et al., 2006; Yin et al., 2006; Yuan and Yin, 2011a). Most 

commonly, a small phase I trial based on toxicity (Storer, 1989; O’Quigley et al., 1990; 

Babb et al., 1998; Conaway et al., 2004) first is conducted to choose a putatively safe dose, 

the “maximum tolerated dose” (MTD), and a phase II trial then is conducted (Gehan, 1969; 

Fleming, 1982; Simon, 1989; Thall and Simon, 1994; Thall et al., 1995; Bryant and Day, 

1995), using the MTD, with efficacy the primary outcome. This conventional approach may 

lead to several problems. (1) Informal dose adjustments often are made in phase II if 

excessive toxicity is observed, which invalidates assumed properties of any efficacy-based 
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design. (2) Operating characteristics of the entire phase I – phase II process are seldom 

computed. (3) Separate designs ignore the trade-off between efficacy and toxicity that often 

underlies therapeutic decision making. Since phase I–II designs address these problems 

explicitly, a natural question is why such designs are used infrequently for actual trials. 

While these are complex issues, the following logistical problem may play a prominent role.

In outcome-adaptive clinical trials, a major practical impediment arises if patient outcomes 

are not observed quickly enough to apply decision rules that choose treatments or doses for 

newly accrued patients. Because it is undesirable, and often impossible, to delay a new 

patient’s treatment while waiting for previous patients’ outcomes to be scored so that an 

adaptive statistical rule can be applied, outcome-adaptive rules may be at odds with clinical 

practice. In phase I–II, this problem arises if either toxicity or efficacy is not scored quickly, 

relative to the accrual rate. One solution is to turn away new patients and treat them off 

protocol. This may be less desirable than giving the experimental regimen, or impossible if 

no alternative treatment exists. Another solution is to give all new patients the dose or 

treatment that is optimal based on the most recent data. This may have very undesirable 

consequences if the most recent optimal dose later turns out to be overly toxic, and it is the 

main reason that dose-finding usually is done sequentially with small cohorts of 1, 2, or 3 

patients. In Phase I–II, the opposite effect can occur if the most recent optimal dose is safe 

but inefficacious. A third solution when some patients’ outcomes have not yet been 

evaluated fully is to treat all new patients immediately, but use a dose one level below the 

design’s current optimal dose. In Phase I, the problem of dealing with delayed (“late onset”) 

toxicity was first addressed by Cheung and Chappell (2000), who introduced the time-to-

event continual reassessment method (TiTE-CRM), and later by Braun (2006), Bekele et al. 

(2008), and Yuan and Yin (2011b).

As an illustration, consider a phase I–II clinical trial of chemotherapy for acute leukemia, 

both toxicity and efficacy events may occur at any time during a common 6-week evaluation 

period, doses chosen adaptively for cohorts of size 3, and accrual rate 1 patient per week. On 

average, the first cohort will be accrued in 3 weeks with all of their outcomes scored by 

week 9, when adaptive rules are applied using their data to choose the second cohort’s dose. 

Since one also can expect to accrue 6 new patients between weeks 3 and 9, the question is 

how to deal therapeutically with these new patients. A second example is an autologous 

stem cell transplantation trial for multiple myeloma (MM) where toxicity may occur at any 

time during the first 30 days, but efficacy is evaluated only at 90 days post-transplant, and is 

defined as no detectable MM protein in the urine or blood serum and < 5% plasma cells in 

the bone marrow. If the accrual rate is 3 patients per month, one may expect to accrue 9 

patients before efficacy is scored for any patients, so applying an adaptive rule to choose a 

dose for patients 4, 5, and 6, (cohort 2), using the data from patients 1, 2, and 3, (cohort 1), 

is not possible without delaying the second cohort’s therapy. The severity of this problem 

increases with accrual rate and persists throughout the trial.

In this paper, we consider phase I–II designs where both efficacy (E) and toxicity (T) are 

characterized as binary variables, YE and YT, evaluated either during or at the end of 

specified time intervals, [0, UE] for YE and [0, UT] for YT. We refer to YE and YT as “delayed 

outcomes” because they are not observed immediately. Denote accrual rate by α. We 
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quantify the severity of the problem using the logistical difficulty indexes ζj = Ujα for each 

outcome j = E, T, and overall index ζ = max{ζE, ζT}. For example, if α = 1 patient/month 

and UE = UT = 3 months, then ζ = 3. Doubling the accrual rate to α = 2 gives the 

problematic value ζ = 6.

We propose a methodology that handles the problem of delayed outcomes in phase I–II by 

accounting for each patient’s follow up time prior to evaluation of YE and YT, and treating all 

Yj’s that have not yet been observed as missing values. We use data augmentation (Tanner 

and Wong, 1987) to impute each missing Yj using partial follow-up times and complete 

outcome data. Combining observed and imputed (YE, YT) data for all patients who have been 

treated, we then apply the phase I–II design’s decision rules. Our approach of treating 

delayed outcomes as missing data is similar to that of Yuan and Yin (2011b), who deal with 

the phase I setting with YT but not YE. Key differences are that the bivariate distribution and 

missingship patterns of (YE, YT) are much more complicated than those of YT alone. In 

addition, Yuan and Yin (2011b) use the EM algorithm under a frequentist framework to 

estimate toxicity probabilities, whereas we rely on predictive probabilities and imputatation 

to obtain a completed data set under a Bayesian formulation.

In Section 2, we propose a general approach to delayed outcomes in phase I–II trials. In 

Section 3, we present imputation and Bayesian data augmentation methods. Section 4 

illustrates the method with two trials designed using an extended version of the efficacy-

toxicity (Eff-Tox) trade-off based design of Thall and Cook (2004). In Section 5, we present 

simulations of the proposed method and comparison with alternative methods. We conclude 

with a discussion in Section 6.

2 Observed Outcomes and Missing Values

2.1 Data Structures

The data structure assumed by most phase I–II dose-finding method consists of assigned 

doses and two binary outcomes. We denote this by (Y) = {(d[1], Y1,E, Y1,T), …, (d[n], Yn,E, 

Yn,T)}, where d[i] is the dose given to the ith patient and interim sample size n = 1, ⋯, Nmax. 

To account for the fact that, at any interim decision, one or both of YE and YT may not yet be 

observed for a given patient, we denote the data including only the observed Yj’s by obs(Y) 

and the unobserved (“missing”) Yj’s by mis(Y). Our strategy will be to use obs(Y) and 

partial follow up time data to impute any missing Yj’s in mis(Y) and thus construct a 

completed version of obs(Y) that has the form of (Y), and then apply the phase I–II 

method.

Let Xj denote time to outcome j = E, T. Corresponding to the acute leukemia trial and the 

stem cell transplantation trial described previously, we distinguish between two data 

structures, depending on how YE is observed. In Case 1, YE is observed in real time, and YE 

= I(XE ≤ UE). In Case 2, YE is evaluated only at UE, and there is no XE. In both cases, YT = 

I(XT ≤ UT). To simplify exposition, we focus primarily on Case 1 since it is more complex, 

and later explain how to deal with Case 2. For trials where efficacy is evaluated periodically 

XE is interval censored. We include this by smoothing the interval censored data, placing XE 

at the midpoint or a randomly chosen value of the interval where efficacy was known to 

Jin et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



occur. We accommodate patient death during therapy by defining XT as the time to either 

non-fatal toxicity or death. For efficacy, if the patient dies prior to UE we define YE = 0, 

which is implied by defining XE = ∞. Denote U = max {UT, UE} and V = follow up time, 

where by design V ≤ U.

2.2 Missingship Mechanism

Denote πj(d, θ) = Pr(Yj = 1 | d, θ) for j = E, T, where θ is the model parameter vector. In the 

sequel, we often will suppress d and θ for brevity. The observed follow up time of Xj during 

the evaluation interval [0, Uj] is . We assume that V is independent of Xj. The 

key to our method is that  provides useful information about Yj, because

must decrease as  increases from 0 to Uj. This fact also underlies the TiTE-CRM (Cheung 

and Chappell, 2000). To account for missing values, we use V to extend the previous 

definitions of YE and YT, as follows. We define

That is, Yj = missing if the patient has not yet experienced the event and has not been fully 

followed to Uj, while Yj is observed if the patient either has experienced the event (Yj = 1) or 

has completed the defined follow-up time without the event (V = Uj and Yj = 0). Denote the 

missingship indicators Mj = I(Yj = missing) for j = E, T, and M = (ME, MT). The ith patient’s 

data are , and i determines Mi. Our methodology uses the 

actual interim data from n patients, by = ( 1, ⋯, n), to impute missing Yj’s and construct 

a completed binary data set (Y) for implementing the phase I–II method.

2.3 Event Time Distributions

To construct flexible survival functions, we assume piecewise exponential marginals for [Xj|

d, Yj = 1], j = E, T, by partitioning [0, Uj] into Kj intervals, [0, hj,1), [hj,1, hj,2), ⋯, [hj,Kj−1, 

hj,Kj], and assuming hazard λj,k on [hj,k−1, hj,k). The marginal survival function for Xj is

denoting λj = (λj,1, ⋯, λj,Kj), and weights wj,k(x) = hj,k − hj,k−1 if x > hj,k, wj,k(x) = x − hj,k−1 

if x ∈ [hj,k−1, hj,k), and wj,k(x) = 0 otherwise. Initially, we considered a more elaborate form 

of Sj, in which each λj,k was replaced by  where γj > 1, so that the event time 

distributions varied with dose in a proportional hazard model with piecewise exponential 
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baseline hazard. However, we found that fixing γE = γT = 1 did not change the method’s 

operating characteristics, due to the fact that there is little or no information to estimate the 

γj’s. To determine whether a more parsimonious survival model might give a design with 

similar performance, we replaced the piecewise exponential with a Weibull. However, 

simulations across eight dose-outcome scenarios (Supplementary Table S9) showed that the 

Weibull gave larger probabilities of incorrectly stopping early, and either similar or lower 

probabilities of selecting desirable doses.

Our imputation method requires the joint conditional survival probabilities S(xE, xT |a, b) = 

Pr(XE > xE, XT > xT |YE = a, YT = b) for (a, b) = (0,1), (1,0), (1,1). Assuming conditional 

independence, Sj(xj |YE, YT) = Sj(xj |Yj) for j = E, T, implies that S(xE, xT |1, 0) is determined 

by the marginal of XE and S(xE, xT |0, 1) is determined by the marginal of XT. Determining 

S(xE, xT |1, 1) requires accounting for association between XE and XT. We do this by 

defining a joint distribution using the Clayton copula (Clayton, 1978), given for ϕ ≥ 0 by

The likelihood of  depends on YE, YT, and the censoring patterns of XE and XT. Denote 

, the pdf of Xj by fj(·), and

When YE = YT = 1, there are four possible likelihoods,

For the cases (YE, YT) = (1,0) or (0,1), the likelihoods are given by

Denoting the likelihood for n patients by , the posterior is f(λ, 

ϕ| ) ∝ f(λ)f(ϕ)L( |λ, ϕ), for priors f(λ) and f(ϕ) of λ and ϕ.
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3 Imputation Method

Let πa,b(d, θ) = Pr(YE = a, YT = b|d, θ) for a, b ∈ {0, 1} denote the joint distribution of [YE, 

YT | d], so πE(d, θ) = π1,1(d, θ) + π1,0(d, θ) and πT(d, θ) = π1,1(d, θ) + π0,1(d, θ). If no 

outcomes are missing the likelihood is the usual product

(1)

with posterior f(θ| (Y)) ∝ L( (Y)|θ)f(θ); for prior f(θ). Since L( (Y)|θ) cannot be computed 

if some Yi,j’s are missing, we obtain a completed version of the likelihood, of the form (1), 

by using Bayesian data augmentation (Tanner and Wong, 1987). We iterate between an 

imputation step sampling missing Yj’s from their full conditionals, and a step computing the 

posterior using the completed data. Importantly, the imputation depends on the dose-

outcome model.

Missing Yj’s are nonignorable because, at follow up time V, a patient who will not 

experience outcome j by Uj is more likely to have Yj = missing (Mj=1) than a patient for 

whom outcome j will occur (Yuan and Yin, 2011b). By Bayes’ Law, Pr(Mj = 1|Yj = 0) > 

Pr(Mj = 1|Yj = 1) implies that

This says that the odds that Yj = 1 decreases if Yj is missing, so the missingship indicator Mj 

contains information about the future value of Yj.

A complication in carrying out the imputation is that there are three possible missingship 

patterns: (1) YE = missing and YT is observed, (2) YT = missing and YE is observed, and (3) 

both YE = missing and YT = missing. Since we impute missing values by sampling from their 

full conditional posteriors, these distributions must be specified for each missingship pattern. 

These posteriors are defined in terms of the following conditionals for XE and XT, given 

each of the four possible future outcome pairs, which for brevity we denote by

(2)

In any case, S00 = 1 due to the fact that Pr(Xj > V |Yj = 0) = 1 for 0 ≤ V ≤ Uj, which also 

implies that S10 = Pr(XE > V |YE = 1, YT = 0) and S01 = Pr(XT > V |YE = 0, YT = 1). Thus, 

only S11 involves a joint distribution for (XE, XT) given YE = YT = 1.

To obtain consistent estimates when imputing the missing Yj’s, we condition on the actual 

data . The following posterior conditional distributions are derived in the Appendix. When 

YE = missing and YT is observed, we impute YE from its conditional posterior
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When YT = missing and YE is observed, we impute YT from its conditional posterior

When both YE and YT are missing, we impute (YE, YT) from the joint conditional posterior

At the posterior step using the completed data, we sample parameters from their full 

conditional posteriors in two steps: (1) Sample θ from f(θ| (Y)) and (2) sample ϕ and λj,k for 

each k = 1, ⋯, Kj and j = (E, T) from f(λ, θ| ). This is iterated until the Markov chain 

converges, with posteriors computed using adaptive rejection Metropolis sampling (Gilks et 

al., 1995).

We now turn to Case 2, in which YE is evaluated only at UE. Analytically, Case 2 is much 

simpler than Case 1 because in Case 2 efficacy is YE with no random event time involved, 

and YE is missing completely at random (MCAR) at all V < UE. For the same reason, trial 

conduct in Case 2 is much harder logistically than in Case 1. This is because there is no XE 

in Case 2 and hence no partial information about YE when V < UE. Inference for πE relies 

entirely on observed YE values from previously treated patients, while YT may be imputed by 

exploiting the event time data  using the marginal of XT.

Our proposed method can be applied to any phase I–II combination of probability model and 

decision rules based on [YE, YT | d] with delayed outcomes. To make things concrete, we 

apply the method to the Efficacy-Toxicity (EffTox) trade-off method of Thall and Cook 

(2004). Case 1 is illustrated by the trial of chemotherapy for acute leukemia where UT = UE 

= 42 days, and Case 2 by the stem cell transplantation trial with UT = 30 days and UE = 90 

days.

4 EffTox Designs

4.1 The Design Assuming Complete Data

We first briefly review the EffTox phase I–II design (Thall and Cook, 2004) assuming 

complete data (Y). The model for [YE, YT | d] assumes marginal probabilities πE = 

logit−1{μE + βE,1d + βE,2d2} and πT = logit−1{μT + βT,1d + βT,2d2} and uses a Gumbel copula 

(Murtaugh and Fisher, 1990) to obtain a joint distribution,

(3)

where ψ parameterizes association between YE and YT. To prevent mis-estimation with small 

sample sizes, we require that βE,1 + 2βE,2d > 0 and βT,1 + 2βT,2d > 0, corresponding to agents 

where both πT and πE increase with dose.
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The desirability of a dose is defined by first defining the desirability δ(πE, πT) of each 

probability pair π = (πE, πT) in [0, 1]2; with δ(πE, πT) increasing in πE and decreasing in πT. 

Denoting the posterior means  for j = E, T, the desirability of d is 

, for use as a decision criterion. The function δ may be obtained from a target 

efficacy-toxicity tradeoff contour, , in [0, 1]2 in several ways (cf. Thall, Cook and Estey, 

2006). To avoid doses that are too toxic or inefficacious, two admissibility criteria are 

imposed. Given elicited fixed lower limit πE̲ on πE and upper limit π̄
T on πT, a dose d is 

acceptable if

(4)

for prespecified cutoffs pE and pT. The trial starts at a dose chosen by the physician and each 

new cohort is treated with the acceptable dose having largest δ(d). An untried dose may not 

be skipped when escalating, and when escalating to an untried dose only the toxicity 

admissibility rule is imposed. If no dose is acceptable the trial is stopped with no dose 

selected.

We refer to the new version of the EffTox design that incorporates our proposed imputation 

methodology as the late onset (LO)-EffTox design. It differs from the EffTox design in one 

fundamental way, namely that event time data are exploited to compute posterior decision 

criteria using the Bayesian data augmentation methodology described in Section 3.

4.2 Prior Specification

In any model-based Bayesian adaptive clinical trial design, the prior must be sufficiently 

vague that the accumulating data dominates the posterior distribution, and thus the adaptive 

decisions. Thall and Cook (2004) provided a framework for establishing priors from elicited 

mean values of πE(d, θ) and πT (d, θ) that solves for prior hyperparameters using nonlinear 

least squares. We derive a prior based on the weakly informative prior for logistic regression 

proposed by Gelman et al. (2008). Following Gelman et al. (2008), for priors we assume μT, 

μE, βT,1, βE,1, βT,2, βE,2 ~ iid Cauchy(0, 2.5), and then shift the six Cauchy prior location 

parameters from 0 to μ̃ = (μ̃
μT, μ̃

βT,1, μ̃
βT,2, μ̃

μE, μ̃
βE,1, μ̃

βE,2), to reflect prior opinion. To 

obtain μ̃, similarly to Thall and Cook (2004), we first elicit the means m̃E,dr and m̃T,dr of 

πE(dr, θ) and πT(dr, θ) from the physician for each dose dr, r = 1, …, R. For each j = E, T, 

we use least squares to solve for (μ ̃
μj, μ

̃
βj,1, μ̃

βj,2) by assuming 

.

To obtain a vague prior on λ, we assume [Xj |Yj = 1] ~ Unif(0, Uj), which implies that the 

hazard at the midpoint of the subinterval [hj,k−1, hj,k) of the partition is λ̃
j,k = Kj/{Uj(Kj − k

+0.5)}. We assume that λj,k ~ Gam(λ̃
j,k/C, 1/C), where Gam(a, b) denotes the gamma 

distribution with mean a/b and variance a/b2. Thus, λj,k has prior mean λ̃
j,k and variance 

Cλ̃
j,k, so C is a tuning parameter that determines var(λj,k) and that can be calibrated by 

simulation. In preliminary simulations, we found that C = 2 yields a reasonably vague prior 

and a design with good operating characteristics. Finally, we assume ψ ~ Normal(0, 1) and ϕ 

~ Gam(0.2, 0.2).
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5 Computer Simulations

5.1 Clinical Trial Designs

We simulated our proposed methodology to study its behavior when applied to the EffTox 

design for phase I–II trials in each of Cases 1 and 2. To assess robustness, we conducted a 

second set of simulations in which we varied several model, design, and simulation scenario 

parameters. In all simulations, we considered hypothetical phase I–II trials with five raw 

doses (2.5, 5.0, 7.5, 10.0, 12.5). In the model, we replaced each raw dose  by the 

standardized dose , where s is the standard deviation of the 

centered log doses, so d1, ⋯, d5 are centered around 0 and have standard deviation .5. The 

trade-off contour, , was determined by fitting a quadratic curve to the trade-off target 

probability pairs (πE, πT) = (0.15, 0), (0.45, 0.20), (1, 0.60), which gives target contour 

function . Figure 1 illustrates the target contour by a 

solid line, with contours on which all (πE, πT) have the same desirability θ(πE, πT) shown as 

dashed lines. Dose acceptability was determined by π̲E = 0.25 for efficacy and π̄
T = 0.35 for 

toxicity, with decision cutoffs pE = pT = 0.10. In Case 2, a dose could be declared 

inefficacious due to the first inequality in (4) being violated only after at least one cohort 

was fully evaluated at that dose. In the first set of simulations, we considered trials with 16 

cohorts of size three, so Nmax = 48. In practice, Nmax should be chosen via simulation by 

doing a sensitivity analysis that evaluates a design’s properties over a range of practically 

feasible Nmax values.

The following designs are constructed to mimic dose-finding trials of either chemotherapy 

for acute leukemia in Case 1, or an agent that is part of a preparative regimen in the stem 

cell transplantation trial for multiple myeloma in Case 2. Recall that, in Case 1, XE may 

occur at any time during [0, UE], and, in Case 2, YE is observed at UE. For Case 1, we 

assumed that UE = UT = 6 weeks with accrual rate α = 1.5 patients per week. For Case 2, we 

assumed UE = 90 days, (12.85 weeks), toxicity evaluation interval UT = 30 days (4.3 

weeks), and accrual rate α = 2.1 patients per week. The logistical difficulty indices are ζ = 

1.5 × 6 = 9 for Case 1 and ζ = 2.1 × 12.85 = 27 for Case 2. We kept all other parameters for 

Case 2 the same as those in Case 1.

We assumed prior means 0.15, 0.20, 0.25, 0.30, 0.35 for πE(d1, θ), …, πE(d5, θ) and 0.15, 

0.20, 0.27, 0.35, 0.45 for πT (d1, θ), …, πT(d5, θ). Applying the method described in Section 

4.2, this gave location parameters (μ̃
μE, μ̃

βE,1, μ̃
βE,2) = (−1.21, 0.96, 0.35) and (μ ̃

μT, μ̃
βT,1, 

μ ̃
βT,2) = (−1.16, 1.39, 0.85) for the shifted Cauchy priors. For the Gamma piecewise 

exponential event rate priors, we assumed K = 6. The formula in Section 4.2 gives (λ̃
E,1, ⋯, 

λ̃
E,6) = (λ̃

T,1, ⋯, λ̃
T,6) = (0.182, 0.222, 0.286, 0.400, 0.667, 2.000) in Case 1, and (λ̃

T,1, ⋯, 

λ̃
T,6) = (0.364, 0.444, 0.571, 0.800, 1.333, 4.000) in Case 2. We used tuning parameter C = 

2. Thus, for example, λE,1 ~ Gam(0.093, 0.5) in Case 1.

5.2 Simulation Study Design

Each simulation scenario was specified in terms of assumed true efficacy and toxicity 

probabilities at each dose, πj(dr)true, for j = E, T and r = 1, …, 5. We modeled association 

between XE and XT by assuming a Clayton copula (Clayton, 1978) with ϕ = 1.0. We 
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considered eight scenarios, illustrated in Figure 2. In Scenario 8, no dose is admissible, since 

d = 1,2 are inefficacious and d = 3,4,5 are too toxic. For the first simulation study, we 

generated XE, XT from Weibull distributions. For each j and dr, the Weibull scale and shape 

parameters were chosen so that (1) Pr(Xj ≤ Uj |dr)true = πj(dr)true and (2) πj,late(dr)true = 

Pr(Uj/2 ≤ Xj ≤ Uj |dr)true = 0.50, that is, 50% of the events occurred in the second half of the 

evaluation interval. Because πE(dr)true and πT (dr)true vary with dr in each scenario, the scale 

and shape parameters of the corresponding true Weibull distributions both vary with dr. 

Each scenario was simulated 1000 times.

5.3 Simulation Results for Case 1

For Case 1, we compared the LO-EffTox design to three methods that are used in practice to 

deal with the late onset problem. The first method is the “One Level Down” rule. With this 

method, if some of the patients treated at the current optimal dose, dopt = dr have not yet 

been evaluated fully, i.e. Yi,E,dr = missing or Yi,T,dr = missing, then any new patient is treated 

at dr−1. The second method is the “Look Ahead” rule (Thall et al., 1999) which says that, for 

each possible value 𝒟̃mis(Y) that mis(Y) may take on, use the completed data obs(Y) ∪ 

𝒟̃mis(Y) to compute dopt. If this dose is the same for all possible 𝒟̃
mis(Y), then use that dose 

to treat the next patient immediately. Otherwise, the only two options for new patients are to 

make them wait to be treated, which usually is impossible in practice, or to turn them away 

and treat them off protocol. The third method uses all complete cases, where both YE and YT 

are observed, to compute dopt and treat the next patient immediately.

We will use two summary criteria to evaluate each method’s performance and compare the 

three methods. Denote the true desirability of dose dr by  and the true set of acceptable 

doses by true. The first criterion is the desirability-weighted selected percentage,

which quantifies dose selection reliability and thus potential benefit for future patients. The 

second criterion is the ratio NE/NT where NE and NT denote the number of patients who 

experienced efficacy and toxicity, respectively. This criterion quantifies benefit to the 

patients in the trial, hence may be considered an index of ethical desirability.

Table 1 gives the operating characteristics of the LO-EffTox design and three competing 

methods. The percentage of trials with no dose selected is denoted by “None,” with the 

numbers of patients turned away from the trial by the Look Ahead method given in 

parentheses. In general, LO-EffTox outperforms the One Level Down, Look Ahead rule, 

and Complete Case method. The One Level Down rule has much smaller correct selection 

rate and mean NE. The Look Ahead rule design performs roughly equivalently to LO-

EffTox in terms of dose selection percentages and NE/NT, but the trial durations under the 

Look Ahead rule are dramatically larger compared to LO-EffTox. This is because the Look 

Ahead rule turns many patients away, while LO-EffTox treats all patients. Compared to the 

Complete Case method, LO-EffTox has either similar or higher correct selection 

percentages and more patients treated at doses with higher desirability. In Scenario 8, where 
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all doses are inefficacious or too toxic, LO-EffTox has by far the largest probability of 

correctly stopping early and selecting no dose.

Figure 3 illustrates the results in Table 1 in terms of δ̄ plotted on the vertical axis and NE/NT 

on the horizontal axis, under each of Scenarios 1 – 7. Scenario 8 is not included in Figure 3 

since in this case no dose is acceptable, so δ̄ is not relevant. Values in the upper right portion 

of the figure are more desirable, while values in the lower left are less desirable. Figure 3 

shows that the One Level Down rule produces designs with very poor properties, in terms of 

both δ̄ and NE/NT. These two criteria are roughly equivalent for LO-EffTox and the Look 

Ahead version of EffTox for each of Scenarios 1 – 6, In Scenario 7, which has true 

desirability not monotone in dose, LO-EffTox has much greater δ̄ and much smaller NE/NT 

compared to the “Look Ahead” version of EffTox, so in this case there is no clear winner. 

However, since the Look Ahead rule turns away many patients and produces a very long 

trial, the apparent equivalence in terms of the two criteria in Figure 3 only tells part of the 

story. Compared to the Complete Case method, LO-EffTox has either similar or much larger 

δ̄ values and similar NE/NT.

5.4 Simulation Results for Case 2

For Case 2, we compared the LO-EffTox design to the One Level Down, Look Ahead, and 

Complete Case rules, and also the TiTE-CRM (Cheung and Chappell, 2000). We included 

the TiTE-CRM because, when the efficacy indicator YE is observed at UE, the only time-to-

event variables are XT and V, which are the basis for the TiTE-CRM, so the TiTE-CRM is a 

reasonable alternative in Case 2. To implement the TiTE-CRM, we assumed the dose-

toxicity model  with fixed skeleton (p1, ⋯, p5) = (0.15, 0.20, 0.27, 0.35, 

0.45), parameter α having N(0, σ2 = 2) prior, and target toxicity probability 0.35.

The simulation results for the Case 2 under six of the eight scenarios are summarized in 

Table 2. Results for the other two scenarios are summarized in Table S1. Table 2 shows that, 

across all scenarios, LO-EffTox greatly outperforms the One Level Down, Look Ahead, and 

Complete Case methods, in terms of both selection percentages and NE/NT. The “One Level 

Down” rule is most likely to select d3 or lower doses, and almost never selects d4 or d5, 

regardless of their δ values. It thus greatly sacrifices efficacy in many cases, as shown by the 

extremely small NE values. As in Case 1, the “Look Ahead” rule has selection percentages 

similar to those of the LO-EffTox design, but the price is a much longer trial with many 

patients turned away. Because the TiTE-CRM design completely ignores efficacy, it is 

unlikely to select doses having acceptable toxicity and high efficacy, which is the case in 

nearly all scenarios. As in Case 1, for Scenario 8 LO-EffTox has by far the largest 

probability of correctly stopping early and selecting no dose.

5.5 Sensitivity Analyses

To investigate robustness, we conducted additional simulations in which we varied each of 

πj,late(d)true, logistical difficulty index ζ, Nmax, the event time distributions, K = number of 

sets in the piecewise exponential event time distribution partition, and the association 

parameter, ϕ. Each sensitivity analysis was conducted for all scenarios, and the results are 

summarized in Supplementary Tables S2 – S8. Table S2 shows that the design is not 
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sensitive to changes in values of πj,late(d)true over the range 0.10 to 0.90, illustrated in Figure 

4a. Tables S3 and S4 summarize sensitivity to the logistical difficulty index for the values ζ 

= 3.0 to 24.0 in Case 1 and ζ = 9.0 to 54.0 in Case 2. As ζ increases, the ratio NE/NT and δ̄ 

both decrease, illustrated in Figure 4b. Table S5 shows, as expected, that the design’s 

performance improves with larger Nmax, illustrated in Figure 4c. Simulations with XE and XT 

generated from several combinations of the Weibull and Log-logistic(Table S6) showed that 

LO-EffTox is robust to the true event time distributions. Table S7 shows that the number of 

sets in the partition of the piecewise exponential has little effect on the method’s 

performance for K = 6 to 12. Varying the association parameter from ϕ = 0.1 to 2.5 had 

almost no effect on performance (see Table S8).

6 Discussion

We have proposed a general methodology to address the problem of late-onset outcomes in 

phase I–II clinical trials. The method treats unobserved binary outcomes are as nonignorable 

missing data, uses data augmentation to impute the missing outcomes, and applies the 

design’s decision rules using the completed data. Simulations show that, in most cases, the 

proposed design performs better than alternative approaches to the late onset problem in 

phase I–II trials. Our results suggest that the general approach of imputing binary vectors Y 
by utilizing time-to-event variables used to define Y may improve the logistics of any 

outcome-adaptive procedure based on the distribution of Y.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The probability of YE = 1 with the known YT value is

where Sab and πa,b are defined by equation (2) and (3), respectively.
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The probability of YT = 1 with the known YE value is

where Sab and πa,b are defined by equation (2) and (3), respectively.

When YT and YE are unknown, the probability of (YE, YT) is

where where Sab and πa,b are defined by equation (2) and (3), respectively, and S00 = 1.
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Figure 1. 
Desirability Contours: The target contour is represented by a solid line. Other contours on 

which all (πE, πT) have the same desirability are shown as dashed lines.
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Figure 2. 
Illustration of scenarios: The solid lines with circles represent true probabilities of efficacy 

and the dashed lines with triangles represent true probabilities of toxicity. The horizontal 

lines represent π̄
T and π̲E.

Jin et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2015 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Comparison of the Late Onset Eff-Tox, One Level Down, Look Ahead, and Complete Case 

methods. The X-axis is δ̄, the desirability weighted selection percentage, and the Y-axis is 

NE/NT. Simulation scenarios are identified by integers.
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Figure 4. 
Sensitivity analyses under Scenario 2. Solid lines represent the desirability weighted 

selection percentages δ̄. Dashed lines represent the means of NE/NT.
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