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Abstract

With the decreasing cost of next-generation sequencing, deep sequencing of clinical samples provides unique
opportunities to understand host-associated microbial communities. Among the primary challenges of clinical
metagenomic sequencing is the rapid filtering of human reads to survey for pathogens with high specificity and
sensitivity. Metagenomes are inherently variable due to different microbes in the samples and their relative abundance, the
size and architecture of genomes, and factors such as target DNA amounts in tissue samples (i.e. human DNA versus
pathogen DNA concentration). This variation in metagenomes typically manifests in sequencing datasets as low pathogen
abundance, a high number of host reads, and the presence of close relatives and complex microbial communities. In
addition to these challenges posed by the composition of metagenomes, high numbers of reads generated from high-
throughput deep sequencing pose immense computational challenges. Accurate identification of pathogens is confounded
by individual reads mapping to multiple different reference genomes due to gene similarity in different taxa present in the
community or close relatives in the reference database. Available global and local sequence aligners also vary in sensitivity,
specificity, and speed of detection. The efficiency of detection of pathogens in clinical samples is largely dependent on the
desired taxonomic resolution of the organisms. We have developed an efficient strategy that identifies ‘‘all against all’’
relationships between sequencing reads and reference genomes. Our approach allows for scaling to large reference
databases and then genome reconstruction by aggregating global and local alignments, thus allowing genetic
characterization of pathogens at higher taxonomic resolution. These results were consistent with strain level SNP
genotyping and bacterial identification from laboratory culture.
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Introduction

Despite its importance for infectious disease diagnosis, the

ability to rapidly and conclusively identify the causative agents for

infections remains an elusive goal. When a symptomatic patient

enters the healthcare system, the infectious etiologic agent is rarely

known. Patients often are subjected to a battery of expensive tests,

often taking days to weeks for results, to narrow down the

etiological agent; meanwhile the treating physician is typically

forced to make management decisions based on patient sympto-

mology and history. Next-Generation sequencing technologies

have transformed our ability to rapidly generate sequence data [1–

3]; and as such, whole metagenome sequencing is emerging as the

future of clinical diagnostics by providing a rapid and highly

sensitive method of diagnosing and characterizing infectious

agents in clinical samples [4–9]. The goal is to replace the

multitude of clinical microbiological tests with a single diagnostic

approach. In clinical metagenomic analysis, microbial and host

DNA are sequenced together and the likely pathogens identified

and characterized to streamline treatment. Despite this seemingly

simple process, there are numerous obstacles to efficient and

accurate identification of pathogens in clinical samples.

Over the past 5–10 years, the composition of microbial

communities (i.e., the microbiome) in clinical samples, and

elsewhere, has been estimated using conserved gene amplicon

sequencing (e.g., 16S rRNA for bacteria). More recently, whole

genome sequencing (WGS) approaches have emerged as a

powerful alternative that gives a relatively unbiased and global

representation of the members of the microbial community

[7,10,11]. With the advances in sequencing technology, along

with decreasing cost, it is now possible to fully interrogate the

microbial communities within clinical samples [6,12,13], including

the ability to genotype community members and understand gene

composition. This diagnostic advancement can provide important

insights for accurate and timely clinical management of patients.
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For clinical diagnostics, genus- or even species-level identification

may not be sufficient for proper clinical treatment. For example, a

patient suffering from methicillin resistant Staphylococcus aureus
TCH1516 requires different treatment than a patient colonized by

methicillin sensitive S. aureus Newman.

A primary issue for metagenomic analyses is read alignment

methodology, for analysis of the hundreds of millions of reads per

run generated through sequencing technologies [14,15]. Different

metagenomic analysis pipelines incorporate available aligners

(local/global) in a computational infrastructure, such as cloud

computing or high performance computing (HPC), to provide

accurate sequence interrogation, computational speed and the

scalability necessary to query enormous numbers of metagenome

reads against reference databases. There is, however, a tradeoff

between the accuracy of detection and computational speed. Local

alignment algorithms are considered to be more sensitive and

Table 1. Description of different steps of human filtration of pipeline utilized to compare sensitivity/specificity of detection and
performance of runtime and computational resources of the simulated reads.

Quality Filter Fast Alignment Data Compression Sensitive Alignment Repeat DB

mg_bw2 yes bowtie2 - - -

mg_bwa yes bwa - - -

mg_dc yes bwa - stampy yes

mgall_bw2 yes bowtie2 Yes stampy yes

mgall_bwa yes bwa Yes stampy yes

Dash (-) represents that the option was not utilized.
doi:10.1371/journal.pone.0110915.t001

Figure 1. The workflow of the pipeline. A. Human read reduction module B. Pathogen detection module C. Multithreaded input sequence file
query the multiple partition reference database to address the scalability.
doi:10.1371/journal.pone.0110915.g001
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accurate than global alignment algorithms [16,17]. On the other

hand, existing global aligners [18–26] are typically preferred over

local aligners, given the high volumes of metagenome sequences

[27]. For example, PathSeq [6], MePIC [28] and SURPI [29]

utilize cloud computing platforms to expand computational

scalability. These computing platforms are usually available

externally or commercially and have associated utilization costs

but do not require server maintenance costs by the user. PathSeq,

IMSA [30], VirusHunter [31] and MEGAN [32] are capable of

characterizing unknown reads with BLAST, a local aligner [33];

however, with the high number of metagenome reads (.1

million), BLAST is often not optimal for clinical diagnostics given

the high computational time required [16,17]. RINS [34] and

IMSA [30] invoke processes such as BLAT [35] but without

parallelization and consequently have scalability issues with large

reference databases.

An additional issue beyond alignment methodology is read

assignment. Each metagenomic sequencing read, in theory,

originates from a single genome. Assigning large numbers of

reads (especially 50–200 bp short reads) back to their genome of

origin is problematic for multiple reasons including: a) the

presence of overlapping/shared genomes from other organisms

in the sample; b) querying these reads against related genomes

from publicly available databases may result in a greater number

of hits due to homology; and c) the computational resources

required to scan through large reference databases. We have

developed a pipeline, MetaGeniE, which has been designed for

accurate, sensitive and specific detection of taxa in complex

microbial samples and to address all of the above limitations with

typical metagenomic analyses. The MetaGeniE pipeline generates

an all-against-all comparison dataset between the reads and the

reference database and then uses these results to generate

cumulative statistics from combined local and global alignment.

MetaGeniE also incorporates features such as comprehensive

human read filtration and scalability to search large reference

databases such as the microbial Refseq database (http://www.

ncbi.nlm.nih.gov/refseq/), which is increasing with each release

and presently around 20 GB in size.

Methods

Ethics Statement
All work with tissues derived from human subjects was

approved by the Institutional Review Boards of Northern Arizona

University and the Translational Genomics Research Institute.

Both Institutional Review Boards waived the need for patient

consent for these de-identified samples.

Data
Human Datasets. Seven whole genome sequences of human

datasets were downloaded from Sequence Read Archive (SRA) at

NCBI (http://www.ncbi.nlm.nih.gov/sra/). The accessions and

read number for these datasets are ERR191896: 53.03 million

reads; ERR218094: 49.50 million reads; ERR237515: 2.54

million reads; SRR032752: 35.29 million reads; SRR033605:

23.53 million reads; SRR054743: 40.63 million reads;

SRR054753: 39.76 million reads. We simulated 30 million reads

from human reference genome (build 37.2) (ftp://ftp.ncbi.nih.

gov/genomes/H_sapiens) with GRINDER version 0.5.3 [36]. We

incorporated total 0.5% variability in the simulated human reads,

0.1% as expected human SNP frequency [19] and 0.4% as the

average sequencing error for Illumina reads [37].

Bacterial Datasets. Average Illumina sequencing error of

0.4% was incorporated in all the simulated reads generated from

bacterial reference genomes (ftp://ftp.ncbi.nih.gov/refseq/

release/bacteria/). To study sequencing error and its effect on

detection and characterization, additional variability of 0.1%,

0.2%, 0.5% and 1% were incorporated in each simulated bacterial

library.

In-house Clinical Dataset. Three throat swabs (CF1, CF2,

CF3) and one nasopharyngeal swab (CF4) from cystic fibrosis (CF)

patients were sequenced with Illumina GA IIx using paired-end

100 bp reads (total reads ,37–58 million). Culture-based methods

were also performed for the CF samples to identify microbial

infection.

We benchmarked our work using only simulated Illumina reads

since this is currently the leading sequencing platform in overall

usage and its high throughput provides an opportunity to test

computational scalability. The pipeline can utilize other platforms

Figure 2. Benchmarking the human read reduction module of the pipeline. A. Total numbers of reads remaining after human read
reduction with different filtration parameters B. Runtime for human read filtration with different aligner and filtration parameters (in minutes).
doi:10.1371/journal.pone.0110915.g002
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and as expected, the detection will incorporate platform-specific

biases [38].

Design
The pipeline is designed as a distributed and scalable software

package to analyze millions of reads and query large reference

databases and consists of two modules: Read-Reduct and Patho-

Detect. The Read-Reduct module sequentially filters and reduces

the low quality, redundant, and human reads (Figure 1-A). The

low quality reads are filtered using PRINSEQ [27]. Human read

filtration can be performed with the short read aligners that are

classified into Burrows-Wheeler Transform (BWT) mappers and

hash-based mappers. The BWT mappers such as BWA, SOAP2

and Bowtie are fast but considered less sensitive, while the hash-

based aligners are slow but more accurate such as MAQ, ELAND,

Novoalign and STAMPY [19]. To reduce overall computational

processing time and memory, one of two faster BWT aligners,

BWA [18] or BOWTIE2 [21], are utilized initially in the pipeline.

Higher CPU and memory intensive features such as data

compression [27] and hash-based sensitive alignment STAMPY

[19] are then utilized to further reduce the overall number of

reads. The second module of the pipeline, Patho-Detect, aligns the

remaining reads against known bacterial, fungal and viral

sequences with BWT alignment followed with the local aligner

BLAT [35] (Figure 1-B).

Scalability
Incorporating a large reference database such as RefSeq rather

than using just a few selected complete genomes allows identifi-

cation to subspecies/strain level for a broad range of taxa. The

RefSeq bacterial database has doubled from 8.7 G in Release 54

to 19 G in Release 60 for bacteria and will be increasing in the

future. This results in increasing demand for computational

memory to scale to sizeable reference databases. To address the

issue of scalability with large reference databases, we designed the

pipeline to handle multiple partitions of a reference database for

better memory management (Figure 1-C). Multithreaded input

files query each smaller database partition (,1 GB) iteratively and

thus reduce the overall memory footprint. This querying of each

input file fragment generates higher number of mapped-

unmapped relationships against the partitioned database results

per iteration, which increases the computational time. To address

this issue, the pipeline utilizes custom hash functions and indexing

tools formatdb and fastacmd (ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/) to allow faster extraction of millions of reads as an

input for the next reference database search.

Normalized Genome Coverage
Assessing the detection of a pathogen by the total number of

reads that hit/align to the respective genome(s) is not always an

accurate predictor of presence of an organism due to repeat

elements, close relatives in the metagenome and PCR amplifica-

tion biases. To overcome these issues, MetaGeniE detects

microbial presence by genomic reconstruction, which is the

Figure 3. Effect of human filtration on percent genome coverage and read recall percentage of pathogen detection. The legends of
the figure are prefixed with the number of reads (0.1K = 100; 1K = 1000; 10K = 10000; 100K = 100000; 1M = 1000000) followed by mg_bw2 for only fast
alignment feature of human read reduction; mg_dc for all features of human read reduction except data compression; mgall_bw2 for all features of
human read reduction module).
doi:10.1371/journal.pone.0110915.g003
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percent of the genome mapped to the reference genome(s) for each

organism. The pipeline first converts the local and global

alignment output to common BED format. Genome coverage of

each mapped organism is then calculated from the global and local

alignments with BEDTOOLS [39]. The total genome recon-

structed for each mapped organism is the sum of genome coverage

from global and local alignments for any metagenome. The

normalized genome coverage (% genome coverage) is calculated as

follows:

Normalized Genome Coverage~

(½Genome Coverage by local alignment

zGenome Coverage by global alignment�

=Total Genome Size) � 100

The normalized genome coverage allows comparison of

different organisms with different genome sizes, which is helpful

in representing the abundance of various organisms in each

metagenome for community analysis (See Clinical Samples

Section below).

Computing Infrastructure
To benchmark the performance of the pipeline, all the human

datasets and simulated (human and bacterial) datasets were run on

the same High Performance Computing (HPC). A 47 GB RAM

and 6 processor limit was set for all the simulated and downloaded

human datasets. Analysis of the CF clinical dataset was executed

with eight processors and 100 GB RAM in a HPC cluster. The

CPU hour logs are generated by the pipeline for comparison of

runtime between different processes. Simulated datasets were

generated in FASTA format without quality values. Downloaded

human datasets were filtered at a quality threshold of Phred value

.15. Only the quality-filtered sequences were utilized to

benchmark, as some samples had higher percentages of low

quality reads.

Benchmarking
To test the sensitivity of the pipeline, synthetic reads 100 bases

in length were generated from respective reference genomes with a

range of read numbers. These are represented as follows: 0.1K:

100 reads; 1K: 1,000 reads; 10K: 10,000 reads; 100K: 100,000

reads; 250K: 250,000 reads. Human filtration is a five step process

and different steps are utilized to compare the sensitivity/

specificity of detection of simulated reads, execution speed and

memory usage (Table 1). All these steps utilized the same

Figure 4. Detection of genomes in complex community. Relationship between genome size and genome coverage with increasing
sequencing reads. Effect of detection on E. coli APEC O1 in simple and complex community.
doi:10.1371/journal.pone.0110915.g004
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parameters as follows, BWA (default), BOWTIE2 (default with

very sensitive mode), STAMPY (default), PHRED quality score .

15, minimum length .50, low complexity (dust) and BLAT (80%

identity).

SNP Genotyping
The reads mapping to organisms with the highest genome

coverage, as detected by the pipeline, were extracted. Besides

genome coverage that is proportional to pathogen DNA (and

usually incomplete), other factors like depth, recombinant

genomes are factors to be considered for performing SNP

genotyping. FASTA formatted sequence files generated from

mapped reads can then be used for SNP genotyping for such goals

as the identification of specific lineages, fine-scale strain differen-

tiation, and determination of antibiotic resistance variants. We use

an in-house SNP Pipeline that integrates the SNPs detected by

SolSNP (http://sourceforge.net/projects/solsnp/) from BWA

alignment and Mummer 3.22 [40] from available public genomes

although other SNP pipelines can be incorporated. These SNPs

can then be utilized for phylogenetic analysis using a program such

as MEGA version 5.04 [41].

Visualization of genome reconstruction
The genome reconstruction provides an overview of the entire

genome recovered for organisms identified from the metagenome

sequences. The genome reconstruction of the identified organism

is performed with the reference-based assembly [42]. The resulting

contigs are merged as super scaffolds (http://abacas.sourceforge.

net/Manual.html) and visualized with MAUVE [43].

Results and Discussion

The goal of clinical metagenomics is often to identify the cause

of infection amidst a veritable sea of host and microbial sequences.

No two metagenomes are the same and broad variation exists due

to the differences in microbial diversity and abundance as well as

the size and architecture of genomes in the sampled community

[44]. Other factors that dictate metagenome variation are the low

amount of target DNA (often a pathogen), DNA from other

microbes in the community, and the amount of host DNA, in

addition to variation based on clinical sample type. The variation

in metagenomes and the needs of researchers and clinicians makes

it challenging to develop a ‘‘one-size-fits-all’’ method for analysis.

The characterization of community composition using micro-

bial sequences can now be approached at three specific taxonomic

levels: genus, species and strain/genotype (Figure S1), rather than

the limited subfamily/genera that are the observable taxonomic

units of 16S microbiome analysis. There are, however, fewer

species- and strain-specific regions of the genome than genus-

specific regions, given the relationships of genome composition

with taxonomy. Increasing sequencing breadth across a genome

allows for better taxonomic resolution of any organism present in a

sample, especially for taxa that have been genetically well

characterized. For metagenome data, single reads may map to

multiple organisms either due to conserved microbial genomic

regions (e.g., genus-specific genes) or due to the presence of closely

related organisms in queried reference databases or the commu-

nity being analyzed. Studies have shown metagenomic sequences

share similar regions for even the simplest microbial communities

[17,45,46]. Assigning each read to all mapped genomes might be

an effective strategy as metagenome community analysis is

unbiased and researchers may have no a priori knowledge about

the community composition [38]. The genus specific reads will

map to higher numbers of organisms followed by reads specific to

species and sub-species/strains. The organism with the highest

shared (genus-specific) regions, as well as unique regions, which

generally belong to species- and strain-specific genes, will result in

a higher percent of the genome mapped. The taxonomic rank and

the detection resolution is proportional to sequencing throughput,

richness of pathogen(s) in metagenome sampling and the

availability of genomic data from the community members (e.g.,

target pathogens), or close relatives, in the reference database. We

benchmarked the sensitivity and specificity of the detection step of

the pipeline by evaluating simulated read libraries through

identification of correct pathogen, corresponding percent read

recalled, genome coverage detected, correct percentage of host

reads filtered and false detection of host and/or non-host.

Human Read Reduction
To detect the ‘‘needle’’ (e.g. pathogen reads), reducing the size

of the ‘‘haystack’’ (non-target reads) is critical [6]. This starts with

removing the overwhelming majority of reads, i.e. host DNA

sequence. The efficiency of human read filtration can be measured

by the total number of human reads removed from clinical

samples. To test the effect on human read filtration with different

parameters, seven whole genome sequencing datasets from

Figure 5. Comparison of detection of close relative in co-infection versus single infection. A. Comparison of percent genome coverage of
true detection in co-infection versus false detection of S. aureus Newman. B. Comparison of percent genome coverage of S. aureus TCH1516 in co-
infection versus simple infection.
doi:10.1371/journal.pone.0110915.g005
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humans and one simulated dataset created from human reference

genome (Hg19) were analyzed. The mg_bwa and mg_bw2 uses

only BWA and BOWTIE2 aligners only, while mgall_bw2 and

mgall_bwa uses all five steps of pipeline including fast alignment

with BOWTIE2 and BWA, respectively (Table 1). We found that

use of a single aligner (mg_bwa/mg_bw2) is not always efficient in

removing human reads. Utilizing all the features of the

MetaGeniE pipeline (mgall_bw2 and mgall_bwa) allowed higher

filtration of human reads (Figure 2-A). The runtime of single step

(mg_bwa/mg_bw2) was faster than running all steps of human

filtration (mgall_bwa/mgall_bw2) (Figure 2-B). Keeping all pa-

rameters the same, we found that the BWA aligner ran faster than

BOWTIE2 (Figure 2-B) but that this increased speed comes at a

cost; BOWTIE (mg_bw2) was more sensitive than BWA (mg_bwa)

and correctly aligned a higher number of human reads (Figure 2-

A). However, the total number of reads removed by mgall_bw2

and mgall_bwa (that utilizes all the steps of human filtration) was

nearly equal, irrespective of whether the BWA or BOWTIE2

aligner was used.

Remaining human reads that were not filtered were aligned

against the NCBI Refseq bacterial database. These ‘‘human’’

reads mapped to the bacterial database and as expected, were

higher for single step alignment (*_mg_bw2) than with compre-

hensive human read reduction with pipeline (*_mgall_bw2)

(Figure S2). The unfiltered human reads not only mapped

incorrectly to microbial datasets, but also contributed to overall

runtime during pathogen detection. Removal of human reads with

high specificity is advantageous for sensitive clinical interpretation.

Pathogen Detection
Metagenome datasets derived from clinical samples typically

have analytical challenges such as a) the often extremely low

abundance of pathogens; b) the analyzed sample may contain

single infection (with only one dominant infection); c) contain

multiple infectious agents from close relatives; and d) samples may

house highly complex microbial communities (e.g. sputa from

cystic fibrosis patients). The sequencing reads aligned against the

reference genome(s) may have high divergence resulting from

sequencing error or/and mutations. We created and analyzed

simulated libraries based on varying community complexities to

estimate the efficiency of pathogen detection.

Simple Community. Metagenome sequences are often

processed as a single genome alignment to a reference genome

[16]. In a single genome alignment, reads aligning to multiple loci

in a reference genome are randomly assigned to a locus and

SAMTools only parses these as ‘‘main’’ hits [47]. To evaluate the

ability of MetaGeniE to distinguish a known target strain from its

close relatives with our all-against-all strategy, we utilized S.
aureus strain TCH1516 to assess the detection of a single infection

by a known strain. Staphylococcus is well-characterized genus with

high number of sequenced strains, allowing us to test the specificity

of detecting the correct organism from not only among the many

Figure 6. Relationship between percent genome coverage and read recall percentage with incremental divergence (i.e. error).
doi:10.1371/journal.pone.0110915.g006
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species of Staphylococcus in the reference genome database, but

also from members of its own strain or subtype (i.e. ST8-MRSA-

IVa/USA300). Typically the genus-specific regions of Staphylo-
coccus are assigned to several, or all, of the members of the genus.

Reads that contribute to unique regions, which may belong to its

species (S. aureus), and strain-specific genes (clonal complex 5),

will result in highest percent genome coverage of the correct

organism. We were able to detect S. aureus TCH1516 in all the

test sets as the top hit (highest genome reconstruction/coverage)

even with lowest number of reads (i.e., 100 reads). This detection

occurred even when single genome alignment was not able to

report correct detection (Table S1). We found that the single

Figure 7. Sequential reduction of the metagenome reads for 4 clinical samples from cystic fibrosis patients. Data points represent the
remaining reads after each processing step of the pipeline. First six data points (Initial, Quality Filter, BWT Alignment, Data Compression, Sensitive
Alignment, Human Repeat Alignment) represent the Human Read Reduction and BWA Bacteria and BLAT Bacteria represent Pathogen Detection
against bacterial database.
doi:10.1371/journal.pone.0110915.g007

Table 2. Bacterial infection detected by MetaGeniE confirmed with the laboratory culture media.

Sample Culture Report Metagenome Detection

CF1 MRSA Staphylococcus aureus subsp. aureus USA300 TCH1516

ENCL Enterobacter cloacae subsp. cloacae ATCC 13047

CF2 ECOL Escherichia coli APEC O1

HAEM Haemophilus influenzae 10810

CF3 ECOL Escherichia coli S88

ENSP Enterococcus italicus DSM 15952

CF4 MSSA Staphylococcus aureus subsp. aureus str. Newman

PSAR Pseudomonas aeruginosa PAO1

MRSA: Methicillin resistant Staphylococcus aureus; ENCL: Enterobacter cloacae; PSAR: Pseudomonas aeruginosa; MSSA: Methicillin sensitive S. aureus; ECOL:
Escherichia coli; ENSP: Enterococcus sp.; HAEM: Haemophilus influenza.
doi:10.1371/journal.pone.0110915.t002
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alignment underestimates the genome coverage compared with

the results from MetaGeniE, and the coverage detected by our

approach approximated to the actual coverage detected (Table

S2).

We also compared the effect on pathogen detection based on

factors such as quantity of reads, percent genome coverage and

read recall (reads aligning correctly to its genome of origin)

percentage against different parameters available in human

filtration module of the MetaGeniE (Figure 3). Read recall

percentage is the percent of simulated reads that correctly align

to the reference genome after human filtration. As the read

number increased, the expected genome coverage percentage also

increased; genome coverage reached 99.9% at 250K reads and

thus had coverage across nearly the entire genome. The 250K

reads were approximately the number of reads necessary to

reconstruct the entire genome of S. aureus TCH1516 from the

metagenome. As more reads were sequenced (simulated), a higher

number of duplicate reads was also expected. Using the data

compression feature of human filtration of pipeline (*_mgall_bw2)

to remove duplicates reduced the read recall percentage but had

no effect on genome coverage percentage or detection of the

correct organism. The duplicate reads therefore did not add

additional information; to manage computational scalability,

removal of these duplicates improved MetaGeniE performance.

We also found that using all the human filtration steps of the

pipeline (*_mgall-bw2) as compared to using just fast alignment

(*_mg_bw2) or not utilizing data compression (*_mg_dc) did not

lead to underestimation of the percent genome coverage for

correct pathogen detection.

Complex Community. The ability to detect and differenti-

ate the members of the community in complex clinical samples,

such as those from cystic fibrosis patients, should be helpful in

generating insight for proper treatment. Shared regions are

expected in even the simplest microbial communities so careful

attention is necessary for these orthologs. The simulated library

allowed us to evaluate the impact on detection due to the presence

of multiple organisms in community with different genome sizes.

We designed a simulated complex community of five bacteria

based on a similar community composition that was previously

detected from a cystic fibrosis clinical sample (See Methods).

Simulated reads were generated from the reference genome of

each of the five organisms and four libraries with different read

numbers (i.e., 100, 1000, 10K, 100K per organism) were created.

In metagenomes, many organisms may not have any complete or

incomplete entries in the reference genome database. To test the

specificity of detection of an unknown organism, Veillonella dispar
ATCC 17748 was added to this complex community. This

organism was not present in the bacterial reference genome

database (RefSeq Build 60). Querying a large reference database

usually results in detection of multiple organisms within same

genus due to sequence homology. Therefore, for organism

detection we selected the highest mapped genome percentage

(i.e., the top hit) within the same genus. The correct detection was

confirmed for all of the organisms except for V. dispar ATCC

17748 (Table S3). This indicates that the pipeline allowed

detection of the correct organisms even in a complex community.

Different genera in a complex community may share genomic

regions. The robustness of detection can be measured by loss of

sensitivity (i.e., genome coverage) of any organism in a complex

versus simple community infection. We compared the percent

genome coverage of E. coli APEC O1 as single pathogen and in

complex community. We found no loss in percent genome

coverage for the E. coli APEC O1 between simple and complex

community and the trend for simple and complex community

overlaps completely in the Figure 4. The all-against-all relation-

ship between the reads and reference database, therefore, allows us

to detect any organism without loss in sensitivity, which could

potentially occur in samples containing organisms with shared

genomic regions.

For simulated reads of V. dispar ATCC 17748 (not present in

reference database), V. parvula DSM 2008 chromosome was

detected as top hit with lower percent genome coverage compared

to other hits (Figure 4). We can infer that true calls (i.e. detections)

may not always be possible, given the limited, albeit growing,

nature of genomic databases and the taxonomic resolution might

decrease to genus, (e.g. Veillonella in this case).

Co-infections
We were able to accurately detect and identify the target

organism (as a top hit) for each taxon from multiple genera in a

complex community as discussed above. However, some clinical

samples will have pathogens from same species, for example co-

infections with methicillin resistant S. aureus (MRSA) and

methicillin sensitive S. aureus (MSSA). Staphylococcus aureus
TCH1516 and S. aureus Newman belong to different clonal

complexes (CC8 & CC5) and are abbreviated as MRSA and

MSSA, respectively. To test the specificity of detecting and

distinguishing these two distinct strains in clinical samples, we

created co-infection libraries consisting of simulated reads from S.
aureus Newman and S. aureus TCH1516 genomes.

The presence of S. aureus Newman in co-infection library (true

positive) was compared with its detection in a single infection

library (false positive) containing only simulated reads from the S.
aureus TCH1516 genome (Figure 5-A). Any genome coverage

percentage detected for S. aureus Newman in single infection

library can be considered as false detection. The percent genome

coverage of S. aureus Newman (false call) was slightly less than its

true presence in multiple-infection library, due to contribution of

homologous reads from S. aureus TCH1516. As summarized in

(Table S4), S. aureus Newman ranked behind few other closely

related genomes of S. aureus TCH1516 (CC5) in the single

infection library (Table S5) but was detected as top hit in co-

infection library (Table S6).

The co-infection library consisted of reads from both S. aureus
TCH1516 and S. aureus Newman. Due to the all reads mapped

against all reference strategy, the shared homology between these

two organisms resulted in a higher percent genome coverage of S.
aureus TCH1516 in the co-infection library than the single-

infection library (Figure 5-B). The S. aureus TCH1516 was

detected as top hit per genus in single infection library (Table S5)

and as one of top hits with S. aureus Newman in co-infection

library (Table S6). We can infer that although the ‘‘top hit per

genus’’ detection was correct in identifying the correct strain in a

co-infection, proper detection of the strains in a co-infection is

difficult and will require additional validation.

Diversity
Metagenome reads may have artificial variation due to

sequencing error. The ability to assign these reads back to their

genome can affect the sensitivity of detection. However, utilizing

only a global aligner may result in loss of sensitivity of divergent

reads detection. To incorporate these divergent reads for sensitive

detection, we utilized BLAT, which is ,500 times faster than

preexisting tools with comparable sensitivity [35].

We designed the simulated reads from S. aureus TCH1516

genome with increasing amounts of error in the reads. To evaluate

sensitivity to error, reads that the global aligner was unable to

map, but were aligned by a local aligner (BLAT), were categorized
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as divergent reads. With increasing sequence divergence, higher

numbers of reads were not aligned by global aligner (Figure 6).

MetaGeniE is nonetheless able to incorporate these divergent

reads through local alignment without a decrease in the genome

coverage detected (Figure 6). In all 25 of the simulated test cases

(0%, 0.1%, 0.2%, 0.5% and 1% divergence for 100, 1K, 10K,

100K, 250K reads), S. aureus TCH1516 was detected correctly in

all except one: at 1% divergence with 100 reads. The limitation of

detection for correct identification can therefore be seen at highest

divergence with low number of reads.

Clinical Samples
Workflow. Due to the variations and limitations in metagen-

ome analyses and importance of detection accuracy given clinical

perspective, the analyses of clinical samples might require a cycle

of Detection R Validation R Confirmation (Figure S3). After

detection of the pathogen likely responsible for the infection as well

as assessing the rest of the microbial community, the validation of

clinical datasets can be done through analysis such as SNP

genotyping and BLAST analysis, depending on the number of

reads aligned to the detected organism to more fully characterize

the organism(s). These inferences from clinical datasets can finally

be confirmed with laboratory test/culture, PCR, and/or patient’s

clinical history. We performed DetectionR Validation R
Confirmation workflow to evaluate overall performance in the

cystic fibrosis (CF) clinical dataset.

Detection. We first removed low quality, redundant and

human reads with the MetaGeniE Read-Reduct module on the

initial metagenomic reads (Figure 7). For the CF samples, the data

were reduced 33–90%. The remaining reads after running the

read filtration module were mapped against bacterial reference

genome to detect pathogens. Different steps utilized by the

pipeline have varying effects of reduction/filtration on these

metagenomes (Figure 7). The total number of reads that mapped

against the bacterial database was 24–68% for these four samples.

The increase in number of reads mapping due to local alignment

in these samples was 27–53% and therefore implementation of

local alignment in the pipeline helped in aligning a higher number

of divergent reads that increased the sensitivity for detection

(Figure 7).

The mapped reads in the Patho-Detect module of the pipeline

was utilized to understand the community with percent genome

mapped for top-hit per genus for the CF samples (Table S7). The

percent genome mapped (i.e., genomic reconstruction of the top

hits for CF samples) ranged from 55–99% (Table S8). The four CF

samples presented different genomic signatures (Table 2) and thus

different communities in each patient (Table S8). Infectious agents

in CF patients are acquired through nosocomial, social and

environmental factors [48–50]. These pathogens, along with

commensal microbiota, represent the microbial community in

CF patients. The community for each CF metagenome sample

was represented by normalized (%) genome coverage of top hit per

each genus that was detected by MetaGeniE (Figure S4).

Organisms from genera such as Gemella, Granulicatella, Hae-
mophilus, Neisseria and Streptococcus are commonly found in the

oral microbiome, including oral samples from CF patients

[48,49,51,52].

Validation. SNP Genotyping: Single nucleotide polymor-

phism (SNP) genotyping is widely used in analysis of WGS to

accurately identify and discriminate between strains of a species

[53]. Figure S5-1 represents the phylogenetic tree for the

metagenome sequences mapping to top hit (S. aureus USA300

TCH1516) detected by pipeline for sample CF1. To confirm the

accuracy of the detection of S. aureus USA300 TCH1516 for CF1

sample, the close relatives of available S. aureus from GenBank

were downloaded and SNP genotyping was performed. We found

that S. aureus USA300 TCH1516 detected by MetaGeniE is

confirmed through SNP genotyping for CF1 and other CF

samples (Figure S5). We are able to validate that detection at a

high taxonomic level is possible in a clinical metagenome sample.

Genome Reconstruction and Visualization. We extracted

and then assembled the reads mapped to these identified genomes

to generate contigs and scaffolds. This pre-selection approach is

different than assembling entire metagenome as this might result

in chimeric contigs [17,41,42]. We were able to reconstruct all

features of the identified MRSA and MSSA strains in CF1 and

CF4 respectively (Figure S6). Due to low coverage, identified

strains of sample CF2 and CF3 were not fully reconstructed.

Confirmation. The top hits for pathogen detection and

community composition were confirmed in all four CF samples

using culture-based methods from clinical laboratory (Table 2).

The ability of MetaGeniE to correctly identify infections to the

strain level, for example MRSA versus MSSA detection,

demonstrates higher resolution than amplicon sequencing com-

munity analysis (e.g., 16S microbiome).

Conclusions

Various features have been incorporated and validated in the

MetaGeniE pipeline to improve computational scalability, speed,

and accuracy, which allowed us to perform comprehensive

analysis of the clinical samples from whole sample sequence data.

We successfully tested the pipeline on various simulated clinical

datasets, available public datasets and in-house sequenced clinical

datasets.
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