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Abstract

The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most
conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world’s largest cod stock which is
presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal
communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food
particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we
explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria
aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal
variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models
demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent;
Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap
between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators
increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to
identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.
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Introduction

The Barents Sea is an open Arcto-boreal shelf-sea with an

average depth of about 230 m. This ecosystem is both of large

applied interest due to the large commercial fisheries, and also an

interesting biological system showing clear bottom-up effects [1,2],

top-down effects [3–5] and climate effects [1,6]. The climate

appears to have a strong effect on the trophic control in the

Barents Sea in that both climate and trophic control change with a

decadal periodicity [7]. Understanding linkages between climate

and trophic interactions is important for understanding the

changes in the Barents Sea biodiversity expected to follow climate

and harvesting changes.

Fairly simple pelagic Arctic ecosystems such as the Barents Sea

[8] may be more vulnerable to changes in the abundance of the

few key species [9] compared to more diverse system in terms of

link strengths [10]. For instance, the collapse of the Barents Sea

capelin Mallotus villosus stock in the 1980s significantly affected

several trophic levels including the capelin prey, zooplankton [11],

capelin predators such as the Northeast Arctic (NEA) cod Gadus
morhua [12] and the harp seal Pagophilus groenlandicus [13], and

alternative prey of capelin predators such as shrimp [14,15].

In recent years, understanding and predicting food web

dynamics in the Barents Sea have become a priority with the

aim at improving the management of marine resources. As a

result, there has been an increased focus on ecosystem or

multispecies models [16–18]. Indeed, on an ecological time scale,

top-predators can affect the abundance of other species through

predation or competition. The top-predator (species at the top of

their food chain) community in the Barents Sea consists of about

33 seabird species [19] and 21 mammal species [16], in addition to

large demersal fish, of which cod is the most abundant species.

Interactions between several of these species have previously been

identified, such as between the Black-legged kittiwake Rissa
tridactyla and the Common guillemot Uria aalge [20], between

the Minke whale Balaenoptera acutorostrata and the NEA cod

[21], and between the harp seal and the NEA cod [22]. Such

interactions should be included when investigating population

dynamics in an ecosystem context, i.e., taking into account species

interactions.

The sensitivity of each top predator species to changes in prey

availability depends on the availability of, and ability to use,

alternative prey species. The sensitivity of the top predator
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community, being the sum of each predator sensitivity, depends on

the response diversity within the community [23]. If the majority

of the predators of the community responds to a stressor in the

same way then the predator community will show a sensitivity to

the change of this particular stressor. On the contrary, if the

predator responses are diverse, the community is more robust.

Based on the strong effects across species of the two first capelin

collapses we may expect a low response diversity and hence a

sensitive community. However, the top predators are typically

generalists, foraging on different prey species depending on

spatiotemporal overlap between predator and prey distributions,

and abundance of the different prey species in the system [24,25].

It is therefore likely that the response diversity of these top

predators may depend on the availability of alternative prey in the

system.

In this study we explore the interactions between some of the

major top predators of the Barents Sea ecosystem, by investigating

the diet overlap among them. These species may only interact

(e.g., compete for food) if they share a certain amount of the prey

resources. The prey availability in the system is varying both due

to natural cycles [e.g., capelin, 26] and to anthropogenic pressures

[e.g., fishing, 27]. We therefore expect that the top predator diets

are varying through time. If the predators demonstrate species

specific responses to changing prey abundances the number of

response types may be high and lead to a year-to-year changes in

both trophic and competitive interactions. To address these topics

we have conducted a diet overlap analysis based on stomach

content over the years and run generalised additive model to try to

explain the temporal changes observed. We expect that the diet

changes may be due to changes in prey abundance and

distribution as well as in climate that can affect those.

Methods

Data
Following a simple food web description of the Barents Sea [8],

the main predators in terms of total consumption [16] are the

NEA cod (thereafter cod), the Minke whale, the harp seal and

seabirds. The latter group includes black-legged kittiwake and the

common guillemot, thereafter kittiwake and guillemot respectively.

The diet data of four of these species is displayed in Table 1 and

Fig. S1 in File S1; unfortunately the harp seal was omitted from

the analysis due to sparse data.

Collection of data, spatial and temporal extent of data
The origin of the diet data used is summarized in the Table 1.

Data were transformed to annual average percentages by mass. To

make inter-specific comparisons we merged some prey categories

(see supplementary material, Table S1 and S2 in File S1). Seabird

diets were obtained during the breeding period at Kharlov Island

on the coast of the Barents Sea [28,29]. We calculated the whale

diet for the entire Barents Sea as well as for a subset of the data

restricted to the southern Barents Sea (Minke whale sampled south

of the 75uN, Fig. S1 in File S1). The complete data are used to

analyse the change in the whale diet over time and to compare

with the diet of the cod. The subset data are used to make inter-

specific comparisons with seabirds because they are central place

foragers and limited to the southern Barents Sea during breeding

(the period when the seabird data were collected). Data on cod diet

were taken from the joint Russian-Norwegian PINRO-IMR data

base [30,31], diet for the entire Barents Sea as well as for a subset

of it (,72uN) to compare with seabirds were calculated.

We used two types of environmental variables, climate indices

and prey abundances, as predictors in the statistical analyses (given

in Table 2). As climate indices we considered the average Barents

Sea surface temperature (ST, annual), an index of the areal

coverage of cold, Arctic water in the Barents Sea and the winter

North Atlantic Oscillation index (wNAO). The rationale for

analysing the effect of climate indices on the diet changes is that

these variables may influence the spatial distribution of both the

predators and the prey [25,32,33], which is unknown in our study.

Temperature influences zooplankton productivity [34] and also

acts as a proxy for various direct and indirect effects [35]. In

particular, high temperature has been associated with inflow of

warm, and potentially zooplankton-rich, waters from the Norwe-

gian Sea [35]. The North Atlantic Oscillation index measures

large-scale climate effects, is positively correlated with inflow and

temperature, and was found to be the best climatic predictor of

zooplankton biomass in the Barents Sea in spring and summer

[e.g., for plankton 5] and thus linked to the productivity of the

system.

Capelin, euphausiids (krill) and, to some extent also, juvenile

Norwegian Spring Spawning herring Clupea harengus (thereafter

herring) were found to be the major prey species in all predators

(see Fig. S1 in File S1). These prey species are also considered

major players in the trophic dynamics of the Barents Sea [e.g., 26,

35–39]. Thus the abundances of these prey species were used as

predictors in our models (Table 2).

Table 1. Species studied.

Species Description and source Years

Black-legged kittiwake Rissa
tridactyla

Regurgitation of 653 adults on the breeding colony Kharlov Island on the coast of the
Barents Sea (BS) during the breeding season (April-May).

1982–1999 (lacking data for 1984
and 1985)

Common guillemot Uria aalge Observation of 1951 fish deliveries at the breeding colony Kharlov Island on the coast
of the BS during the breeding season (April-May).

1984–1999 (lacking data for
1985)

NEA cod Gadus morhua Stomach content a,b. To compare with the seabirds we used data for 68–72uN and
20–40uE only (Mar-July) and to compare with the whale data for 70–80uN and 5–40uE
(July-Sept). c

1984–2009

Minke whale Balaenoptera
acutorostrata

Stomach content of 345 whales caught in the BS between May-Sept. To compare
with the seabirds a subset for the area ,75uN was used. d

1992–2004

aReport of the ICES Arctic Fisheries Working Group [61], Table 1.3 p 55.
bThe Russian-Norwegian data base on cod diet, further details see Mehl and Yaragina [31], and Dolgov et al. [30]
cthe subsets from this base.
dFurther details on the capture and the stomach sampling is given in Haug et al. [62]
doi:10.1371/journal.pone.0110933.t001
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Diet overlap Index and Niche breadth
Schoener’s [40] index of niche overlap, which is the most

commonly used diet overlap index [41,42], was used to calculate

the diet overlap among predators:

Ojk~1{0:5|
X

Dpij{pik D

where Ojk is the overlap between the species j and the species k, pij

is the proportion of species j feeding on prey species/group i and

pik is the proportion of species k feeding on prey species/group i.

Ojk values range from 0 to 1. Overlap in diet between species j and

k is complete when Ojk = 1 and is absent when Ojk = 0 [20,41].

Values exceeding 0.6 are considered to represent ‘‘biologically

significant’’ overlap in diet composition [42]. However, we

considered that when mean Ojk.2̇SD the diet overlap between

species j and species k is significant [20,41].

Using original (non-merged) diet data, we have calculated the

Schoener’s index O for consecutive years (overlap of diet between

years) for each predator species (kittiwake, guillemot, Minke whale,

and cod). To do this we adapted the equation above to calculate

diet overlap between years, replacing Pij with Pi,j,t and Pi,k with

Pi,j,t+1, where j denotes a predator species and t year. This way we

obtained a diet overlap Ot between year t and t-1 and ultimately a

time series of O indices of temporal trends in diet overlap between

years within the species. Furthermore, year to year changes in O
were then related to environmental descriptors using Generalized

Additive Model (GAM, see below).

We have also calculated O for each pair of predators over

common period of time, and O for each pair of predators from

year to year.

To assess the complexity of the diet for each species, we used the

Shannon-Wiener niche breadth index D [43]. The D index has

the advantage of not being greatly affected by sample size. D was

calculated as follows:

D~{
X

pi| ln (pi)

where pi is the proportion of the species considered feeding on

prey species/group i.

Statistical analyses
The temporal variability in diet overlap (Ot ranging from 0 to 1)

was analysed with respect to prey abundance and climate variables

(both regional and large-scale climate indices) using Generalized

Additive Models (GAM) with a logit link function in the

formulation (family quasi-binomial) using the mgcv library in R

2.14.1 [44,45]. Note that the quasi-binomial distribution takes into

account overdispersion and underdispersion of the data.

We then modelled the observations Ot as coming from a quasi-

binomial distribution with an expected value equal to logit(a+Si si

(Xi,t)) where si(̇ ) is a nonparametric smoothing function of

covariate Xi on the dependent variable O. Note that the GAM

analysis was conducted only for the predator pairs where the diet

overlap O was considered significant (i.e., pairs where the diets

overlapped over the whole studied period and not for some

particular years only; see above).

The GAM procedure automatically selects the degree of

smoothing based on the Generalized Cross Validation (GCV)

score. GCV is a proxy for the model’s predictive performance

analogous to the Akaike’s Information Criterion. However, to

avoid spurious and ecologically implausible relationships, we

constrained the model to be at maximum a quadratic relationship

implying that we set the maximum degrees of freedom for each

smooth term to 2 (i.e., k = 3 in the GAM formulation). The

maximum number of explanatory variables on the starting models

was depending on the time series length (number of variables

should be # to n/4, see Table 3). These explanatory variables

were selected on two criteria that were availability and biological

meaning.

We wanted a parsimonious model which described the response

well but was as simple as possible. We entered every candidate

predictor in a GAM model and conducted a shrinkage model

selection by using thin plate regression spline smoother with

‘‘shrinkage’’ for each term of the model [46]. Unimportant terms

were shrank to zero, i.e., effectively removing the term, by the

fitting procedure, and thus selecting a reasonably optimal model in

one step (i.e. the model that includes all of the terms that were not

shrunk to zero). There was no temporal autocorrelation (using

autocorrelation function ACF) in the residuals of the models.

Results

Capelin was the overall most important prey for the selected top

predator species, ranging from an average of 27.5% in Minke

whale diet to 34.9% in guillemot diet (Fig. S2 in File S1). However,

sandeel was the most important prey for the guillemots (ca 49%)

and krill was the most important prey for the Minke whale (ca

40%), when considering the whole Barents Sea. In these two cases

capelin was the second most eaten prey. Herring was also an

abundant prey in the diet of the predators (13–24%, apart for the

cod where it represented only 2.7%) as was the krill (10–40%,

apart for the guillemots which are not foraging on krill).

Table 2. Explanatory variables used for the GAM analyses. Subscript t refers to year.

Variable Description and source

ST (t) Mean Barents Sea (BS) temperature in uC for and Januaryt to Decembert at 0–200 m depth in Atlantic water parts of the Kola section (70.5–72.5uN,
33.5uE) over 1921–2009a.

NAO(t) Principal component based winter (Decembert-1 – Marcht) North Atlantic Oscillation (NAO) indexb

Cap (t) Biomass of capelin in the BS in 103 tc.

Krill (t) Euphausiids, abundance indices covering 1984 to 2004 from the Polar Research Institute of Marine Fisheries and Oceanography (PINRO)d. Data are for
southern (Krill.S) and the northwestern (Krill.NW) BS. Krill is the sum of both area.

Herr (t) Biomass of immature Norwegian Spring Spawning herring (1–2 years of age) in the BS in 103 t e.

aTereschenko [63, http://www.pinro.ru/], bHurrell [64, https://climatedataguide.ucar.edu/sites/default/files/climate_index_files/nao_station_djfm.txt], cReport of the ICES
Arctic Fisheries Working Group [65], Table 9.5 p 498, dZhukova et al., 2009 data used with permission, and eReport of the ICES Arctic Fisheries Working Group AFWG
Table 9.6 p 499.
doi:10.1371/journal.pone.0110933.t002
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Diet breadth results show that the two central placed foragers

(i.e., the two seabird species) had a narrower diet than the two

other species (Minke whale and cod, Table S1 in File S1). Figure 1

gives the niche breadth for each predator. The cod had the

broadest diet, followed by the minke whale, the kittiwake and the

guillemot.

Intraspecific year to year variation in diet
Table 3 shows the best models selected by shrinkage technique

explaining the year to year change in diet for each predator.

The kittiwake diet varied over time, with O ranging from 16%

to 88% of overlap with the previous year (60623(SD), Fig. 2). The

diet changes can be explained by the generally positive relation-

ship with the sea temperature (ST, over 3.9uC) and with the

capelin biomass (log transformed, until ca 2.4 106 t) (Table 3,

Fig. 2). With increasing ST and increase of capelin abundance the

diet became more similar.

The guillemot diet also varied over time (16–92%, 60623(SD)).

The diet overlap decreased with time (Fig. 2). This trend taken

into account, the year-to-year change in diet can be explained by

the changes in the ST (Fig. 2). With increasing ST the diet became

more similar until ca 4.1uC, when the relationship was reversed,

i.e., the diet was more variable in extreme temperatures. With the

increase of capelin abundance the diet became to some extent

more variable.

The Minke whale diet was relatively stable (42–79%,

65613(SD)). The change in diet can be explained by the changing

herring abundances combined to the changes in the winter NAO

index (wNAO, Fig. 2). The more abundant the herring (up to an

abundance of ca 1.43 106 t) and lower the wNAO the smaller was

the diet overlap (Fig. 2). Hence, the diet varied more in years with

high herring abundances, and in years of positive wNAO.

The cod diet was remarkably constant with very small variation

compared to the other species during the studied period (56–92%,

80610(SD)) and showed a clear positive time trend. The year-to-

year fluctuations in diet can be explained by the annual variation
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Figure 1. Trophic relationships between the main components
of the food web in the Barents Sea ecosystem. Average
Schoeners’ diet overlap index O for the five predator pairs studied
and their respective Shannon-Wiener niche breadth D (see Table S1 in
File S1). The significant relationship are given in plain arrows (Fig. 3,
Table 3) The shape of the arrow head indicates the interpretation on
how one species may affect another based on biomass [55]. Different
arrow heads indicate unbalanced biomass between a predator pair
(filled head indicates a potential stronger effect than open head).
doi:10.1371/journal.pone.0110933.g001
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in capelin abundance (log transformed, Fig. 2). With increasing

capelin abundance the diet became less similar until ca 0.78 106 t

when the relationship was reversed (Fig. 2).

Interspecific year to year variation in diet overlap
Among all pairwise comparison of predators, only two exhibited

significant diet overlap, but it all cases diet overlap varied annually.

The Minke whale/cod pair had a diet overlap ranging from 22–

61% (34610(SD), Fig. 3). The change in the diet overlap between

the two predators can be explained by the positive effects of

herring abundance (log transformed) and of the krill abundance

(Fig. 3).

The kittiwake/guillemot pair had a diet overlap ranging from

14–80% (51620(SD), Fig. 3). The diet overlap exhibited a slight

positive time trend (Fig. 3). The change in the diet overlap

between the two predators can be explained by the positive effects

of herring abundance (log transformed) and of the wNAO (Fig. 3).

With increasing wNAO and herring abundance the diets became

more similar.

Figure 2. Intraspecific diet dynamics of the main predator species in the Barents Sea. The generalized additive models (GAMs) are
presented for each predator. For each plot, the x-axes show the covariate and the y-axes the partial effect that each covariate has on the response
variable. The line is the smooth term effect of the considered covariate on the elasticity with the pointwise 95% confidence interval around the mean
prediction (grey-shaded area). The dots are the partial residuals calculated by adding to the effect of the concerned covariate to the residuals, the
model prediction at any given point is given by the sum of all partial effects plus a constant. When it applies, the dotted line locates the inflection
point. Abbreviation are explained in Table 2 and the models in Table 3. Superimposed on the overlap data (grey filled dots) in the last column is the
corresponding GAM prediction (plain line).
doi:10.1371/journal.pone.0110933.g002
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The cod and the kittiwake pair (6–81%, 33621(SD)), the Minke

whale and the guillemot pair (5–77%, 33627(SD)), the Minke

whale and the kittiwake pair (11–72%, 44624(SD)), the cod and

the guillemot pair (5–54%, 31617(SD)) had no significant diet

overlap. Note that the two last pairs had near significant diet

overlap.

Discussion

Diet overlaps were obtained by using the commonly accepted

Schoener’s Index for niche overlap computed on stomach

contents. Linton et al. [47] showed that the Schoener’s index

gives a more accurate representation of true overlap when the

overlap is ranging between 7–90% as is the case in our study when

compared to other often used indices [48]. It results that our

models displayed the trend in diet overlap fairly well; their relative

stiffness being likely due to the small amount of covariates used.

However, there is limitation to the diet overlap techniques. The

first is the availability of the data that requires heavy logistics to

obtain. This is well illustrated by the harp seal case where the data

series available to us were too short for our analysis. On the same

level is the spatial coverage of the data. For instance while still

possible, the calculation of diet overlap index has meaning only if

the two predators compared feed in the same area at the same

time. This is why we have restricted the NEA cod and the Minke

whale data to the southern Barents Sea when comparing with the

seabirds data. To some extent there is also a similar problem with

the season when the data are collected, explaining why we have

also restricted the seasonal extent of the NEA cod data (Table 1).

Optimally, data should be collected for all predators studied at the

same geographical area, during the same season and over a

sufficient amount of consecutive years.

1. Annual change in the diet of the main predators in the
Barents Sea

Our results revealed that cod and Minke whale, the predators

with a large niche breadth due to predation on a wide variety of

prey species (Fig. 1 and Table S2 in File S1), had more stable diets

across time than the seabirds foraging on fewer prey species

(Fig. 2). In cod and Minke whale, fluctuations in prey abundances

resulted in relatively small changes in use of many alternative prey

species, compared to the larger changes in use of fewer prey

species in the seabirds (Fig. 2). Being central place foragers during

reproduction, the seabirds choice of prey is limited to the vicinity

of the breeding site. It is then the local distribution of prey that

explains the variation in the seabirds diet much more than the

prey abundance. In this respect, the diets of cod and Minke whale

appear to be more robust to fluctuations in the prey base. Indeed,

wider distributions, and no spatial limitation to areas neighbouring

a central place (colony) during foraging is likely important factors

increasing the dietary flexibility and robustness of the cod and the

Minke whale in comparison to the seabirds (e.g., large impact of

prey availability on survival explaining seabird population decline

such as the one observed for common guillemot in 1986–1987

[49,50]). Nevertheless, cod, Minke whale and seabirds were

negatively impacted by past fluctuations in prey abundance

[36,51,52].

Capelin abundance is the major driver causing changes in cod

and seabird diets. Nevertheless, the dietary response (i.e., change

of O-index) to changing capelin abundance differed from U-

shaped, positive and negative for cod, kittiwake and guillemot,

respectively (Fig. 2). While the major prey eaten by cod is the

capelin, which has highly variable abundance and distribution

[33], the diet of the cod remains remarkably constant. However,

the small changes observed between years are explained by the

Figure 3. Interspecific diet overlap for the main predator species in the Barents Sea. The generalized additive models (GAMs) are
presented for each pair or predator. For each plot, the x-axes show the covariate and the y-axes the partial effect that each covariate has on the
response variable. The line is the smooth term effect of the considered covariate on the elasticity with the pointwise 95% confidence interval around
the mean prediction (grey-shaded area). The dots are the partial residuals calculated by adding to the effect of the concerned covariate to the
residuals, the model prediction at any given point is given by the sum of all partial effects plus a constant. When it applies, the dotted line locates the
inflection point. Abbreviations are explained in Table 2 and the models in Table 3. Superimposed on the overlap data (grey filled dots) in the last
column is the corresponding GAM prediction (plain line).
doi:10.1371/journal.pone.0110933.g003
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variation in capelin abundance. The U-shaped dietary response

relative to capelin abundance indicates that the cod diet is similar

in periods with either low or high capelin abundance, but varies

during transitions between high and low capelin abundances. We

suggest that the U-shape of the relationship is due to the particular

dynamics of the capelin in the Barents Sea with regular periods

with low abundance [26]. In such years, the cod shifts to juvenile

cod and haddock as alternative prey [12,53] or other prey with

high abundance, and back to capelin when capelin stock recovers.

However, it seems that juvenile cod was an important prey for

adult cod only during the mid 90’s capelin collapse when there was

strong recruiting year classes of cod [53], but not so much during

the capelin collapses in mid 80s or 2000 (Fig. S1 in File S1). Note

that in the recent years, cod appears to respond to the warming by

expanding its distribution range [25].

The two seabird species show remarkably mirror responses to

changing capelin abundance and sea temperature. Since it was

shown that the kittiwake is a competitor to the common guillemot

[20], the mirror response may reflect that what is good for

kittiwake is bad for the guillemot hence the remarkably similar

inflection point in sea temperature at ca 4uC for both species. The

change in their diet is explained by climatic variables such as sea

temperature, that may be a proxy of the local condition in term of

prey availability spectrum. Note that the overlap of diet between

the two seabird species is stronger when winter NAO index is high

which corresponds to high temperatures in the Barents Sea. This

may indicate that high winter NAO index is stabilizing the prey

availability around the breeding site by for example favouring one

prey species over the others. A study on the spatial distribution

showed that in the Barents Sea the seabird distribution at sea was

relatively stable over the years (Fauchald pers. comm.).

Similarly to the cod, the Minke whale displays a relatively

constant diet. The small changes in its diet are explained by

variation in the abundance of the juvenile herring in the Barents

Sea and not of the capelin. However, the Minke whale’s body

condition was found to be poorer in years when both capelin and

herring was at a low abundance level [36] indicating a dependence

on capelin availability. The diet was also more similar in years

with low herring abundance. Years with little herring in the diet

coincided with periods with little capelin but increased krill in the

diet (Fig. S1 in File S1); krill is an important alternative prey for

these whales when pelagic fish abundances are low [36]. However,

during the recent years, the Minke whale distribution was

relatively constant and independent of prey distribution [54],

similarly to the seabirds (Fauchald pers. comm.). The past decade

showed an increasing abundances of krill and shrimp associated

with large stocks of demersal and pelagic fish in the Barents Sea

[7]. During this recent period the whale condition might have

remain good despite the period of low capelin abundance thanks

to alternate prey (e.g. krill). Unfortunately our data on Minke

whale do not cover the recent years; i.e., they stop in 2004.

However, our model may have caught this effect through the

positive effect of winter NAO index on the diet similarity; positive

NAO being the signature of the later years (Fig S2 in File S1).

2. Annual change in diet overlap of the major predators
in the Barents Sea

When exploring the trophic interaction between predators we

should always keep in mind that the species are not representing

the same biomass in carbon. For instance in the Barents Sea, the

cod biomass is some hundred mg C m22, the whales ca 100 mg C

m22, while the seabirds all together are only up to 2.5 mg C m22

[55]. This difference in biomass must be taken in to account when

comparing interspecific diets. For instance, a diet overlap between

cod and kittiwake may indicate a potential competition of cod on

kittiwake but not the reverse (or very locally). On the other hand,

Minke whale and cod populations or the two seabird populations

having similarly scaled biomass may engage in a direct two-way

competition [20]. Another factor to consider is that digestion rate

can be different between species – from 3–10 hours needed for full

digestion of fish (sandeel and whiting) in seabirds [56] and up to 1–

3 days in cod (capelin, herring, shrimp and other prey) (see refs in

[16]). More important is that the digestion rates ratio between prey

type (e.g., digestion rate for crustacean/digestion rate for fish

prey…) is similar for the predators compared. If not, some prey

species may be overly represented in the diet of some predators

and not others. Unfortunately such information is not available.

Among the pairs tested only the Minke whale/NEA cod and

kittiwake/common guillemot pairs display significant diet overlap

(i.e., have a regular diet overlap over the years, Fig. 3). Food

competition may thus occur between Minke whale and cod, but

the implications for interspecific competition need to be mathe-

matically tested [20]. Taking into account the difference in

biomass and well known effect of cod predation on capelin [26] we

may also find food competition of cod on seabirds, notably with

kittiwake where the overlap is nearly significant.

Changes in pairs of diet overlap are explained by a positive

effect of herring and/or krill abundance. Herring is an essential

food source, e.g., during chick raising at Kharlov (Krasnov pers.

com.), that may explain why the two seabird populations have a

more similar diet when the juvenile herring are abundant in the

Barents Sea. The same is true for the Minke whale and the cod,

however, previous works have shown that both Minke whale [36]

and cod [57] switch to krill and amphipods as prey in periods with

low herring and capelin abundance. It seems that there is two

alternative states where cod and Minke whale have high similarity

in their diet; one with high abundance of capelin/herring (the two

stocks show a similar dynamic with time, see Fig S2 in File S1) and

one with low abundance of these pelagic prey but high abundance

of krill (note that krill and capelin populations tend to have inverse

temporal dynamic, Fig. S2 in File S1).

3. Conclusions
The Barents Sea predators demonstrated a diversity both in

their diets, and in change in diets within and between species. Also

the responses to possible drivers of diet change, such as

abundances of key prey species and ocean climate were diverse,

both within species and between pairs of species. The potential for

interspecific competition could perhaps be strongest if top predator

diets became more similar when prey abundances were low, i.e.

that the top predators were switching to the same alternative prey

species. However, the dietary response diversity observed in this

study indicate that the top predator community could be relatively

robust to changes in the ecosystem. As with the diversity of species

that contribute to the same ecosystem function is regarded as an

important property for ecosystem resilience [23,58,59], the

diversity of responses [23] to environmental changes within

functional groups will increase the probability of compensation

for one species by the others and thereby secure the continuation

of an ecosystem function [60].

Supporting Information

File S1 Figure S1. Diet of the main predator species in
the Barents Sea over time. Note that for the black-legged

kittiwakes and common guillemots the amphipods and krill prey

species where not dissociated and are assembled in one category

‘‘krill’’. There are two minke whale diet plots: for the whole
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Barents Sea (left) and restricted to the Southern Barents Sea part

(70–74uN and 20–40uE). The first data are used to analyse the

change in the minke whale diet over time and to compare with the

diet of the NEA cod. The second data are used to compare with

the diet of the seabirds that are central place foragers and limited

to the Southern Barents Sea during reproduction (period when the

seabird diet data were collected). There are three NEA cod plots:

for the ICES data (1984–2009) used for the intraspecific analysis

and for restricted area of the Barents Sea to compare with the

seabirds’ diet (March to July, 68–72uN and 20–40uE) and with the

minke whale’s diet (July to September, 70–80uN and 5–40uE).

Figure S2. Time series used as explanatory variables in
the study. Data for the winter NAO come from https://

climatedataguide.ucar.edu/sites/default/files/climate_index_files/

nao_station_djfm.txt. Data for the sea temperature come from

PINRO. They are yearly average sea temperature measured

monthly at 0–200 m depth on the Russian Kola meridian transect

(33u 309 E, 70u 309 N to 72u 309 N). Data for capelin and herring

biomass come from ICES report (Table 9.5 p 498 in ICES 2012).

Figure S3. Interspecific diet overlap for the main
predator species in the Barents Sea. Change of diet from

one year to another is presented by a Schoeners’ diet overlap index

(grey filled dots). Higher is the index higher is the overlap. Table
S1. Diet of the different predators. Table S2. Prey species and

categories used for the calculation of the Schoeners’ index.
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