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Abstract

Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with 

complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-

GC) is a multi-national collaboration established to discover the genetic variation predisposing to 

OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected 

controls, were genotyped with several different Illumina SNP microarrays. After extensive data 

cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a 

common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-

control association analyses were conducted for three genetically-defined subpopulations and 

combined in two meta-analyses, with and without the trio-based analysis. In the case-control 

analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a 

member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near 

BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, 

when trios were meta-analyzed with the combined case-control samples, the p-value for this 

variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be 

associated with OCD at a genome-wide significant level in the combined trio-case-control sample, 

a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was 

observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting 

these top signals may have a broad role in gene expression in the brain, and possibly in the 

etiology of OCD.
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Introduction

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by 

obsessions and/or compulsions that are distressing, time consuming or significantly 

impairing. It is the fourth most common psychiatric illness1 with a lifetime prevalence of 
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1-3%.2, 3 OCD was identified as the anxiety disorder with the highest proportion (50.6%) of 

serious cases by the National Comorbidity Study Replication4 and as a leading global cause 

of non-fatal illness burden by the World Health Organization (WHO) in 2006.5

Genetic studies have demonstrated that both biological and environmental factors are 

important in the etiology of OCD. A multitude of OCD family studies published since the 

1930's provide strong evidence for an approximate four to ten-fold OCD risk increase 

among first-degree relatives of OCD-affected children and adults, respectively, as compared 

to relatives of controls.6-14 A review of twin studies concluded that obsessive-compulsive 

(OC) symptoms are heritable, with greater genetic influences in child-onset (45-65%), than 

in adult-onset OCD cases (27- 47%).15 This finding has been supported by subsequent twin 

studies16-18. Linkage study results have been somewhat encouraging,19 identifying peaks on 

chromosomes 3q,20 9p,21 10p,22, 23 15q20, 24 and 19q19 for OCD and on chromosome 14 for 

compulsive hoarding.25 Unfortunately, none of these peaks exceeded the threshold for 

genome-wide significance, and only the 9p peak has reached suggestive significance in more 

than one sample.19-21

In addition, more than 80 positional and functional candidate gene studies of OCD have 

been reported, predominantly for variants within genes in the serotonin, dopamine and 

glutamate26, 27 pathways and within those involved in immune and white matter pathways.28 

SLC1A1, which encodes a neuronal glutamate transporter and which is located within the 

linkage peak on chromosome 9p, is the only candidate gene observed to be associated in 

multiple independent samples, although the specific associated variant has varied.29-32

Excessive grooming and anxiety-like behaviors have been observed in mice lacking 

expression of SAPAP3, a post-synaptic scaffolding protein located at excitatory synapses. 

This finding, coupled with high SAPAP3 expression levels in the striatum, identify its 

human ortholog (DLGAP3) as an appealing candidate gene in OCD.33 Human studies have 

provided some support for a possible role of DLGAP3 in OCD-related disorders, suggesting 

increased rare non-synonymous variant frequencies in OCD/trichotillomania subjects34 and 

association of common DLGAP3 variants with pathologic grooming in a family-based 

study,35 albeit with some inconsistencies.36

In recent years, the genome-wide association study (GWAS) approach has led to the 

identification of many genetic associations for common complex traits.37 This model-free 

approach to gene discovery has led to a greater pathophysiologic understanding of many 

disorders, although only small proportions of the total genetic variance have so far been 

explained, and many of the identified variants have not brought new biological 

understanding.38 To address the latter concern, functional support for GWAS findings has 

been sought by determining their effects on gene expression (expression quantitative trait 

loci- eQTLs) and methylation level (methylation quantitative trait loci-mQTLs).38 Top 

single nucleotide polymorphisms (SNPs) have also been examined for potential enrichment 

of eQTLs and mQTLs, compared to expected rates. Moreover, examination for over-

representation of micro-RNA (miRNA) binding sites has also been adopted as an 

informative approach,39 given the role of miRNA in regulating gene expression. In addition, 
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pathway analyses have been conducted to determine whether specific gene pathways are 

enriched among the strongest associated variants.40

The International OCD Foundation Genetic Collaborative (IOCDF-GC), consisting of more 

than 20 research groups, has performed a GWAS to search for common SNPs predisposing 

to OCD. We present our findings from an analysis of the genetic association between OCD 

and a genome-wide set of common SNPs among case-control and trio samples and their 

combined trio-case-control results. We also present analyses of top GWAS findings with 

respect to their biological function in OCD-related and other brain regions.

Materials and Methods

Subjects and Genotyping

Our initial sample consisted of 1,817 DSM-IV41 OCD cases, 504 controls and 663 complete 

trios, genotyped using the Illumina Human610-Quadv1_B SNP array. This work was 

approved by the relevant IRBs at all participating sites, and all participants provided written 

informed consent. The majority of the control subjects genotyped as a part of this project 

were not screened for the absence of OCD. We also used data from 5,654 unscreened 

controls, previously genotyped on two different Illumina SNP arrays (Table S1).

Quality Control

The data for this study underwent QC and data cleaning with a concurrent GWAS of 

Tourette Syndrome (Scharf et al., Molecular Psychiatry, submitted),42 using PLINK,43 to 

exclude samples and SNPs for each array type (Figure S1).

Statistical analyses

To control for Type I error due to residual population stratification, case and control samples 

were separated into subpopulations of European (EU), South African Afrikaner (SA) and 

Ashkenazi Jewish (AJ) ancestry, using Multi-Dimensional Scaling (MDS) analysis 

(Supplementary Figures S2-4). Population stratification outliers and those lacking 

genomically-matched controls or cases were excluded, as were samples with excessive low-

level relatedness to many others within each subpopulation. Separate association analyses 

were conducted for each of the case-control subsamples (EU, SA and AJ) and for the trio 

samples. For the former, logistic regression was employed using an additive test model (1 

df), with diagnostic status as the dependent variable and each single SNP as the predictor, 

including specific ancestry-informative MDS axes as covariates (EU= 4 factors, SA= 2 

factors, and AJ=1 factor). For the latter, the Transmission Disequilibrium Test (TDT) was 

used.

Two meta-analyses were conducted using METAL44 by combining the three case-control 

sub-populations, and by combining the three case-control subgroups and the trio group, 

weighting by the number of cases or trios (Supplementary materials). Each SNP was tested 

separately, defining a genome-wide significance threshold at p<5×10-8, based on a 5% Type 

I error rate.37 Using the PLINK retrieval interface,43 SNP annotations were created using the 

TAMAL database45based chiefly on UCSC genome browser files,46 HapMap47 and 
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dbSNP.48 Further annotation was conducted using SCAN49 and SPOT50 and top SNPs 

(p<0.001) were also manually annotated using the UCSC genome browser.51 For analysis of 

sex chromosome SNPs, males and females were assessed separately for each subgroup, with 

adjustment by MDS factors as described above, and subsequent combination via meta-

analysis, using the number of cases or trios as a weighting factor. A sign test was conducted 

to examine for increased consistent directionality of effect for the most strongly associated 

SNPs between the case-control and trio samples. Analyses of potential enrichment of SNPs 

from: a) 22 previously identified candidate genes, b) pre-defined gene pathways, and c) 

target gene intervals containing micro-RNA (miRNA) binding sites52, among the top hits 

from the trio, case-control, or trio-case-control GWAS results were performed using 

INRICH.40

eQTL and mQTL annotation and enrichment tests

Functional support for the SNPs with the strongest evidence of association in the trio-case-

control meta-analysis was sought by determining effects of the most significantly associated 

SNPs (p<0.001) on both gene expression (expression quantitative trait loci- eQTLs) and on 

methylation level (methylation quantitative trait loci-mQTLs). This was done with eQTLs 

from frontal lobes,53 parietal lobes,53 lymphoblastoid cell lines (LCL),54 and the 

cerebellum,54 and with mQTLs54 from cerebellum, using previously collected data.54 To 

test whether the SNPs with the strongest observed associations were enriched for eQTLS or 

mQTLs, the LD-independent SNPs from the trio-case-control analyses with p<0.001 and 

with p<0.01 were compared to 1,000 random sets of the same size, conditioning on allele 

frequency, to yield an empirical distribution. An enrichment p-value was then calculated as 

the proportion of randomized sets in which the eQTL (or mQTL) count matched or 

exceeded the actual observed count in the list of top SNP associations, as previously 

described53 (see Supplementary materials).

Imputation of SNPs

Imputation of SNPs was conducted proximal to any SNPs with genome-wide significance 

from the trio, case-control or trio-case-control samples. This was completed using the 1000 

Genomes Project via IMPUTE2,55 and haplotypes from the 1,092 individuals in a 1000 

Genomes Data Release56 as a reference dataset. Post-imputation QC and allelic dosage 

analysis were conducted in PLINK (see Supplementary materials).

Results

Multidimensional scaling analyses identified three distinct genetic subpopulations within the 

case-control sample, which corresponded to: European (EU), South African (SA) and 

Ashkenazi Jewish (AJ) ancestries (Supplementary materials). After QC, a total of 1,465 

cases (1,279 EU, 93 SA and 93 AJ), 5,557 controls (5,139 EU, 260 AJ and 158 SA) and 400 

complete trios (299 EU) remained and each had genotypes for a common set of 469,410 

autosomal and 9,657 X-chromosome SNPs (Table S1). Quantile-quantile (QQ) plots of the 

observed versus expected log(p) values under the null hypothesis were used to calculate 

genomic control lambda values for the trio (λ=1.015), case-control (λ=1.002), and trio-case-

control samples (λ=1.011) (Figure 1). QQ plots for EU (λ=1.009), SA (λ=0.969) and AJ 
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(λ=0.982) case-control subpopulations were also constructed (Supplementary Figure S7). 

There was no evidence for significant residual stratification effects in any of the 

comparisons.

Trio Sample Results

An overview of the p-values for the trio analysis plotted against genomic location is 

illustrated in Figure 2a. Of the top 4 OCD-associated SNPs in the trio sample with p-values< 

1 × 10-5, one SNP, rs6131295 (11,996,267bp (hg19) on 20p12.1-2), exceeded the threshold 

for genome-wide significance of p<5×10-8 with a p=3.84×10-8.57 This SNP is located ∼90 

kb 3′ to BTBD3 (Figure 3). None of the other 442 SNPs with p-values<0.001 were in LD 

(r2>0.2) with this SNP (Supplementary Table S2).

Case-Control Sample Results

In the case-control sample, no SNPs exceeded the genome-wide threshold for significance 

(Table 1, Figure 2). Nine OCD-associated SNPs had p-values<1 × 10-5 (Table 1). The 

lowest two p-values were for SNPs rs11081062 (p=2.49×10-6) and rs11663827 

(p=3.44×10-6), located at chromosome 18 within an intron of DLGAP1 (Figure 3). DLGAP1 
(also known as SAPAP1) encodes the discs, large (Drosophila) homolog-associated protein 

a member of the neuronal postsynaptic density complex. The third lowest p-value was for 

the SNP rs26728 (p=4.75×10-6), located within an intron of EFNA5, encoding Ephrin-A5 

(Supplementary Figure S12). Ephrins are important for development of the neocortex 

through regulation of axonal inhibition or repulsion,58 and EFNA5 was also among top hits 

in an Alzheimer's disease GWAS.59 The fourth lowest p-value=5.40×10-6, was for 

rs4868342, lying within an intron of HMP19, encoding the brain-specific HMP19 protein 

(Supplementary Figure S12), which is expressed in the Golgi complex.60 The fifth lowest p-

value=5.81×10-6, was for rs297941, which is located approximately 21 kb 5′ to the gene 

encoding FAIM2 (also known as LFG) and about 25 kb from a cluster of genes encoding a 

group of aquaporins (AQP5, AQP6, AQP2), and lies within a putative coding region of 

mRNA BC034605, isolated from testis (Supplementary Figure S12).

Trio-Case-Control Meta-Analysis Results

None of the SNPs exceeded the genome-wide threshold for significance, although several of 

the top hits were also identified among top hits in either the trio analysis or in the case-

control analysis (Figure S12). Using the sign test with 3616 LD-pruned SNPs with p<0.01, 

there was evidence for increased consistent directionality (1907/3616=0.52; p=5.25 × 10-4 

for 1-sided binomial test) between the trios and the combined case-controls. The top 38 

OCD-associated SNPs in this meta-analysis, with p-values<5×10-5, are presented in Table 1. 

For example, the top signal (p=4.99×10-7), rs297941 near FAIM2, (LFG), was also the fifth 

ranked SNP in the case-control analysis. FAIM2 is highly expressed in the central nervous 

system and plays a role in Fas-mediated cell death.61 When rs6131295 (the SNP with 

significant genome-wide association in the trio sample) was meta-analyzed along with the 

case-control sample, the combined p-value significance decreased to 3.62×10-5.
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Examination of prior OCD linkage regions and candidate genes

There was no evidence found for genome-wide significant association with OCD in either 

previously identified putative linkage regions (Supplementary Table S3) or in 22 previously 

identified candidate genes when examining the trio, case-control and trio-case-control 

groups. The Q-Q plot of candidate gene SNPs for the case-control group showed little 

inflation (λ=1.085, Supplementary Figure S8), suggesting no evidence for over-

representation within these genes. While the Q-Q plot of the combined trio-case-control 

sample indicated small inflation (λ=1.168, Supplementary Figure S8), the follow-up 

enrichment test demonstrated no over-representation of top hits (p<0.001 and p<0.01) within 

previously identified candidate genes (p=0.15 and p=0.10, respectively). For the 22 OCD 

candidate genes examined, the lowest SNP p-values are reported in Supplementary Table 

S4. The strongest finding was observed for ADARB222, with a p-value=1.6×10-4, which did 

not survive correction for multiple testing of candidate gene SNPs (corrected p=0.53).

eQTL and mQTL annotation and enrichment analyses

Support for the SNPs with the strongest evidence of association in the combined trio-case-

control sample was sought by determining functional effects of the most significantly 

associated autosomal SNPs. These top SNPs were annotated with expression QTL (eQTL) 

data from frontal, parietal and cerebellar brain regions (Table 1), along with lymphoblastoid 

cell lines (LCLs) (Supplementary Table S2) and methylation levels (mQTLs) in cerebellum 

(Table 1).

SNPs with association p-values < 0.01 (n=3,521) were then examined for enrichment of 

eQTLs and mQTLs. Significant enrichment was observed for frontal eQTLs (p=0.001) as 

well as for cerebellar eQTLs (p=0.033) and parietal eQTLs (p=0.003) (Figure 4a-c). 

Furthermore, enrichment of cerebellar mQTLs was observed (p<0.001) with an enrichment 

p-value of p<0.001 (Figure 4d), suggesting that these SNPs are more likely to influence the 

methylation state than expected by chance. No significant enrichment for either genic 

(p=0.54) or missense variants (0.34) was observed. A similar analysis examining only the 

top SNPs with association p-values <0.001 (n=415) demonstrated no significant enrichment 

for mQTLs or for eQTLs (p>0.05).

miRNA and pathway analyses

After correction for multiple hypothesis testing, there was no evidence for enrichment of 

specific miRNA binding sites among the LD-blocks containing top SNPs compared to the 

genes matched by size and marker density (see Supplementary Table S5). The strongest 

enrichment was found in 49 high-confidence (TargetScan probability>0.9) predicted 

miRNA-219-5p/508/508-3p/4782-3p targets, two of which have at least one SNP with 

p<0.001 (empirical p=0.011, corrected p=0.060) in the case-control GWAS result. A similar 

level of enrichment was also found in 89 high-confidence predicted miR-130ac/301ab/301b/

301b-3p/454/721/4295/3666 targets, two of which have at least one SNP with p<0.001 in 

the trio TDT result. In the pathway analyses, no results achieved significance at the 

corrected p-value (lowest corrected p=0.55) (see Supplementary Table S6).
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Discussion

We report results from the first genome-wide association study (GWAS) to search for 

common DNA sequence variation predisposing individuals to OCD. After removing low 

performing SNP assays and DNA samples, we analyzed 400 trios, 1,465 cases and 5,557 

controls for 469,410 autosomal and 9,657 X-chromosome SNPs. The trio and case-control 

subsamples were analyzed individually, and then these results were combined in both case-

control and trio-case-control meta-analyses. One SNP, rs6131295, located on chromosome 

20p12.1-p12.2, approximately ∼90 kb from the BTBD3 gene, achieved genome-wide 

significance in the trio analysis (p=3.84×10-8), but not in the combined trio case-control 

meta-analysis, suggesting that further examination will be required using independent 

samples. BTBD3 is a member of a large family of transcription factors, which includes 

BTBD9, a gene that has been associated with Tourette Syndrome, a disorder frequently co-

morbid with OCD.62 BTBD3 participates in multiple cellular functions including 

transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, protein 

ubiquitination and degradation63 and has also been associated with primary open-angle 

glaucoma.64 BTBD3 is expressed in the brain, with the highest observed levels in childhood 

and adolescence (www.BrainSpan.org, Release 3),63 when OCD frequently emerges.65 

rs6131295 is a cis-eQTL for BTBD3 in the frontal cortex (p=0.028), a region that has 

repeatedly been implicated in OCD. This SNP is also a parietal cis-eQTL for ISM1 
(20p12;p=0.0036) and an LCL trans-eQTL for DHRS11 (17q11.2;p=0.0001).

Interestingly, the brain-wide expression pattern of DHRS11 and ISM1 are highly correlated 

with the expression of several of the other genes found among the top hits of both the case-

control and the trio-case-control meta-analyses (www.BrainSpan.org, Release 3) 

(Supplementary Figure S12).66 Furthermore, many of these genes have been implicated in 

glutamate signaling. Specifically, ISM1 (C20orf82) is correlated with expression of pre-

synaptically-located ADCY8 (0.61, rank 11 of 22,328 transcripts), the gene with the seventh 

strongest OCD-association in the trio-case-control meta-analysis, which has also been 

associated with bipolar disorder67 and with fear memory.68 ISM1 is also correlated with 

brain-wide expression of numerous glutamate-related genes including GRIK4 (0.565, rank 

66), DLGAP3 (0.576,rank 44), GRIK1 (0.595,rank 22), SHANK3 (0.598,rank 21) as well as 

ADARB2 (0.600,rank 19), which contains the SNP with the best p-value in this study 

among previously reported candidate genes (Supplementary Table S4), and lies within a 

childhood-onset OCD linkage peak.22 Similarly, the expression of DHRS11 (MGC4172) is 

strongly correlated (0.847, rank 25 of 22,328 transcripts) with that of FAIM2, which is 

located in the same LD block as the best SNP (rs297941) in the trio-case-control, and fifth 

best in the case-control meta-analyses. FAIM2 has been associated with neuroprotection 

following transient brain ischemia.68 The rat homologue of FAIM2, neural membrane 

protein 35 (NMP35), is expressed at the post-synaptic membrane in a subset of synapses and 

in dendrites, and co-localizes with the glutamate receptor GluR2.61 Thus, there is a potential 

relationship between rs6131295 (trio analysis), and FAIM2 and ADCY8 (tagged by the 

SNPs ranked numbers 1 and 7 in the trio-case-control analysis).

The top two SNPs associated in the case-control meta-analysis (both with p<3×10-5 in the 

trio-case-control meta-analysis) are located in DLGAP1, another gene which influences 
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glutamate signaling. DLGAP1 encodes a Shank-associated protein and has been associated 

with schizophrenia and with a smoking cessation phenotype69 and DLGAP1 deletions have 

also been observed (2 in schizophrenia cases versus 1 in controls).70 Another member of this 

gene family, DLGAP3, has been implicated in compulsive-like behavior in a mouse model 

(SAPAP3). Specifically, knockout mice for the striatum-expressed SAPAP3 gene (which 

codes for a post-synaptic protein at cortico-striatal glutamatergic excitatory synapses) 

developed repetitive grooming behaviors and anxiety that were reversed with an SSRI and 

with gene replacement.24

Several of the top associations in the combined trio-case-control meta-analysis are in or near 

genes that have been implicated in other studies of psychiatric disorders, including 

ADCY859, 71, 72, ARHGAP1847 and JMJD2C 62 in bipolar disorder, schizophrenia and 

autism spectrum disorders, respectively. Enrichment for eQTLs was observed among the top 

associated GWAS SNPs (N=5,321; p<0.01), with empirical p-values of 0.001 for frontal 

cortex, 0.003 for parietal tissue and 0.033 for cerebellum. Marked enrichment was also 

observed for methylation QTLs (p<0.001). This is consistent with the finding by Nicolae et 

al. (2010),54 who reported that disease-associated SNPs from GWAS were significantly 

more likely to be eQTL, than other random sets of SNPs with similar minor-allele-

frequencies (MAF).

It remains unclear whether the finding at rs6131295, which exceeded genome-wide 

significance with p=3.84×10-8 in the trio sample, is a false positive or not. Certainly the 

decrease in significance of the p-value to 3.62×10-5 when the trio data is meta-analyzed with 

the much larger case-control sample data suggests so. On the other hand, our attempts to 

determine whether this finding was spurious did not find any evidence of such, as detailed 

here: 1) The intensity plot for this SNP has three tight, separated, clusters (Figure S10a); 2) 

There were no missing genotypes in the trio sample and there were no Mendelian errors; 3) 

Two nearby directly genotyped SNPs with low r2 values (0.2-0.4) had p-values within the 

10-2 range, demonstrating very low statistical significance (Figure S10b); and 4) Imputation 

of the trio sample provided additional results that are not inconsistent with a true positive 

finding. Of the 40 regional SNPs examined, those with large r2 values (>0.90) and similar 

minor allele frequencies to rs6131295 had strong p-values in the range of 10-6 and 10-7 

(Table S7 and Figure S11). Moreover, the surrounding SNPs in low r2 with rs6131295 all 

have an opposite direction of risk effect, which may partially explain why they have much 

less significant p-values. Although these imputed data and the above noted facts cannot 

prove that rs6131295 is a true positive, they do not support the hypothesis that it is a false 

positive. Replication with additional samples will be required to provide further 

clarification.

In summary, although no SNPs were identified to be associated with OCD at a genome-wide 

significant level in the combined trio-case-control sample, a highly significant enrichment of 

methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the 

top-ranked SNPs (p<0.01). This suggests that these top signals may have a broad role in 

gene expression in the brain, and possibly in the etiology of OCD. In the trio sample, we 

observed a genome-wide significant result for rs6131295, which is located near BTBD3, and 

is an eQTL for BTBD3, DHRS11 and ISM1. The expression of these latter two genes are 
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highly correlated with other top hits, many of which are related to glutamatergic 

neurotransmission and signaling. So, while no genome-wide significant associations were 

found in the entire sample, the convergence of results from both the trio and combined trio-

case-control analyses suggest the possibility that our findings at BTBD3, FAIM2 and 

ADCY8 are genes involved in the pathogenesis of OCD. In the case-control sample, the two 

most significant p-values were located within DLGAP1, a member of the same gene family 

as DLGAP3, which is also expressed in the neuronal postsynaptic density complex and 

which has been implicated in a mouse model of OCD,33 making these results intriguing. 

Future exploration and attempts to replicate these findings with additional independent 

samples is warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quantile-quantile (QQ) Plots of Observed versus Expected −log(p) Statistics for: (a) 
Trio samples, (b) Case-Control samples and, (c) Combined Trio-Case-Control Samples
Quantile-quantile (Q-Q) plots of observed versus expected −log (P) test statistics for: (a) trio 

samples; (b) case-control samples; and (c) combined trio-case-control samples. The 95% 

confidence interval of expected values is indicated in grey. Corresponding genomic control 

lambda values are indicated within each plot.
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Figure 2. Manhattan Plots for: (a) Trio, (b) Case-Control and, (c) Combined Trio-Case-Control 
Samples
Manhattan plots of all genotyped single-nucleotide polymorphisms (SNPs) for (a) trio 

samples; (b) case-control samples; and (c) combined trio-case-control samples. Red and 

blue lines indicate significance thresholds of 5 ×10-8 and 1 × 10-5, respectively.
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Figure 3. Locus Plots for SNPs rs6131295 (near BTBD3), rs11081062 (within DLGAP1) and 
rs297941 (near FAIM2)
Regional association plots of the best supported SNPs from the a) Trio, b) Case-Control and 

c) Trio-Case-Control analyses. Locations and observed -log (p-values) for genotyped SNPs 

are shown with circles. LD, in r2, to the lowest p-value SNP in each plot is indicated using 

shading (dark blue, low LD, red-high LD). Light blue lines indicate the estimated 

recombination rate from HapMap release 22.
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Figure 4. Enrichment analyses for Quantitative Trait Loci (QTLs) among GWAS Variants with 
p<0.01
Enrichment of (a) frontal lobe expression QTLs (p=0.001), (b) cerebellum expression QTLs 

(p=0.033), (c) parietal lobe expression QTLs (p=0.003), and (d) methylation QTLs 

(p<0.001) among GWAS SNPs with p<0.01 (N=5321). Distribution of the count of QTLs in 

1,000 simulations are displayed, each matching the MAF distribution of the OCD–

associated SNPs. The black dot identifies the observed eQTL or mQTL count in the OCD 

susceptibility–associated SNPs.
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