Skip to main content
. Author manuscript; available in PMC: 2014 Nov 3.
Published in final edited form as: J Am Chem Soc. 2013 Feb 20;135(9):3307–3310. doi: 10.1021/ja312087x

Table 1.

Optimization of Cross Couplinga

graphic file with name nihms-449862-f0003.jpg
entry mol % Ni PhBX2 (equiv) base temp (°C) yield (%)b ee (%)c
1d 10 PhB(OH)2 (3.0) CsF 100 14 n.d.e
2d 10 PhB(OH)2 (3.0) K3PO4 100 14 n.d.e
3d 10 PhB(OH)2 (3.0) NaOMe 100 78 n.d.e
4f 10 PhB(OH)2 (2.0) NaOMe 100 93 54 (R)
5 10 PhB(OH)2 (2.0) NaOMe 100 99 93 (S)
6 10 PhB(OH)2 (3.0) NaOMe 70 83 99 (S)
7 10 PhB(OH)2 (3.0) KOMe 70 74 69 (S)
8 10 PhB(OH)2 (3.0) LiOMe 70 0 n.d.e
9g 5 PhB(OH)2 (2.5) NaOMe 70 87 98 (S)
10g 5 (PhBO)3 (0.83) NaOMe 70 98 97 (S)
11g,h 5 (PhBO)3 (0.83) NaOMe 70 59 94 (S)
12g 0 PhB(OH)2 (2.5) NaOMe 70 0 n.d.
13g 0 (PhBO)3 (0.83) NaOMe 70 0 n.d.
a

Conditions: pivalate 1a (0.10 mmol, 1.0 equiv), PhBX2, Ni(cod)2, base (2.0 equiv), PhMe (0.2 M), unless otherwise noted.

b

Determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

c

Determined by chiral HPLC. Absolute configuration of the major enantiomer in parentheses.

d

Performed with racemic 1a. PCy3 (24 mol %) added.

e

n.d. = not determined.

f

PCy2Ph (22 mol %) added.

g

0.4 M.

h

1.0 equiv H2O added.