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Abstract
Protein kinases play a crucial role in the pathogenesis 
of inflammatory bowel disease (IBD), the two main 
forms of which are ulcerative colitis and Crohn’s dis-
ease. In this article, we will review the mechanisms of 
involvement of protein kinases in the pathogenesis of 
and intervention against IBD, in terms of their effects 
on genetics, microbiota, mucous layer and tight junc-
tion, and the potential of protein kinases as therapeutic 
targets against IBD.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The roles of protein kinases in the pathogen-
esis and intervention of inflammatory bowel diseases 
(IBD) are emerging. In this article, we will review the 
specific roles of different protein kinases in the patho-
genesis of IBD, classify these protein kinases into dif-
ferent categories based on their fundamental functions 
in IBD, and describe substantial new mechanistic in-
sights into the pathogenesis of IBD, highlighting protein 
kinases as potential intervention targets against IBD.
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INTRODUCTION
Ulcerative colitis (UC) and Crohn’s disease (CD), two 
main forms of  inflammatory bowel disease (IBD), are 
relapsing, idiopathic intestinal inflammatory conditions, 
caused by inappropriate and continuing immunologic re-
sponses to aberrant intestinal microorganisms in geneti-
cally susceptible individuals under certain environmental 
conditions[1]. 

UC and CD differ[2] with each other dramatically in 
different respects. UC is confined to the superficial area of  
the intestinal wall, whereas CD is transmurally distributed 
throughout the entire digestive tract but in a discontinu-
ous way. The lesion is patchy with “lead pipe sign” in UC, 
but many polyps with “string sign” are often observed in 
CD. UC displays a Th2-like immune response, while CD 
shows a Th1 dominant response. Antineutrophil cyto-
plasmic antibodies were found in 65% of  UC cases and 
5%-10% of  CD cases, and antibodies to yeast S. cerevisiae 
were found in 60%-70% of  CD cases and 10%-15% of  
UC cases[3]. Meanwhile, UC and CD share many similari-
ties, such as neutrophil infiltration and epithelial barrier 
dysfunction. Despite the fact that there is no cure for IBD 
thus far, enormous progress about the pathogenic mecha-
nisms of  this inflammatory disorder has been around the 
corner in different aspects, such as genetics, regulatory im-
munology and microbiome. 

The signaling pathways mediated by protein kinases 
have drawn much attention for connecting external stimuli 
including hostile environmental stresses with internal bio-
logical responses, such as intestinal inflammation. Protein 
kinases can be defined as enzymes which add phosphate 
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(called phosphorylation) to the side chain of  serine, threo-
nine or tyrosine of  substrate molecules. This modifica-
tion alters the biological function of  the substrate, such 
as changing enzyme activity, cellular distribution, and 
even causing diseases[4,5]. In this review, we will shed light 
on the roles of  protein kinases in the pathogenesis of  in-
testinal inflammation and describe some new mechanistic 
insights into the intervention of  IBD, which targets at 
protein kinases. 

PROTEIN KINASES AND GENETIC 
FACTORS 
Genome-wide association studies demonstrated that 
genetic factors are very crucial in the individual suscep-
tibility to IBD, for example, relatives of  UC patients in-
cluding twins display almost ten times greater risk of  UC 
than non-relatives[6,7]. As shown in Table 1, major IBD 
susceptibility regions on chromosomes 16 and 6 contain 
some genes encoding protein kinases like extracellular 
signals-regulated kinase 1 (ERK1)[8] and p38[9]. Several 
single-nucleotide polymorphisms in tyrosine kinase 2[10] 
and Janus kinase 2[11] were identified in IBD patients. 
Glucokinase regulator has also been associated with the 
risk of  CD[12]. The cyclin-dependent kinase 5 regulatory 
subunit-associated protein 1-like plays an important role 
in susceptibility to CD, psoriasis and type Ⅱ diabetes[13,14]; 
leucine-rich repeat kinase 2 is identified to be related to 
the pathogenesis of  CD[15]. 

PROTEIN KINASES AND MICROBIOTA 
Up to 1014 individual bacteria in the human gastrointesti-
nal (GI) tract[16], together with the mucous layer where the 
microbiome lives in, constitute the first line of  defense in 
host against hostile external environment, modulating GI 
tract development, maintaining immune homeostasis, and 
regulating host metabolism rate. The bacterial abnormal-
ity plays a dominant role in the onset and development 
of  IBD.

Commensal bacteria and host innate immune system 

evolve together and thus maintain mucosal immune ho-
meostasis by balancing inflammatory responses and regu-
lating a variety of  bacteria-triggering signal transduction 
pathways[17], such as uncoupling nuclear factor (NF)-κB 
or mitogen activated protein kinase (MAPK) dependent 
target genes in a negative feedback manner[18,19]. The 
host’s innate immune system is poised to be triggered by 
signs of  bacterial challenge, specially, some pathogen-
associated molecules such as flagellin, peptidoglycan, 
lipoteichoic acid, or lipopolysaccharide, together called 
pathogen-associated molecular patterns which can wake 
up the host innate immune system[20,21] and be further 
sensed by pattern recognition receptors (PRRs), such 
as Toll-like receptors (TLRs) or the nucleotide-binding 
oligomerization domain containing protein (NOD)-like 
receptors[22] (Figure 1). These PRRs would then induce 
the activation of  signaling cascades, mostly MAPK and 
NF-κB pathways. In terms of  MAPK pathways, it fol-
lows MAP4K-MAP3K-MAP2K-MAPK pattern, and 
then, the activated MAPK undergoes translocation to the 
nucleus to activate molecules required for gene transcrip-
tion, including inflammatory molecules[23,24]. For example, 
anthrax toxin can induce macrophage death by inhibiting 
the p38 signaling pathway[25,26], and MAPK-activated pro-
tein kinase 2 plays an important role in the pathogenesis 
of  Clostridium difficile-associated intestinal inflammation[27]. 
For the NF-κB pathway, after being activated by IκB ki-
nase kinase complex, it phosphorylates α subunit of  IκB, 
the inhibitor of  NF-κB. Phosphorylation of  IκB, ac-
companied by its ubiquitination and proteolytic degrada-
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Kinase IBD Ref.

ERK1 CD   [8]
p38 CD and UC   [9]
TYK2 CD and UC [10]
JAK2 CD and UC [11]
GCKR CD [12]
CDKAL1 CD [13]
LRRK2 CD [15]

Table 1  Protein kinases related to inflammatory bowel dis
ease genetics

ERK1: Extracellar signal-regulated Kinase; TYK2: Tyrosine kinase 2; JAK2: 
Janus kinase 2; GCKR: Glucokinase regulator; CDKAL1: Cyclin-dependent 
kinase 5 regulatory subunit-associated protein 1-like; LRRK2: Leucine-rich 
repeat kinase 2; IBD: Inflammatory bowel diseases; UC: Ulcerative colitis; 
CD: Crohn’s disease.
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Figure 1  Intestinal epithelial cells use a variety of different molecules in-
cluding protein kinases to monitor the presence of microbial pathogens, 
commensal bacteria, or host-generated products. Pathogen-recognition 
receptors, including TLRs, NOD2, and NLRs, are located on and within the cell 
where they recognize different threats. Recognition results in NF-κB activation, 
leading to the production of cytoprotective factors when stimulated by com-
mensal bacteria and proinflammatory products when stimulated by potential 
pathogens, or blocks the activity of NEMO. Some other undefined factors can 
stimulate protein kinases such as PI3K or MAPK2K to regulate the process of 
intestinal inflammation. TLR: Toll like receptor; IRAK: Interleukin 1 receptor as-
sociated kinase; IκB: Inhibitor kappa B; NF-κB: Nuclear factor kappa B; SPAK: 
Ste20 like proline/alanine rich kinase; NEMO: NF-kappa-B essential modulator; 
MLCK: Myosin light chain kinase; CREB: cAMP response element binding pro-
tein; STAT: Signal transducer and activator of transcription; NOD2: Nucleotide-
binding oligomerization domain-containing protein 2; NLRs: NOD-like receptors; 
RIP2: Receptor-interacting protein kinase 2; PI3K: Phosphoinositide 3 kinase; 
MAPK2K: Mitogen-activated protein kinases 2 kinase; AP-1: Activator protein 1.



tion, results in exposure of  the nuclear localization signal 
(NLS) on the now unbound NF-κB[28], which will further 
facilitate nuclear translocation of  NF-κB and be followed 
by transcriptional activation of  many genes. In addition, 
even being regarded as an molecule which can promote 
inflammatory responses, an anti-inflammatory effect of  
NF-κB was noticed; absence of  NF-κB essential modula-
tor kinase causes spontaneous severe colitis, but commen-
sal bacteria can stimulate the NF-κB pathway to protect 
the host from exacerbating consequence[29]. Blockage of  
epithelial NF-κB pathway will deteriorate this colitis by 
increasing the translocation of  bacterial to the mucosa[30]. 
Besides the MAPK and NF-κB pathways, some other 
signaling pathways are also very important, for example, 
after recognition of  Salmonella enterica serovar Typhimuri-
um curli fibrils in the gut, the TLR2-phosphatidylinositol 
3 (PI3)-kinase pathway will be stimulated to tight the epi-
thelial barrier[31]. However, PI3 kinase signaling promotes 
Campylobacter jejunum-induced colitis through neutrophil 
recruitment in mice[32]. RIP2 tyrosine kinase activity is 
required for NOD2-dependent autophagy process, but 
plays a dual role in this process. RIP2 sends a positive 
autophagy signal through activation of  p38 MAPK and 
further relieves repression of  autophagy mediated by 
the phosphatase PP2A[33]. Not like NOD2 whose signal-
ing induces cryptdins, MyD88-mediated TLR signaling 
induces RegIIIg and α-defensins, and more importantly, 
regulates bacterial infection-related mucosal immu-
nity[34-36]. In parallel, protein kinase C (PKC) can mediate 
the function of  MyD88 adaptor-like (Mal) molecule in 
the maintenance of  epithelial barrier integrity[37].

PROTEIN KINASES AND BARRIER 
DYSFUNCTION 
Basically, IBD is characterized by passive leaky diarrhea 

and compromised intestinal barrier function. Except for 
the fact that commensal bacteria function as primary line 
of  defense, protein kinases are also important in regulat-
ing the intestinal barrier function.

Mucus layer
The luminal side of  the intestine is covered by a mucus 
layer which provides protection to the mucosa from me-
chanical damage and invasion of  pathogens, and, togeth-
er with commensal bacteria, constitutes a physical barrier 
between the epithelium and luminal contents including 
pathogenic bacteria, viruses, and parasites[38,39]. This gel-
like mucus layer can be divided by two distinguished 
layers-the outer and inner layers. The vast majority of  
intestinal bacteria, viruses and even parasites live in the 
flowing outer mucus layer; the inner layer is, however, an 
unstirred and relatively sterile layer adjacent to epithelial 
surface. The sterility of  the inner layer accredits to the 
preservation of  huge amounts of  defensins, cathelicidins, 
and cryptidens with important function of  anti-intestinal 
pathogens. Mucin coding gene muc2-/- mice demon-
strated spontaneous colitis because of  increased tran-
sepithelial permeability[40], in which bacteria can stick to 
the surface of  the intestinal mucosa, which facilitates the 
translocation of  bacteria into lower crypts and epithelial 
cells, thus triggering an inflammatory response[39,41]. Pro-
tein kinases are involved in the integrity and maintenance 
of  these mucus layers (Figure 2). Epidermal growth fac-
tor receptor (EGFR), harboring tyrosine kinase (TK) 
activity, has critical functions in development, growth, 
differentiation, proliferation and repair of  epithelial 
cells[42,43]. After stimulation by EGFR ligands such as 
transforming growth factor-alpha and epidermal growth 
factor, epithelial cells can develop into a mucous pheno-
type[44,45]. However, inhibition of  EGFR tyrosine kinase 
activity can abolish the effects of  EGFR ligands on mu-
cus production both in vivo and in vitro. PKCδ stimulates 
the secretion of  mucin in the epithelium via regulation 
of  myristoylated alanine-rich protein kinase C substrate 
pathway[46]. Treatment of  epithelial cells with PD98059 
(MEK inhibitor) can inhibit MAPK activity and block 
the expression of  terminal differentiation markers, such 
as sucrase-isomaltase, ITF, and MUC2, thereby interfer-
ing with the production of  mucin[47]. Some kinases like 
ERKs, TK, and PKC[48] can regulate the production of  
mucin by mediating the activity of  resistin and resistin-
like molecule-beta; cathelicidin up-regulates MUC1 and 
MUC2 expression through MAPK pathway to modulate 
mucus synthesis[49]. 

Protein kinase and epithelial junctions
The intestinal monolayer is characterized by polarization 
of  apical and basolateral sides. The apical membrane is 
generally impermeable to hydrophilic solutes and con-
tributes predominantly to mucosal barrier[41]. Among the 
most important structures to determine paracellular per-
meability of  the intestinal barrier are the epithelial tight 
junctions (TJs), which are made up of  multiple proteins 
such as occludin and claudins[50]. Occludin as the first 
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Figure 2  Intestinal Goblet cells employ different mechanisms including 
protein kinase related pathways to modulate the secretion of mucus, such 
as pathways related to tyrosine kinase, protein kinase C delta, myris-
toylated alanine-rich C-kinase substrate or receptors with tyrosine kinase 
activity such as epidermal growth factor receptor. MARCKS: Myristoylated 
alanine-rich C-kinase substrate; EGFR: Epidermal growth factor receptor; TK: 
tyrosine kinase; RELM-beta: Resistin-like molecule beta; PKCδ: Protein kinase 
C delta; MAPK: Mitogen activated protein kinase.
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PROTEIN KINASES AND PATHOGENESIS 
OF IBD
MAPKs 
Notably, protein kinases play very crucial roles in many 
aspects of  pathogenesis of  IBD, highlighting their emer-
ging roles as potential therapeutic targets against IBD. 
Besides the NF-κB pathway, the MAPK signaling path-
way is another highlighted pathway involved in many 
different diseases including IBD[80]. The activation of  
MAPK-ERK1/2 phosphorylates the downstream proin-
flammatory proteins such as cytosolic phospholipase A2 
and some transcription factors such as activated proteins, 
Ets-1, Elk and c-myc. Interestingly, ERK1/2, by a study 
using an ERK1/2 inhibitor, was found to play an impor-
tant role in the function of  immune cells and other cell 
types during IBD, by regulating some pro-inflammatory 
mediators [such as interleukin-1 (IL-1)] related signaling 
transduction[81,82], evidenced by their enhanced expression 
and phosphorylation status during IBD[83,84]. Further-
more, the “tightening” junction protein claudin-4, which 
plays an important role in epithelial barrier function, is 
regulated by protein kinase ERK[85]. By inducing Akt 
but blocking p38 signaling, Lactobacillus GG prevents 
cytokine-induced apoptosis of  intestinal epithelial cells, 
indicating p38 and Akt as key mediators of  epithelial bar-
rier function[86,87]. p38 activity is increased significantly in 
tissues from IBD patients and in mouse models of  coli-
tis[83,84,88], in which inhibition of  p38 lowers KC (IL-8) and 
IL-6 production. A similar result was reported that heat-
killed Lactobacillus brevis phosphorylates p38 kinase to reg-
ulate the expression of  proinflammatory cytokines such 
as TNF-α, and to improve intestinal integrity[89]. JNK1/2 
kinase activity was enhanced in IBD inflamed tissue and 
blockage of  JNK1/2 in experimental colitis reduced the 
production of  proinflammatory cytokines[84,90,91]. 

Serine and threonine kinases 
SPAK: SPAK is a serine/threonine kinase containing an 
N-terminal series of  proline and alanine repeats (PAPA 
box) followed by a kinase domain, an NLS, a consensus 
caspase cleavage motif, and a C-terminal regulatory re-
gion[92]. Colonic SPAK presents as a unique isoform that 
lacks the PAPA box and F-helix loop in the N-terminus[93]. 
The diversity of  domains in SPAK might be associated 
with a variety of  biological roles. For example, SPAK was 
reported to play roles in cell differentiation, transforma-
tion and proliferation, and regulation of  chloride trans-
port[94,95]. More importantly, a linkage has been established 
between SPAK and inflammation. SPAK as an upstream 
kinase to Na+-K+-2Cl-co-transporter 1 (NKCC1), can 
phosphorylate NKCC1 and play an important role in in-
flammation[96]. Further, we have demonstrated that SPAK 
can activate the p38 pathway[93]. Decreased expression of  
SPAK contributes to enhanced intestinal barrier, and thus 
SPAK knockout mice were more tolerant to experimental 
colitis induced by dextran sodium sulphate (DSS) with 

identified TJ[51], plays an important role in epithelial/en-
dothelial barrier integrity, and disruption of  occludin 
regulation is an important aspect of  a number of  diseas-
es[52-54]. The claudins, as a group of  TJ proteins with ap-
proximately 24 members, interact with numbers of  other 
cell structures and affects junctional function[55-58]. Clau-
dins are expressed in a tissue-specific manner and may 
show distinct functions, for example, in the colon are ex-
pressed the claudins-1, 2, 3, 4, 5, 7, and 8; the claudin-2 is 
a pore-forming TJ protein, but claudins-1 and 4 are bar-
rier tightening proteins[59-63]. 12-O-tetradecanoylophorbol-
13-acetate can increase transepithelial electrical resistance 
by activating different isoforms of  PKC and enhancing 
the expression of  TJ proteins ZO-1, 2, occludin and 
claudin-1[64,65]. Ca2+/calmodulin-dependent protein kinase 
Ⅱ can compromise endothelial barrier function[66]. Ras-
transfected epithelial cells demonstrated compromised 
barrier function; however, inhibition of  the MAPK sig-
naling pathway can restore the morphology of  epithelial 
cells and the TJ assembly. Further, the phosphorylation 
of  tyrosine residues in occludin and ZO-1 may be crucial 
for the formation of  TJ[67]. cAMP-dependent protein ki-
nases regulate epithelial barrier function by phosphoryla-
tion of  claudin-3[68,69].

Generally, at least two relatively independently routes 
known thus far are responsible for communication be-
tween host and external environment through paracel-
lular pathway, both of  which can be regulated by protein 
kinases[70-72]. The size-selectivity related paracellular 
pathway is one of  the two routes, which facilitates tran-
sepithelial passage of  different size of  molecules, such as 
lipopolysaccharides[71,72], and can be regulated by protein 
kinases, such as MAPKs, Ste20 like proline/alanine rich 
kinase (SPAK)[73], PKC[64,65] and myosin light chain kinase 
(MLCK)[74]. Another route, also called charge-selectivity 
route, is composed of  pore-forming proteins clau-
dins[75-77]. Dysfunction of  these two routes, either size-
dependent or charge-dependent pathway, may result in 
the abnormality of  overall epithelial TJ, which provides 
an even more leaky gut. This situation will facilitate the 
contact of  intestinal microorganisms including bacteria, 
viruses and parasites with the host’s immune system, re-
sulting in altered production of  inflammatory mediators 
that contribute to the compromised barrier function. 

Mucosal permeability is influenced by many different 
factors in there distinct ways. Except the mucus layer, 
microbiota and epithelial cells themselves mentioned 
above, genetic factors play crucial roles in the regulation 
of  intestinal barrier function[6]; innate and adaptive im-
mune systems can interfere with epithelial permeability in 
a dramatic manner[78]; autonomic nerves, like enteric glial 
nerve ablation, can perish epithelial permeability to devel-
op fulminant jejunoileitis[79]. However, barrier dysfunction 
itself, like in MLCK[74] and SPAK[73] gene modified mice, 
does not necessarily mean that the mice are destined to 
develop intestinal inflammation, implying formidable 
compensation in host.
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decreased intestinal microorganism translocation into the 
mucosa and inhibition of  the production of  inflamma-
tory mediators[97]. 

MLCK: MLCK is named after its phosphorylation of  
MLC to induce contraction of  the perijunctional acto-
myosin ring, and it is indispensable for tumor necrosis 
factor (TNF) related barrier dysfunction. In turn, TNF 
can induce the phosphorylation and transcription of  
MLCK[98,99]. Constitutive MLCK activation in the intesti-
nal epithelium increases intestinal paracellular permeabil-
ity and aggravates the severity of  colitis in mouse models. 
However, blockage of  MLCK activation can increase 
significantly the intestinal barrier function and ameliorate 
DSS-induced colitis[100]. 

PKC: PKC has a variety of  isoforms that are involved 
in the pathogenesis of  IBD by their effect on the mucus 
layer[101], microbiota[34-37], cell junction[64,65] and immune 
system. Specially, PKCθ plays an important role in T cell 
receptor activation and signaling[102], and PKCδ is crucial 
for B cell tolerance[103,104]. PKCη can control CTLA-4-
mediated regulatory T cell (Treg) function[105]; however, 
PKC-θ inhibits Treg function, implying its blocking of  
Treg-mediated suppression. Inhibition of  PKC-θ stimu-
lates Treg, resumes compromised Treg function in rheu-
matoid arthritis patients, and enhances protection against 
experimental colitis in mice. As a result, PKC-θ mediates 
negative feedback on Treg cell function[106].

CONCLUSION
Protein kinases and the related signaling transduction 
pathways are involved in many physiological and patho-
logical processes such as development, inflammation (for 
example, intestinal inflammation) and tumorigenesis. In 
this review, we shed some light on the roles of  protein 
kinases in terms of  their effect on IBD-related genetic 
factors, microbiota, mucus layer, epithelial cell and the 
tight junction. Further studies are needed to explore the 
feasibility and application of  these signaling pathways in 
the control of  IBD. 
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