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Review Article
Mechanisms of hemorrhagic cystitis
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Abstract: The vast majority of cases of infectious cystitis are easily treated, and most patients have no long-term 
complications. However, hemorrhagic cystitis is a potentially deadly complication associated with pelvic radiation 
therapy, chemotherapy, and stem-cell transplant therapy. The focus of current understanding, and hence therapy, is 
directed toward urothelial cell death. However, the primary functional ramification of inflammatory bladder disease 
is the loss of compliance due to muscular expansion. Recent studies on smooth muscle response in models of blad-
der inflammation demonstrate a process of pyroptotic cell death that potentiates further muscle hyperplasia. These 
findings may support alternative interventions for subjects with hemorrhagic cystitis refractive to current therapy.
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Cystitis is the general term used to define any 
type of inflammation of the urinary bladder. 
Cystitis can be acute or chronic, and the sever-
ity can range from mild discomfort in the lower 
abdomen to severe life-threatening hemor-
rhage. There are several categories to describe 
the various etiologies of cystitis -- infection, 
radiation, chemical, mechanical, interstitial 
cystitis/chronic pelvic pain syndrome, as well 
as several conditions that masquerade as cys-
titis. But on an even broader level, cystitis can 
be classified as infectious versus non-infe- 
ctious.

Mechanisms of bladder inflammation in 
people 

The most common cause of cystitis is infection, 
specifically from bacteria, but also from several 
types of viruses and fungi. More than 50% of 
women will experience at least one urinary 
tract infection during her lifetime. Uropathogenic 
E. coli (UPEC) are the most common bacteria 
implicated in these infections. UPEC express 
type 1 pili and corresponding adhesin FimH on 
the surface of the cell wall that bind to man-
nose-coated proteins on the outermost layer of 
the urothelium, called umbrella cells [1, 2]. The 
UPEC replicate within the umbrella cells and 

eventually cause cell lysis, spilling more bacte-
ria into the urine. Before the cells die, a signal-
ing cascade initiated by toll-like receptor 4 
(TLR-4) is activated to recruit polymorphonucle-
ar leukocytes (PMNs) to combat the infection 
[3, 4]. Primary fungal cystitis is rare and tends 
to be associated with the treatment of bacterial 
cystitis; elimination of the commensal vaginal 
bacterial flora by antibiotics allows for uninhib-
ited growth and proliferation of fungal species, 
in particular candida and lactobacillus. Viral 
cystitis, typically from adenovirus and BK virus, 
targets patients who are immunosuppressed. 
Examples of this patient population include 
HIV/AIDS patients, patients on immunosuppre-
sent medications such as prednisone and che-
motherapeutics, and patients with leukemia 
who have the inability to produce functional leu-
kocytes. Patients with infectious cystitis typi-
cally complain of irritative voiding symptoms, 
dysuria, frequency, urgency, and suprapubic 
pain; only in rare instances is gross hemorrhage 
present.

The other broad class of cystitis is sterile, or 
non-infectious, cystitis. Etiologies include radia-
tion and chemical irritation. Unlike the infec-
tion-induced counterpart, non-infectious cysti-
tis tends to be more clinically severe and can 
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cause extreme pain, hematuria, and irritative 
voiding symptoms. Hemorrhagic cystitis is the 
severe clinical manifestation of radiation and 
chemical cystitis. Radiation-induced cystitis is 
associated with pelvic external beam radiation 
treatment for urologic and pelvic malignancy. 
There is no definitive time-frame that consti-
tutes the “at risk” window for radiation-induced 
cystitis; patients can experience a wide-range 
of symptoms from mild pelvic pain to life-threat-
ening hemorrhagic cystitis weeks, months, or 
years after treatment. To date, there is no way 
to anticipate which subset of radiation treat-
ment patients will experience this potentially 
devastating complication. Chemical cystitis can 
be caused by many classes of medications but 
is most commonly caused by intravenous che-
motherapeutic treatment for breast cancer and 
lymphoma with cyclophosphamide and ifos-
famide. These medications have a corrosive 
liver metabolite called acrolein that is freely fil-
tered by the kidneys to accumulate in the blad-
der. Acrolein causes a pyroptotic reaction in the 
bladder urothelium with ulceration and expo-
sure of underlying muscularis mucosa and vas-
culature. Administration of Mesna (2-mercapto-
ethane sulfonate sodium) before initiation of 
cyclophosphamide can prevent hemorrhagic 
cystitis by binding to and neutralizing acrolein. 
However, the greatest source of acrolein is ciga-
rette smoke. Mesna has no role in the treat-
ment of hemorrhagic cystitis after its onset. 
Alternative treatment modalities of hemorrhag-
ic cystitis include continuous bladder irrigation 
with evacuation of clots, instillation of alum or 
formalin, fulguration with electrocautery, hyper-
baric oxygen therapy, and in extreme cases, 
cystectomy with urinary diversion.

The mechanism of acrolein-induced hemor-
rhagic cystitis from cyclophosphamide is com-
plex and multimodal. Acrolein is a major com-
ponent of cigarette smoke as well as charred 
meats. Acrolein can directly mechanically 
cleave proteins and break strands of DNA given 
that it has a reactive unsaturated aldehyde res-
idue causing cell death [5]. Additionally, acrole-
in increases reactive oxygen species (ROS) in 
the urothelium by catalyzing the reaction of glu-
tathione to glutathionylpropionaldehyde (GT- 
PD). GTPD activates the NF-κB apoptotic path-
way and interacts with several enzymes, most 
notably xanthine oxidase and aldehyde dehy-
drogenase, to form superoxide radicals such as 

peroxynitrite [6]. Peroxynitrite directly breaks 
DNA crosslinks which triggers upregulation of 
DNA damage repair genes and depletion of nic-
otinamide-adenine dinucleotide (NAD) and ade-
nosine triphosphate (ATP), the energy sources 
of the cell [7]. This vicious cycle continues until 
all of the cell’s energy sources are depleted and 
protein synthesis can no longer take place; at 
this point, the cell dies. As the acrolein destroys 
the urothelium, the underlying detrusor smooth 
muscle and blood vessels become exposed to 
urine, causing further cell death. But, as we 
later describe, the mechanism of cell death of 
the detrusor smooth muscle cells differ from 
that of the urothelium in animal models admin-
istered cyclophosphamide.

The mechanism of radiation cystitis is similar to 
that for acrolein-induced chemical cystitis in 
that the high-energy radiation causes single- 
and double-stranded DNA breaks leading to 
activation of DNA damage repair genes and 
apoptosis. In addition, radiation penetrates the 
deeper layers of the bladder muscle causing 
progressively worsening endarteritis [8]. This 
leads to a compromise in blood supply and 
delivery of nutrients to the tissue from the 
hypovascularity and hypocellularity [9]. The 
weakened blood vessels can survive months to 
years depending on the degree of injury which 
makes it very difficulty to predict if and when 
radiation cystitis will manifest.

Interstitial cystitis is unique in that it does not 
fit into the classic distinction of infectious or 
non-infectious cystitis. The etiology is not 
known at this time, but the most popular mech-
anisms include the “leaky epithelium” model 
and mast cell dysfunction. In the leaky epithe-
lium model, it is proposed that irritants in the 
urine, such as caffeine or urokinase, are able to 
leak into the urothelium to cause chronic mild 
bladder inflammation [10]. This model also 
describes the destruction, or dysfunction, of 
the glycosaminoglycan (GAG) layer, the most 
superficial barrier between urine and bladder 
cells. An animal model mimicking the loss of 
the GAG layer involve the instilling of protamine 
sulfate [11]. The mast cell model hypothesizes 
that there is either a primary defect within the 
mast cells themselves causing histamine 
release or there is a stimulus causing chronic 
histamine release [12]. Overtime, the hista-
mine causes sloughing of the superficial uro-
thelium and chronic inflammation and pain.
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Inflammasome and pyroptosis in immune 
cells

Inflammasomes are molecular platforms acti-
vated to defend against cellular infection or 
stress that promote the maturation of proin-
flammatory cytokines interleukin-1β (IL-1β) and 
IL-18 to engage the innate immune system. The 
innate immune system not only monitors the 
presence of microbes but also possesses 
germline-encoded pattern recognition recep-
tors (PRRs) that recognize aberrant signals pro-
duced by cells in response to pathogenic condi-
tions [13, 14]. PRRs include Toll-like receptors 
(TLRs), nucleotide-binding domain leucine-rich 
repeat containing receptors (NLRs), RIG-I-like 
RNA helicases (RLHs), and C-type lectin recep-
tors (CLRs). TLRs and CLRs are expressed on 
the cell surface or in endosomal compart-
ments, while RLR are located in the cytosol [14-
16]. Stimulation of these receptors results in 
activation of the NF-κβ, MAPK, Syk, and IRF-
signaling pathways culminating in transcription-
al induction and the secretion of a large num-
ber of cytokines, chemokines, and immuno-
modulatory factors [17, 18].  

The NLR family is a cytoplasmic PRR, and sev-
eral types have been described to date: NLRP1, 
NLRP3, NLRP6, NLRP7, NLRP12 or NLRC4. 
NLRP1, NLRP3, and NLRC4 are all well-charac-
terized and act as cytosolic sensors to regulate 
cytokine secretion and trigger the assembly of 
large proinflammatory caspase-1-activating 
complexes with adaptor molecule ASC (apopto-
sis associated speck-like protein containing a 
CARD) termed inflammasomes. The NLRP3 
inflammasome is the most widely investigated 
of the all inflammasome identified [19-22]. 
NLRP3 is generally activated by exposure of 
whole pathogens or a number of structurally 
diverse PAMPs (pathogen associated molecu-
lar patterns), DAMPs (damage associated 
molecular patterns), and environmental irri-
tants (Silica, asbestos, alum etc.) [23-27]. 
PAMPs are a diverse set of molecules carried 
by pathogens, such as bacterial endotoxin (or 
lipopolysaccharide) of gram-negative bacteria, 
and DAMPs are endogenous molecules indica-
tive of cellular damage (extracellular ATP, 
Glucose etc.) [14, 28-36]. Several recent stud-
ies have described that mitochondria provide 
an ideal platform for assembly of the NLRP3 

inflammasome complex. NLRP3 may be acti-
vated directly by mitochondria-derived effector 
molecules such as mitochondrial reactive oxy-
gen species, mitochondrial oxidized DNA, and 
phospholipid cardiolipin [37-39]. NLRP3 is char-
acterized by its N-terminal pyrin domain (PYD), 
which allow NLRP3 to interact with ASC adapter 
by PYD-PYD interaction and thus facilitating the 
recruitment of pro-caspase-1 to build inflam-
masome complex [19, 21, 40-42]. Caspase-1 is 
a cysteine protease that is synthesized as an 
inactive zymogen with potent cellular activities 
regulated by proteolytic activation. Maturation 
of caspase-1 within the inflammasome triggers 
maturation and secretion of the proinflamma-
tory cytokines IL-1β, IL-18 and IL-33. Active 
IL-1β and IL-18 play a crucial role in adaptive 
immune response to favor Th17 differentiation 
[43-47]. These pyroptotic products also partici-
pate in host defense against extracellular bac-
teria and fungi, and are involved in autoimmu-
nity. IL-18 acts as an inducer of IFN-γ produc-
tion by Th1 cells, which in turn helps to restrict 
intracellular pathogens. 

Recent evidence indicates that the NLRP3 
inflammasome provides danger recognition 
platforms and drives the proinflammatory cyto-
kine IL-1β and IL-18 in various disease condi-
tions. Acute myocardial infarction (MI) and 
Kawasaki disease (KD) are the common inflam-
masome mediated cardiac diseases where 
active IL-1β is produced by the NLRP3-ASC-
caspase1 axis; however, the molecular mecha-
nism of NLRP3 activation is not completely 
understood [48-52]. Myocardial infarction is 
defined as myocardial cell death due to pro-
longed ischemia, followed by an intense inflam-
matory response which can result in cardiac 
failure. Increased activation of caspase-1 by 
inflammasome formation during acute myocar-
dial infarction promotes cell death, adverse 
cardiac remodeling, and heart failure when 
examined in mice [53-55].

Expression of the NLRP3 inflammasome and 
its components play a crucial role in develop-
ment of hepatocellular carcinoma (HCC), one of 
the most prevalent malignant tumors [56, 57]. 
Inflammation is the most common potential 
modulator of diabetic nephropathy, a leading 
cause of end-stage renal disease in adults. 
Activation of NLRP3 by mitochondrial reactive 
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oxygen species (ROS) form glomerular inflam-
masomes causing nephropathy in diabetic 
mice whereas NLRP3 deficient mice are pro-
tected from diabetic nephropathy [58-60].

Pyroptosis and bladder fibroblasts

Painful bladder syndrome, hemorrhagic cystitis 
and other inflammatory bladder diseases gen-
erally occur after bone marrow or stem cell 
transplantation [61, 62], pelvic radiation thera-
py [63, 64], administration of alkylating chemo-
therapeutics [5, 65], or as a result of viral or 
bacterial infection [65, 66]. The increasing fre-
quency of bone marrow or allogenic stem cell 
transplantation in the pediatric population has 
also been implicated in pathogenesis of hemor-
rhagic cystitis. It is evident that pro-apoptotic 
signaling molecules phospho-p53 (Ser 15), 
Bad, Bax, cleaved caspase-3, Fas and cleaved 
caspase-8 are upregulated in the urothelium of 
interstitial cystitis/painful bladder syndrome 
subjects [67, 68]. Cyclophosphamide induced 
hemorrhagic cystitis in mouse models causes 
apoptosis and necrosis of urothelial cells [5, 
69, 70]. Inflamed bladder detrusor smooth 
muscle cells undergo autophagy following 
exposure to cyclophosphamide or macrophage 
migration inhibitory factors (MIF) [71, 72]. In 
bladder smooth muscle cultures, acrolein, a 
metabolite of cyclophosphamide, similarly 
induced cell death by necrosis, apoptosis, and 
autophagy mainly through elevation of ROS 
scavengers [69, 72-75]. Acrolein activates cas-
pase-3 to trigger an apoptotic signal; however, 
other anti-apoptotic signaling molecules such 
as P-AKT and Mcl1 were not downregulated in 
detrusor muscle cell death. Acrolein induced 
senescence in bladder muscle cells as mea-

sured by p16 and p21 protein expression, and 
upregulated autophagic signaling proteins, 
Beclin-1 and LC3-II.

Pyroptosis was found to be one of the main 
causes of detrusor cell hyperplasia and death 
in the hemorrhagic cystitis model. In a mouse 
model of cyclophosphamide treatment as well 
as in vitro detrusor smooth muscle cell inflam-
mation using acrolein and radiation potentiated 
pyroptosis signaling molecules. Acrolein is 
responsible for production of ROS associated 
with mitochondrial damage, and resultant ATP 
production is well reported [74, 76, 77]. Acrolein 
is capable of perpetuating oxidative stress by 
both inducing and bolstering lipid peroxidation 
and ROS generation; both have been linked to 
various pathologic diseases [78-80]. Cell expo-
sure to acrolein leads to mitochondrial damage, 
denoted by the loss of mitochondrial trans-
membrane potential. The mitochondrial DNA is 
also at risk of oxidative damage because it sits 
on the inner mitochondrial membrane in close 
proximity to the electron transport chain. The 
levels of oxidized bases in mtDNA are two to 
three times higher than in nuclear DNA [81, 
82]. Mice treated with cyclophosphamide 
resulted in oxidative mitochondrial DNA dam-
age by ROS production as evidence by signifi-
cant up regulation of mitochondrial 8-OXO-dG 
level. The oxidized form of mitochondrial DNA 
has the capability to bind and activate the 
inflammasome complex component, NLRP3, as 
stated before by Shimada et al, 2012 [38]. 
Recent evidence also indicates mitochondria 
as a key player in NLRP3 inflammasome signal-
ing [39, 83]. Activated NLRP3 thereby stimu-
lates the aggregation of the NLRP3-associated 
speck-like protein (ASC)-Caspase-1, enabling 

Figure 1. A model of inflammasome formation in urinary bladder muscle mediated by ROS production and oxidative 
damage in mitochondria. Activation of NLRP3 allows inflammasome complex formation and bioactivation of NF-κB 
mediated IL-1β expression via cleavage of caspase1. IL-1β secretion by a bladder smooth muscle cell undergoing 
pyroptotic cell death can support the proliferation of the remaining muscle cells by activation of any number of 
growth factors including IGF1. There are a few known inhibitors of the multiple steps process of bladder muscular 
expansion.
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the proteolytic maturation of caspase-1. As 
activated NF-kβ induces pro-IL-1β expression in 
the cytosol, active Caspase-1, in turn, cleaves 
pro-IL-1β, producing mature IL-1β [84-86] 
(Figure 1). 

It is now apparent that epigenetic abnormali-
ties, in particular altered DNA methylation, play 
a crucial role in the development of chronic 
inflammatory diseases [87-89]. The DNA meth-
ylation profile of inflammed bladders in humans 
demonstrated that more than 50% of bladder 
inflammatory diseases are associated with sig-
nificant global methylation, as determined by 
5-methyl cytosine staining. Oxidative damage 
causes replication and transcriptional dysfunc-
tion of mitochondrial DNA. This results in a 
decline in mitochondrial function which, in turn 
leads to enhanced ROS production and further 
damage to mitochondrial DNA, as evidence by 
guanine oxidative product: 8-oxo-dG. DNA 
methylation is one of the main epigenetic modi-
fications in mammals, and abnormal methyla-
tion of the CpG islands located in the promoter 
region of the genes leads to transcriptional 
silencing [90-92]. The mitochondrial DNA dam-
age repair enzyme, OGG1 is significantly 
silenced in acrolein treated bladder muscle 
cells associated with more mitochondrial DNA 
damage and formation of oxidized mitochon-
drial DNA trigger activation of NLRP3 inflamma-
some. The OGG1 protein is the main DNA glyco-
sylase for the repair of 8-oxodG lesions in DNA 
[93, 94]. However, global methylation also 
silenced three tested base excision repair 
genes Neil1, Neil2, and Parp1, as well as a two 
homologous recombination repair gene, Rad50, 
Rad54 after six hours of acrolein treatment. 
This was further substantiated with reactiva-
tion of these genes when cultured in the pres-
ence of DNA de-methylating agent, 5aza-DC 
(Decitabine, 5-Aza-2’-deoxycytidine). When cul-
tured smooth muscle detrusor cells were pre-
treated with nicotinamide, an over-the-counter 
health supplement, pyroptosis was reversed 
and the detrusor cells did not die. Nicotinamide 
treatment resulted in re-expression of some of 
the above-mentioned DNA damage repair 
enzymes. Nicotinamide inhibits DNA methylase 
activity competitively with respect to S-adenosyl 
methionine. IL-1β produced by the epigenetic 
imprinted bladder pyroptotic damaged cells 
stimulated proliferation of neighboring smooth 
muscle detrusor cells. IL-1β secreted from the 
damaged bladder cells activated its down-
stream growth factors IGF-1 in the remaining 

detrusor cells (Figure 1). These cells did not 
become hyperplastic when the mice were pre-
treated with IL-1β antagonist, Anakinra.

Means of limiting disease progression

Many cases of cystitis are self-limited, and 
there are no long-term consequences from the 
transient inflammation. This is the case for the 
vast majority of patients with infectious cystitis 
that are successfully treated with antibiotics.

The treatment of chemical cystitis from chemo-
therapeutics focuses on prevention and then 
expectant management of hemorrhagic cysti-
tis. All patients who are to undergo infusions of 
cyclophosphamide or ifosphamide therapy 
receive pre- and post-treatment oral or intrave-
nous 2-mercaptoethane sulfonate sodium 
(mesna). Mesna is filtered by the kidneys and 
excreted into the urine where it can directly 
bind and neutralize acrolein. This is accom-
plished by the sulfhydryl group of mesna bind-
ing to the vinyl group of acrolein. The inert com-
pound is then rid from the body during normal 
voiding.

Current management of hemorrhagic cystitis 
caused by radiation or chemotherapeutics 
involves numerous interventions with degrees 
of efficacy. Commonly, manual irrigation of 
clots and continuous bladder irrigation by uri-
nary catheterization is administered. The blad-
der irrigant, usually normal saline, reduces 
bleeding by removing urokinase, an anticoagu-
lant substance secreted into the urine by the 
kidney. Additionally, discontinuation of any sys-
temic anticoagulation is typically advised. For 
treatment of refractory hemorrhagic cystitis, 
there are several oral and intravesical agents 
that can be utilized. Aminocaproic acid is an 
oral agent that inhibits plasmin to prevent clot 
lysis. Intravesical agents include aluminum 
potassium sulfate, silver nitrate, formalin, or 
phenol. These agents act by causing chemical 
corrosion of the bladder urothelium and coagu-
late the tissue to stop the bleeding. There is an 
increasing role for hyperbaric oxygen therapy to 
treat refractory hemorrhagic cystitis. Oxygen 
therapy reduces bleeding by causing vasocon-
striction, enhancing angiogenesis and granula-
tion tissue formation, and lastly by optimizing 
immune function at the cellular level [95]. There 
are several surgical options for the treatment of 
refractory hemorrhagic cystitis. Cystoscopy 
and fulguration with electrocautery can treat 
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the bleeding. As a last resort once all other 
measures have failed, some patients require 
cystectomy with urinary diversion.

There are several recent clinical trials for the 
treatment of hemorrhagic cystitis. In 2003, 
NCT01561352 attempted to treat refractory 
hemorrhagic cystitis with activated recombi-
nant human factor VII. The results did not dem-
onstrate an advantage when compared to other 
treatment modalities. NCT01659723 is an 
ongoing randomized control trial to treat and 
determine the long-term effects on the bladder 
mucosa after hyperbaric oxygen therapy to 
treat refractory hemorrhagic cystitis. The 
results are not available at this time. 
NCT01295645 is an ongoing trial to test the 
efficacy of cidofovir in the treatment of BK 
virus-induced hemorrhagic cystitis. They esti-
mate completion in 2018. This is currently an 
FDA-approved treatment for this particular dis-
ease. NCT02174536 is an ongoing randomized 
control trial to evaluate the efficacy of using 
placenta-derived decidual stromal cells for the 
treatment of hemorrhagic cystitis. There are 
currently no results at this time. The use of 
5-azaDC, nicotinamide, or Anakinra discussed 
above could constitute further pre-clinical tests 
for possibility of clinical application. As all three 
of these agents are currently in common clini-
cal use, implementation for hemorrhagic cysti-
tis is feasible.
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