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Abstract: Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors 
(SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen re-
ceptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of 
cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable 
complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein 
pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this 
review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/
SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the 
view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepres-
sors involved in individual types of cancers is likely required for effective therapy.
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Introduction: discovery of NCoR and SMRT as 
promiscuous nuclear receptor corepressors

The ‘on’-and-‘off’ control of gene expression 
involves a cascade of transcription factors and 
is assisted by two classes of cofactors. These 
cofactors can activate (the coactivators) or 
repress (the corepressors) gene transcription 
via modifying specific residues of histones, 
thereby regulating the accessibility of chroma-
tin to the basal transcription machinery [1]. Two 
of the first identified corepressors are nuclear 
receptor corepressors (CoRs), which include 
NCoR (nuclear receptor corepressor) [2] and 
SMRT (silencing mediator for retinoid and thy-
roid hormone receptors) [3]. Prior to the cloning 
of NCoR and SMRT, several studies have 
reported that thyroid hormone receptors (TR) 
and retinoic acid receptors (RAR) have an intrin-
sic ability to mediate ligand-independent 
repression, in a manner that is dependent on 
soluble and titratable factors [4-6]. The search 
for these factors led to the cloning of NCoR [2] 
and its homologous protein SMRT [3] (a trun-
cated version) as well as full-length SMRT [7, 8]. 

Binding of TR and RAR to their respective 
ligands, thyroid hormone (T3) and retinoic acid 
(RA), disrupts their interactions with NCoR or 
SMRT, allowing for coactivator recruitment and 
subsequent activation.

Subsequent studies reveal that NCoR and 
SMRT also mediate ligand-independent interac-
tion with various other nuclear receptors (NRs), 
including vitamin D receptors (VDR) [9], peroxi-
some proliferator-activated receptors (PPAR) 
[10], liver X receptors (LXR) [11], and with 
orphan receptors including Rev-Erb [12, 13], 
chicken ovalbumin upstream promoter tran-
scription factor (COUP-TF) [14], and dose-sensi-
tive sex reversal-AHC critical region on the X 
chromosome, gene 1 (DAX-1) [15]. NCoR and 
SMRT also have the ability to interact with ste-
roid hormone receptors, namely, estrogen 
receptor (ER) [16], androgen receptor (AR) [17, 
18], and progesterone receptor (PR) [19]. 
Although these interactions are generally weak-
er than the interactions with non-steroid recep-
tors, the steroid receptor interactions with 
NCoR/SMRT can, nevertheless, be stabilized by 
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binding to the corresponding antagonists. One 
of the best-studied examples is tamoxifen, an 
ERα antagonist used to treat ERα-positive 
breast cancers. Tamoxifen binding to ERα stabi-
lizes the interaction between ERα and NCoR, 
which is considered a contributing factor for 
tamoxifen inhibition of ERα target gene expres-
sion [20].

Mechanism of action of NCoR/SMRT

NCoR and SMRT are 270 kDa proteins that 
share highly homologous domains. The 
C-terminal region of NCoR and SMRT contains 
three (NCoR) or two (SMRT) nuclear receptor 
interaction domains (IDs) that mediate direct 
interactions with the ligand-binding domain 
(LBD) of NRs [2] (Figure 1). The functional 
motifs of IDs contain the so-called CoRNR 
boxes, which have the consensus sequence 
L-X-X-I/H-I-X-X-X-L/I (L: leucine, I: isoleucine, X: 
any amino acids) [21-25]. The binding affinity is 
predominantly regulated by the conformational 
change of NR LBD domains that takes place in 
response to ligands (agonists or antagonists). 
Binding of agonists or antagonists to NRs 
induces the movement of the helix 12 region of 
NRs whose position dictates the binding ability 
of NCoR/SMRT. In general, agonists destabilize 
the corepressor interaction, resulting in the dis-
missal of CoRs and subsequent recruitment of 
coactivators to drive agonist-dependent tran-
scriptional activation. Antagonists do the oppo-
site by stabilizing NCoR/SMRT interactions. In 
addition, the specificity and fine tuning of the 

binding between NRs and N-CoR/SMRT are 
also shown by the preferential use of different 
CoRNR boxes within a single CoR molecule and 
the preferential use of NCoR or SMRT for the 
binding [26, 27].

Biochemical purification of NCoR and SMRT 
has shown that both NCoR and SMRT are pres-
ent in large protein complexes (1.6-2 MDa size) 
that also contain histone deacetylase 3 
(HDAC3), transducin β-like protein 1 (TBL1)/
TBL1-related protein 1 (TBLR1), and G-protein 
pathway suppressor 2 (GPS2) [28-30]. It is like-
ly that the core complex contains four subunits, 
two of which can be either NCoR or SMRT, and 
either TBL1 or TBLR1. A recent work has shown 
that TBL1 may exist as a tetramer [31]. The 
molecular weight of the core complex is about 
412 KDa. Multiplication of this by 4 gives rise 
to~1.6 MDa, which is in the range of the 
observed size (1.6-2 MDa). Clearly, the NCoR/
SMRT complex should also contain other sub-
stoichiometric components, such as Sin3A/
HDAC1 [32-37], Class II HDACs [38, 39], the 
subunits of chromatin-remodeling complexes 
[40], KAP-1 [40], and histone acetyl-transferas-
es such as CBP [1, 41-43]. The functional inter-
actions of these sub-stoichiometric compo-
nents with the core NCoR/SMRT complex may 
offer additional layers of regulation of target 
gene transcription.

NCoR/SMRT nucleates the formation of the 
core complex through interactions provided by 
the N-terminal portion of the proteins. 

Figure 1. Diagram of NCoR/SMRT corepressors showing their regions involved in various interactions with nuclear 
receptors, other transcription factors as well as interactions with other components of the core complex.
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Historically, the N-terminus of NCoR and SMRT 
has been characterized to contain three inde-
pendent repression domains (RD1, RD2 and 
RD3) [2]. While the function of RD2 and RD3 
has yet to be clarified, RD1 has been shown to 
mediate NCoR/SMRT interactions with both 
GPS2 and TBL1/TBLR1 [28, 44]. Interestingly, 
the region of RD1 that interacts with TBL1/
TBLR1 appears to overlap with the recently-
reported interaction with the DNA-binding 
domain of ERα [45] (Figure 1).

None of the three RD domains interacts with 
HDAC3. A previously-noted motif in NCoR and 
SMRT is the SW13/ADA2/NCoR/TFIIB (SANT) 
domain, two copies of which are located 
between RD1 and RD2 [46]. The first SANT 
domain along with a short upstream region is 
referred to as the deacetylase activation 
domain (DAD), which directly binds to HDAC3. 
The binding involves a conformational change 
of DAD and is critical for the activation of the 
enzymatic activity of HDAC3 [28, 47, 48]. 
Interestingly, a recent work [49] by Adikesavan 
et al. has shown that the DAD of SMRT can 
directly bind to p53 (Figure 1). This binding 
blocks HDAC3 interaction with DAD leading to a 
net increase in histone acetyltransferase (HAT) 
activities, which contributes to the activation of 
p53 target gene in response to DNA damage. 
SMRT (but not NCoR) has also been shown to 
function as a coactivator for ERα in MCF-7 
breast cancer cells [50], underscoring a speci-
ficity between SMRT and NCoR in regulating 
transcription.

The second SANT domain in CoRs has been 
shown to function as a histone interaction 
domain (HID), in line with the reported role of 
SANT domains in recognizing histones in the 
context of other proteins [51]. By occupying the 
nonacetylated histone tails, HID inhibits HAT 
activities, suggesting a feed-forward mecha-
nism by which the two SANT motifs coopera-
tively promote histone deacetylation and 
repression of target genes [52, 53]. Similar 
modes of cooperation have also been reported 
between HDAC3 and TBL1, which can also 
directly bind to histones [30, 54, 55].

Although NCoR and SMRT were originally identi-
fied as transcriptional corepressors for NRs, 
they have emerged as promiscuous corepres-
sors for many other sequence-specific tran-
scription factors that function in different cel-

lular processes [42]. Thus, various studies have 
shown that SMRT and NCoR interact with Bcl-6/
LAZ3, a transcription factor recently shown to 
play an important role in repressing inflamma-
tion [56-59], MyoD [60], HES-related repressor 
proteins [61]. NCoR/SMRT also interact with 
the evolutionarily related POU homeodomain 
factors Pit-1 [62, 63], Oct-1 [64], the Notch-
activated adapter protein Su(H)/RBP-Jκ/CBF1 
[65-67], Pbx [68, 69], serum response factor 
(SRF) [70], NF-κB [71-74], AP-1 [70], and signal 
transducers and activators of transcription 5 
(STAT5). Other factors that are associated with 
NCoR and SMRT include PLZF [75, 76], ETO 
family proteins involved in acute myeloid leuke-
mias [77-79], SMADs [80], c-Myb [81], aryl 
hydrocarbon receptor [82], Sharp [83], and 
Kaiso [84].

Two studies have added new insight into the 
function and mechanism of CoR-mediated 
repression. Ebert et al. showed that NCoR can 
interact with methyl-CpG-binding protein 2 
(MeCP2) and phosphorylation of T308 blocks 
the interaction of the MeCP2 repression 
domain with NCoR and suppresses the ability 
of MeCP2 to repress transcription [85], thus 
linking NCoR to DNA methylation-dependent 
gene silencing. Another work shows that the 
NCoR complex binds and deacetylases P-TEFb, 
an elongation factor important for RNA Pol 
II-mediated transcription [86], thus revealing a 
role for corepressors in deacetylating general 
transcription factors to regulate transcription.

Deregulation of NCoR/SMRT corepressors 
and other complex subunits in cancer

ER and AR are steroid receptors that play 
important roles in the initiation and progres-
sion of breast and prostate cancers. NCoR/
SMRT interact with both ER and AR and serve 
as potential drug targets in the treatment of 
these cancers. Recent genome-wide studies 
have shown that NCoR/SMRT and HDAC3 bind 
to thousands of genes [56, 87], consistent with 
their use by other transcription factors such as 
c-Jun and NFκB that impact on fundamental 
cellular activities. In this section, we summarize 
the literature on the involvement of NCoR/
SMRT and other complex subunits in cancers 
and leukemias. NCoR and SMRT have been 
largely studied in the context of ER, AR and leu-
kemia fusion proteins. While previous studies 
have focused on NCoR, SMRT and HDAC3, 
some new development has been reported for 
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TBL1/TBLR1 and GPS2, suggesting their impor-
tant roles in cancer development.

NCoR and SMRT subunits

Breast cancer: ERα is expressed in appro- 
ximately 75% of breast cancers where ERα - 
dependent activation plays an important ro- 
le in the growth of these cancers. NCoR/
SMRT are among the best-characterized ERα 
corepressors [88]. Since coactivators and 
corepressors compete for ERα binding, the 
ratio between coactivators and corepressors 
is expected to modulate ERα activity in benign 
and malignant cells. Results from independent 
studies have supported this model by showing 
that diminished expression of NCoR/SMRT 
drives breast cancer initiation and progression. 
For example, an unbiased pathway analysis 
has revealed multiple alterations linked to loss 
of NCoR and SMRT corepressor complexes 
in luminal A breast tumors [89]. In another 
study that examines ERα corepressor levels in 
breast cancer, NCoR levels were found to be 
downregulated in invasive ductal carcinomas 
[90].

Downregulation of NCoR/SMRT has also been 
implicated in endocrine resistance. Selective 
ER modulators (SERMs), such as tamoxifen, an 
ERα antagonist, are beneficial in the initial 
treatment of ERα-positive breast cancer, bec- 
ause these SERMs can inhibit cancer growth by 
inhibiting the transcriptional activity of ERα. 
The activity of tamoxifen is in part attributed to 
its ability to stabilize the binding of ERα to core-
pressors [91]. Reduced expression of NCoR/
SMRT corepressors has been shown to contrib-
ute to tamoxifen resistance in breast cancers 
[92-95]. Two studies have provided mechanis-
tic insights into signal-dependent downregula-
tion of NCoR and SMRT in breast cancer cells 
at the level of protein degradation, which con-
tributes to cancer progression and acquisition 
of endocrine resistance. Frasor et al. reported 
that NCoR level was reduced due to estrogen-
dependent upregulation of Siah2, which func-
tions as an E3 ligase for NCoR [96, 97]. 
Interestingly, two recent studies have shown 
that downregulation of Siah2 is correlated with 
acquisition of breast cancer tamoxifen resis-
tance [98, 99]. In another work, Stanya et al. 
reported that Pin1 can promote proteasomal 
degradation of phosphorylated SMRT in res- 
ponse to HER-2 signaling [100].

Several studies have reported alternative 
mechanisms by which NCoR regulates ERα-
dependent transcription in breast cancers. 
First, NCoR has been shown to regulate ERα 
expression. More than half of the ERα-positive 
breast cancers also express PR. Elevated 
expression levels of PR-B isoform increase the 
interaction of the receptor with NCoR on the 
half-PRE site of the ERα promoter, an event 
incompatible with PR-coactivator interactions. 
Silencing of NCoR was able to reverse the 
down-regulation of ERα expression induced by 
PR-B overexpression [101]. In another work, by 
using chromatin immunoprecipitation (ChIP) 
assays, Konduri et al. [102] have demonstrated 
that ERα represses p53-mediated transcrip-
tional activation in human breast cancer cells 
by recruiting NCoR/SMRT and HDAC1. Finally, 
reduction in the ratio of ERβ to ERα expression 
appears to be correlated with breast tumori-
genesis. Bartella et al. [103] showed that ERβ 
recruits NCoR, leading to hypoacetylation of 
histones and displacement of RNA-polymerase 
II at the ERα promoter, providing new mecha-
nistic insight into the antagonism between ERβ 
and ERα in breast cancer cell growth.

Prostate cancer: AR is the driving force for pros-
tate cancer development and progression. 
Many patients will benefit from the androgen 
deprivation therapy in combination with the 
treatment of AR antagonists (flutamide or 
bicalutamide). The underlying principle for the 
use of AR antagonists is that these compounds 
will compete with agonists for binding to AR, 
while stabilizing the binding between AR and 
NCoR/SMRT corepressors, thus preventing 
coactivator recruitment and AR-dependent 
activation of target genes [104, 105].

The involvement of AR corepressors in prostate 
cancer has been well documented [106]. Earlier 
studies have suggested that a reduction of 
NCoR/SMRT levels may contribute to andro-
gen-independent AR activation and prostate 
cancer progression [107-109]. Nevertheless, 
several studies have shown that the corepres-
sor regulation of AR may be more complex than 
previously thought. It has been shown that 
overexpression of NCoR/SMRT does not 
repress AR-dependent gene expression in pros-
tate cancer cell lines, but rather activates it 
[110]. A caveat is that overexpressed proteins 
may not faithfully recapitulate the regulation 
observed under physiological conditions. 
Another work has shown that the ability of 
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NCoR to enhance antagonist-mediated AR 
repression is in fact modulated by post-transla-
tional modifications of NCoR. Protein kinase A 
(PKA) is able to directly bind and phosphorylate 
the Ser-70 residue in the RD1 domain of NCoR. 
The phosphorylation enhances nuclear local-
ization of NCoR and potentiates the antagonist 
activity on AR-dependent transcription in pros-
tate cells [111].

Several recent studies have re-affirmed the 
importance of AR-NCoR/SMRT axis in regulat-
ing AR function and prostate cancer progres-
sion. It has been shown that reduced recruit-
ment and loss of corepressor SMRT/NCoR alter 
the ligand response and AR functions in a man-
ner that contributes to prostate cancer pro-
gression [112]. In another study, Yoo et al. stud-
ied the role of AR corepressors during andro-
gen-independent prostate cancer progression 
[113]. It was found that casein kinase 2 (CK2)-
mediated phosphorylation of NCoR strongly 
correlates with androgen-independent growth 
and invasion of prostate cancer cells, and with 
poor prognosis of prostate cancer patients, 
suggesting that CK2-NCoR axis is a potential 
therapeutic target in prostate cancer. Perhaps 
a more exciting evidence for a direct role of 
NCoR in antagonizing androgen-independent 
prostate cancer growth is provided by the study 
showing that the ubiquitin ligase Siah2 switch-
es AR from repressed to the activated state by 
selectively targeting NCoR bound, transcrip-
tionally-inactive AR for ubiquitin-dependent 
degradation. Thus, Siah2 promotes activation 
of AR target genes, leading to the growth of 
androgen-independent prostate cancer cells 
[114]. Taken together, the consensus of the 
current studies is in line with the model that the 
efficacy of NCoR/SMRT corepressors in 
repressing AR activity is directly correlated with 
the recruitment of these corepressors on AR 
target genes. Reduction of such recruitment, 
which would predispose genes for activation, 
may occur through various mechanisms, such 
as reduced gene expression, proteasomal deg-
radation or altered modification of the 
corepressors.

Leukemia: Leukemia is a prototypic type of can-
cer in which a pro-oncogenic function of NCoR 
and SMRT was first documented. One form of 
acute promyelocytic leukemia (APL) is caused 
by abbrant expression of PML-RARα (promyelo-
cytic leukemia-retinoic acid receptor α) or PLZF-
RARα (promyelocytic leukemia zinc finger-reti-

noic acid receptor α) fusion proteins. As a result 
of the fusion, the binding affinity between RARα 
and NCoR/SMRT is increased such that the 
corepressors cannot be released by the physi-
ological dose of RA [75, 115-118]. Acc- 
ordingly, these fusion proteins promote leuke-
mogenesis due to reduced sensitivity to retino-
ic acid-dependent transcriptional activation of 
target genes involved in cell differentiation. The 
involvement of NCoR/HDAC in the pathogene-
sis of leukemias is further confirmed by the 
studies showing that expression of an NCoR 
fragment that disrupts corepressor interaction 
restores RA sensitivity in resistant cells [119], 
and that the NCoR/HDAC complex is a key regu-
lator of the transcriptional repression mediated 
by PML-RARα in vivo [120]. APL patients that 
have PML-RARα is sensitive to high doses of RA 
treatment, whereas APL patients harboring 
PLZF-RARα translocations do not. This differ-
ence is due to the fact that in PLZF-RARα, the 
PLZF moiety can also bind to NCoR/SMRT core-
pressors, which cannot be released by high 
doses of RA, thus explaining the phenotypic dif-
ference between PML-RARα and PLZF-RARα. 
The presence of trichostatin A, a specific inhibi-
tor of histone deacetylases, increases histone 
acetylation and leads to transcription activa-
tion [115].

Two recent studies have provided new insight 
into the regulation of RARα fusion proteins by 
NCoR/SMRT. One study shows that PML-RARα 
and PLZF-RARα have gained the ability to rec-
ognize specific spliced variants of NCoR and 
SMRT variants that are poorly recognized by 
RARα [121]. Another work showed that failure 
to dissociate corepressors, or failure to recruit 
co-activators results in RA-resistant variants of 
the PML-RARα oncoprotein in APL [122].

The t(8;21) chromosomal translocation is 
involved in nearly 15% of total acute myeloid 
leukemia (AML) cases, which generates the 
AML1-ETO fusion protein between the DNA-
binding domain of AML1 and a nearly full-length 
ETO. The role of NCoR/SMRT corepressors in 
AML was first revealed by their interaction with 
ETO, the fusion partner in the t(8;21) AML and 
NCoR/SMRT [77, 123, 124]. ETO is a member 
of a small family of corepressors that can form 
oligomers and bind to NCoR/SMRT and HDACs 
[125, 126]. Its homologous protein ETO-2 is 
also involved in AML by fusing to AML1 [127]. 
The current literature is consistent with the 
model that the AML1-ETO/ETO-2 promote leu-
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kemogenesis in part by recruiting the NCoR/
SMRT/HDAC to repress transcription of target 
genes [77, 128-130]. Interestingly, a recent wo- 
rk has shown that another leukemia fusion pro-
tein E2A-Pbx1 drives leukemogenesis by escap-
ing ETO-2-mediated repression in order to acti-
vate Hox target genes [131]. Thus, the role of 
corepressors in different types of leukemias is 
likely context-dependent, emphasizing the ne- 
ed to dissect the individual mechanisms for 
therapeutic targeting of the corepressors.

Other subunits of the NCoR/SMRT complex

HDAC3: HDACs deacetylate both histones and 
proteins, and play important roles in the regula-
tion of chromatin biology and gene transcrip-
tion [77, 132-134]. The 18 human HDACs can 
be divided into 4 classes [28]. Class I, II and IV 
belong to Zinc-dependent, NAD-independent 
histone deacetylases, whereas class III belongs 
to NAD-dependent histone deacetylases. Class 
I HDACs include HDAC1, 2, 3 and 8 isoforms, 
which are encoded by separate genes. The 
Class I HDACs generally show ubiquitous exp- 
ression, and HDAC1-3 have been well studied. 
HDAC1 and HDAC2 exist as a dimer in several 
HDAC1/2-shared complexes, including the NU- 
RD chromatin-remodeling complex [135, 136], 
the Sin3A-containing corepressor complex and 
the CoREST/LSD1-containing histone deacety-
lase/histone demethylase complex [137, 138]. 
Whereas HDAC1 and HDAC2 generally show 
constitutive nuclear localization, HDAC3 shows 
both cytosolic and nuclear localization [139]. 
Consistent with this, HDAC3 contains both 
nuclear import and export domains [140]. In 
the nucleus, HDAC3 specifically associates 
with NCoR/SMRT corepressor complexes [28].

Several studies have implicated a role for 
HDAC3 in cancer. Upregulation of HDAC3 has 
been observed in several types of cancers 
including colon, lung, prostate and breast can-
cers, in a manner that correlates with poor sur-
vival and prognosis of the patients [141-148]. 
HDAC3 has served as a potential drug target in 
the treatment of PML-RARα, PLZF-RARα and 
AML1-ETO leukemias [77, 126, 149, 150]. 
Independent studies using cancer and leuke-
mia-derived cell lines have confirmed pro-sur-
vival roles for HDAC3. The pro-survival activity 
of HDAC3 revealed by these studies may be 
mediated by its roles in transcriptional repres-
sion of growth-arrest genes such as p21 [55, 
151, 152], cell cycle progression [153-155], 

genomic stability [156], or its involvement in 
apoptosis/cell death/survival pathways [141, 
142, 150, 157-159]. In addition to regulating 
cell proliferation, HDAC3 has also been shown 
to play an important role in metastasis of can-
cer cells through its ability to enhance epitheli-
al-mesenchymal transition (EMT) [160]. HIF-
1alpha-induced HDAC3 was found to be crucial 
for hypoxia-induced EMT and metastatic phe-
notypes. HDAC3 crosstalks with WDR5 to acti-
vate the expression of mesenchymal genes 
expression, while repressing epithelial gene 
expression. While these studies have support-
ed an anti-tumorigenic function of HDAC3, 
Bhaskara et al. have shown that mice depleted 
of HDAC3 in liver develop hepatocellular carci-
noma [156, 161], suggesting that HDAC3 may 
have context-dependent function in different 
cancers.

An active area in HDAC study is the develop-
ment of isoform-specific HDAC inhibitors [162-
164]. While pan-HDAC inhibitors have promis-
ing effects in the treatment of cancers, the 
clinical use of these inhibitors is complicated 
by their off-target effects [165-168]. It has 
been proposed that HDAC3 may be responsible 
for most of the anti-tumor effects of HDAC 
inhibitors [154, 169]. A few studies reported 
the development and use of HDAC3-specific 
inhibitors that target the active form of HDAC3 
[169, 170]. Inhibition of HDAC3 using such a 
selective inhibitor RGFP966 promotes apopto-
sis and diminishes cell growth in cutaneous T 
cell lymphoma cell lines due to DNA damage 
and compromised S phase progression [169].

An alternative strategy to inhibit HDAC3 func-
tion is to prevent its activation by blocking the 
formation of HDAC3 complexes with corepres-
sors, based on findings that the enzymatic 
activity of HDAC3 is strictly dependent on its 
binding to NCoR/SMRT [28, 171]. The critical 
importance of corepressor interaction for 
HDAC3 activity has been recently demonstrat-
ed in vivo [172], which shows that mice harbor-
ing loss-of-function mutations in the DAD 
domain of both NCoR and SMRT have essen-
tially no active HDAC3 in all tested tissues, 
which correlates with globally-increased his-
tone acetylation. These mice, unlike the embry-
onic lethality of the total HDAC3 knockout mice 
[173], are vital, suggesting that free HDAC3 is 
not non-functional. A follow-up study by the 
Lazar group [174] recently showed that an 
HDAC3 mutant that is enzymatically inactive 
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but retains the ability to bind to corepressors 
can rescue the HDAC3-null defect in liver, indi-
cating that HDAC activity is not required for all 
HDAC3 functions, but its interaction with core-
pressors such as NCoR is critical. This would 
challenge the rationale of using traditionally-
developed HDAC inhibitors that target the 
active site of HDACs to inhibit the function of 
HDAC3 (and possibly other HDACs) in cancers. 
Nevertheless, the above-mentioned strategy of 
using inhibitors to prevent the formation of sta-
ble HDAC3-corepressor complexes would con-
tinue to be warranted in targeting HDAC3 func-
tion in cancers.

It has been shown that the inactive form of 
HDAC3 is in complexes with Hsc70 and TRiC 
chaperones [139]. These chaperones are 
released from HDAC3 in its mature form after 
corepressor association. A recent work has 
shown that knockdown of NCoR and SMRT in 
cultured cells reduces the steady-state protein 

some-dependent rapid turnover thus may 
explain earlier failures to detect an interaction 
between CoR and the C-terminus-truncated 
HDAC3. Despite the binding to CoR, the 
C-terminus-truncated HDAC3 remains associ-
ated with chaperones and cannot be activated. 
These data are consistent with a novel function 
for HDAC3 C-terminus in coupling CoR binding, 
chaperone dismissal, and subsequent activa-
tion and stabilization of HDAC3, suggesting 
that the C-terminus acts at a step after the 
binding of corepressors to facilitate the release 
of chaperones from HDAC3 (Figure 2). A role for 
C-terminus in regulating HDAC3 activity is also 
supported by the finding that phosphorylation 
of the conserved C-terminal residue S424 
increases the activity of HDAC3 [176]. A recent 
work reported the 3D structure of a complex 
containing a C-terminus-truncated HDAC3 and 
SMRT-DAD [177]. It is worth noting that the 
C-terminus is cleaved after the formation of the 
complex, consistent with its role involved in the 
complex formation and HDAC3 activation.

Figure 2. A hypothetical model of HDAC3 activation by corepressors. In 
the inactive state, HDAC3 is complexed with Hsc70 and TRiC chaper-
ones. Corepressors bind to HDAC3 N-terminus through the DAD domain. 
The DAD-triggered HDAC3 activation occurs in a stepwise fashion and in-
volves the formation of an intermediate DAD-HDAC3-chaperone complex, 
whose subsequent conversion into the mature, active state requires a 
C-terminus dependent conformational change to dissociate chaperones. 
“***” denotes exposed HDAC3 active site.

expression of HDAC3 in all tested 
cell types including colon, prostate 
and breast cancer cells [175], indi-
cating that the E3 ligase-driven 
HDAC3 degradation pathway is still 
intact in cancer cells. Elucidating 
the nature of HDAC3-specific E3 
ligases may offer a new approach 
to target HDAC3 in cancer cells. It 
is noteworthy that the steady-state 
level of liver HDAC3 in the above-
mentioned DAD mutant knock-in 
mice does not differ significantly 
from the control mice. The differ-
ence between living animals and 
cultured cell may be caused by the 
use of different assay conditions. 
Alternatively, the mice may have 
been forced to compensate for the 
loss of HDAC3 given that HDAC3 is 
required for the early embryonic 
development.

Previous studies have suggested 
that the C-terminus of HDAC3 is 
required for its interaction with 
CoR [140, 171]. Surprisingly, it was 
shown that if proteasomal activity 
is blocked, a C-terminus-truncated 
HDAC3 can still form a complex 
with CoR in cells [175]. Protea- 
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TBL1 and TBLR1: TBL1 is a protein initially 
found to play a role in the X-linked late-onset 
deafness in human [178]. Its counterpart in fly, 
ebi, has been shown to play a role in fly eye 
development by regulating the EGF receptor-
mediated signaling pathways [179]. Intere- 
stingly, Lazar and Wong groups later discovered 
that TBL1 is a stoichiometric subunit of NCoR 
and SMRT nuclear receptor corepressor com-
plexes [30, 44]. TBL1 directly interacts with his-
tone tails and facilitates the function of HDAC3 
[30, 44]. By purifying FLAG-NCoR and FLAG-
HDAC3 interacting proteins, Zhang et al. discov-
ered a TBL1-like protein, which they named 
TBLR1 (TBL1-like protein 1) [28]. TBLR1/TBL1, 
like NCoR and SMRT, are the alternative sub-
units of CoR/HDAC3 corepressor complexes. 
Interestingly, the expression of TBLR1 is redu- 
ced in mature hematopoietic cells compared to 
progenitor cells [180], suggesting a role for 
TBLR1 in regulating cell differentiation.

Both TBL1 and TBLR1 have been shown to 
have “coactivator” functions. Although the clas-
sical Gal4-fusion assay failed to support an 
“activation domain” in TBL1/TBLR1, it con-
firmed that TBL1/TBLR1 harbor transferable 
repression domains [30, 44]. This shows that 
TBL1/TBLR1 are not classical coactivators. 
The “coactivator” activity of TBL1/TBLR1 ap- 
pears to be attributed to their ability to drive 
proteasomal degradation of NCoR/SMRT and 
CtBP corepressors in a signal-dependent fash-
ion [181]. Perissi et al. showed that TBL1/
TBLR1 promote the clearance of NCoR/SMRT 
and CtBP corepressors by recruiting 19S pro-
teasome particles to drive the ubiquitination 
and degradation of NCoR/SMRT and CtBP, thus 
allowing the recruitment of coactivators. This 
takes place not only on NRs but also on c-Jun 
and NF-κB binding sites of affected genes [181, 
182]. Phosphorylation of TBL1 and TBLR1 on 
specific residues is required to activate their E3 
ligase activities. TBL1 and TBLR1 have imper-
fect F-boxes. Therefore, an interesting model is 
that these proteins normally reside in the 
NCoR/SMRT complex in the inactive state. 
Phosphorylation and/or possibly other post-
translational modifications activate their latent 
E3 ligase activities, leading to degradation of 
the corepressors.

Dysregulation of Wnt-β-catenin signaling path-
way has been associated with tumorigenesis. 
Another form of post-translational modifica-
tions on TBL1/TBLR1, SUMOylation, has been 

shown to dissociate TBL1/TBLR1 from the 
NCoR complex, and subsequently allow them to 
complex with β-catenin to dock on and activate 
the promoter of Wnt target genes, which is 
important for the tumorigenicity of SW480 
colon cancer cells [183]. These results suggest 
that the nature of post-translational modifica-
tion of TBL1 and TBLR1 determines whether 
they may function as tumor suppressors or as 
oncogenes to facilitate repression or activation 
of context-dependent target genes.

A recent development has implicated TBLR1 
involvement in AR regulation and prostate can-
cer progression. TBLR1 is found to be primarily 
localized in the nucleus of benign prostate cells 
and the level is reduced in prostate cancer 
cells. TBLR1 binds to AR and potentiates AR- 
dependent transcription of target genes in a 
phosphorylation- and 19S proteasome-depen-
dent manner. Interestingly, TBLR1 selectively 
activates genes important for growth suppres-
sion and differentiation but not pro-proliferative 
AR target genes, suggesting a tumor suppres-
sor function of TBLR1 in prostate cancer [184].

GPS2: In search for proteins that can rescue 
the lethal phenotype of yeast harboring a domi-
nant active yeast Gβγ mutant, Spain et al. have 
discovered GPS2 as a G-protein pathway sup-
pressor and shown that GPS2 can suppress 
RAS/MAPK-dependent JNK activation [185]. 
Another group independently found that GPS2 
interacts with Tax, a human T-cell lymphotro-
phic virus transcription factor, and suppresses 
TNFalpha-dependent activation of the JNK 
pathway [186]. Biochemical purification of no- 
vel NCoR/HDAC3-interacting proteins identi-
fied GPS2 as an integral component of the 
NCoR/SMRT/HDAC3 complex [28]. A coiled-coil 
region of GPS2 (amino acids 1-105) directly 
interacts with the N-terminal regions of both 
NCoR/SMRT and TBL1/TBLR1 to form a het-
erotrimeric complex. A recent structural study 
has confirmed these domain interactions and 
also shown that TBL1 is organized into a tetra-
meric structure [31].

Since the discovery of GPS2 as a G-protein 
pathway suppressor, GPS2 has emerged as a 
multifunctional protein. GPS2 can act both as a 
corepressor and a coactivator for various tran-
scription factors including nuclear receptors 
[187-194], consistent with the presence of dis-
tinct repression and activation domains in 
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GPS2 [28, 187]. Consistent with its coactivator 
function, GPS2 has also been shown to facili-
tate histone demethylation of certain target 
genes [189, 195]. These pro-activation activi-
ties of GPS2 may be independent of its interac-
tions with NCoR/SMRT and TBL1/TBLR1. In 
the context of repression, it has been proposed 
that GPS2 may, analogous to NCoR/SMRT, 
tether the corepressor complex to sequence-
specific transcription factors. While this idea is 
still interesting, and in fact is consistent with 
the reported anti-inflammatory function of 
GPS2 [196], the nature of transcription factors 
that use GPS2 to recruit the CoR complex, and 
the corresponding target genes regulated by 
the transcription factors, remain to be deter- 
mined.

Several recent studies have provided evidence 
that the interaction between GPS2 and CoRs 
may be a drugable target in cancer. Bi et al. 
[197] reported that GPS2 is SUMOylated at 
K45 and K71 within the coiled-coil region that 
interacts with CoRs. SUMOylation increases 
the corepressor function of GPS2 for ERα-
mediated transcription, initially reported by 
Cheng et al. [194], in both MCF-7 and T47D 
breast cancer cells due to enhanced GPS2 
incorporation into the TBL1/SMRT complex, 
which correlates with reduced proliferation of 
MCF-7 and T47D cells.

Two recent studies reported somatic mutations 
of GPS2 in a form of aggressive brain tumor, 

Medulloblastoma [198]. These mutations af- 
fect the residues in the coiled-coil region of 
GPS2 that mediate its interaction with NCoR/
SMRT and TBL1/TBLR1. The mutations signifi-
cantly worsen the prognosis [199]. The impact 
of these mutations on the GPS2-CoR interac-
tion has yet to be studied. Given the anti-inflam-
matory function of GPS2, one may speculate 
that such mutations may reduce the ability of 
the corepressor complex to suppress cytokine-
dependent signaling pathways, which may pre-
dispose the affected cells to oncogenesis.

GPS2 turns out to be the first CoR complex sub-
unit that forms fusion proteins with different 
partners in cancers. Undifferentiated spindle 
cell sarcoma (UDS) is a type of cancer with 
poorly defined diagnostic markers. O’Meara et 
al. identified a novel chromosomal transloca-
tion t(17;19)(p13;q13) in a pediatric UDS [200]. 
Interestingly, this in-frame fusion is between 
GPS2 and MLL4, which is the active subunit of 
one of the histone H3K4 methyltransferase 
complexes [201]. This fusion is oncogenic 
because it promotes anchorage-independent 
growth of the cells. It will be interesting to deter-
mine whether the fusion protein-containing 
complexes show multiple histone modification 
activities conferred by MLL4 (methyltransfer-
ase) and GPS2 (deacetylase and/or demethyl-
ase), which may be important for deregulation 
of gene expression in tumors. Besides MLL4, 
GPS2 has also been reported to fuse to other 

Figure 3. A working model showing that deregulated function of the corepressor complex disrupts homeostatic bal-
ance of cellular pathways to promote cancer progression.
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proteins in a prostate carcinoma cell line [202] 
and in glioblastoma multiforme [203]. These 
findings underscore the emerging important 
role of GPS2 in cancer.

Conclusion and future directions

Since the discovery of NCoR/SMRT nearly 20 
years ago, tremendous progress has been 
made in understanding the mechanisms, regu-
lation and functions of NCoR/SMRT and their 
interacting proteins in transcription, and their 
involvement in diverse pathways that regulate 
metabolism, inflammation and oncogenesis. A 
major advance in the field is the discovery of 
the multi-protein complex containing NCoR/
SMRT, HDAC3, TBL1/TBLR1 and GPS2. How- 
ever, to date, we still do not fully understand 
how these proteins regulate transcription in 
normal and cancer cells. Future studies may be 
devoted to understanding (i) the specificity of 
NCoR, SMRT, and their different isoforms, (ii) 
how the free form of HDAC3 assembles into the 
mature NCoR/SMRT-HDAC3 complex, (iii) the 
mechanism of “coactivator” functions of TBL1/
TBLR1 and GPS2 and how these functions may 
be related to their interactions with NCoR/
SMRT, (iv) the regulation of the expression of 
these proteins in normal and cancer cells, and 
(v) the genome-wide targets of these proteins. 
While the literature has supported the concept 
that deregulated corepressor function facili-
tates cancer development by disrupting the 
homeostatic balance between corepressors 
and coactivators (or other regulatory proteins) 
in the regulation of chromatin structure, tran-
scription, DNA repair, inflammation and other 
important biological processes (Figure 3), core-
pressors may have different mechanisms and 
play either pro- or anti-tumorigenic roles in dif-
ferent types of cancers and leukemias. It is 
thus important to fully understand the context-
dependent function of corepressors. Given the 
direct interactions between the various core-
pressor components and the transcription fac-
tors (such as ER, AR and leukemia fusion pro-
teins) involved in cancers and leukemias, these 
corepressor proteins should serve as important 
drugable targets for cancer therapy.
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