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Abstract: Prostatectomy or irradiation is the most common traditional treatments for localized prostate cancer. In 
the event of recurrence and/or metastasis, androgen ablation therapy has been the mainstay treatment for many 
years. Although initially effective, the cancer inevitably recurs as androgen-independent PCa, a disease with limited 
effective treatments. Enhanced predictive biomarkers are needed at the time of diagnosis to better tailor therapies 
for patients. MicroRNAs are short nucleotide sequences which can complementary bind to and control gene expres-
sion at the post-transcriptional level. Recent studies have demonstrated that many miRNAs are variably expressed 
in cancers vs. normal tissues, including PCa. In this review, we summarize PCa-specific miRNAs that show potential 
for their utilization as identifiers of aggressive disease and predictors for risk of recurrence. Additionally, we discuss 
their potential clinical applications as biomarkers and therapeutic targets.
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Introduction

Prostate cancer (PCa) is the second leading 
cause of cancer-related death for men in the 
US, with estimated 233,000 new cases and 
29,480 deaths from PCa in the United States in 
2014. (http://www.cancer.gov/cancertopics/
types/prostate). The natural course of the dis-
ease varies from indolent to highly aggressive 
cancer that metastasizes and leads to untimely 
death [1]. Due to the heterogeneity of PCa, 
identification of disease-specific molecular bio-
markers is a rational approach to preemptively 
assess metastasis and systemic progression 
of PCa. 

MicroRNAs (miRNAs) are small non-coding RNA 
strands that regulate expression of genes at 
the post-transcriptional and the translational 
levels. Growing evidences indicate that miRNAs 
can serve as ideal biomarkers for cancer diag-
nosis, prognosis and therapy. Individual miR-
NAs have been characterized either as tumor 
suppressors or oncogenes (oncomiRs). Either 
upregulation or downregulartion of miRNAs 
have been associated with the clinicopathologi-

cal parameters of different cancers, including 
lung cancer, hepatocellular carcinoma and 
breast carcinoma [2-4]. Evaluation of the 
expression levels of specific miRNAs in prostate 
tissues may be used to detect cancer, predict 
the cancer prognosis and provide therapeutic 
targets. A summary of miRNAs, with altered 
expression, including targets, pathways, and 
clinical significance, in PCa are included in 
Table 1. 

miRNA target prediction and miRNA/mRNA 
regulation networks

Identifying specific targets of miRNAs has been 
very challenging due to limited complementari-
ty between miRNAs and messenger RNA 
(mRNA) transcripts. Functional characterization 
of miRNAs depends heavily on identification of 
their specific mRNA binding partners [5]. Many 
target prediction tools have been developed to 
discover miRNA targets. Most tools are 
designed to concurrently reduce the false-posi-
tive rate and maximize the accuracy of their 
findings [6]. For example, TargetScan [7-10] 
allows the researcher to search by miRNA 
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Table 1. Summary of studies on miRNAs expression in PCa

Chrosome location upregulate/
downregulate Target gene Pathway Role in 

Pca Functions/clinical significants  Reference

Predicting the 
risk of recur-
rence after 
surgery for PC

miR-200 
family

miR-200a, miR-200b, 
and miR-429: 1p36.33, 

downregulation zinc-finger E-box binding homeobox 1 
(ZEB1) and ZEB2, SLUG

PDGF-D, TGF-beta tumor sup-
pression

Inhibit epithelial-to-mesenchymal 
transition

[36, 85, 
86]

miR-200c and miR-141: 
12p13.31

upregulation onco-
miRNA

miR-21 17q23.1 upregulation PDCD4, TPM1, TGFBR2, MARCKS HIF-1a 
and VEGF

TGFb pathway onco-
miRNA

Increase tumor growth, inva-
sion, metastasis, and apoptosis 
resistance

[106-108]

miR-100 11q24.1 downregulation SWI/SNF   tumor sup-
pression

inhibit invasion, cell proliferation

miR-
221/222

XP11.3 upregulation p27/kip1, p27 AR-dependent and AR-
independent pathways 

onco-
miRNA

Increase cell proliferation, enhance 
colony formation, invasion, and cell 
survival

[112-115]

miR-145 5q32 downregulation FSCN1; OCT4, SOX2, KLF4, MAP3K3, 
MAP4K4, proto-oncogene YES, the core-
binding transcription factor CBFB

Akt and Kras, P53, 
c-MYC

tumor sup-
pressor

inhibit migration, invasion and 
metastasis

[83, 84]

miR-143 5q32 downregulation KRAS, ERK5, CD133, CD44, OCT4, KLF4, 
c-MYC

EGFR-RAS-MAPK tumor sup-
pressor

Suppress cell proliferation, migra-
tion in vitro, attenuate bone meta-
static invasion in vivo, inhibit tumor 
sphere formation

[79-82]

miR- 
133b

6p12.2 downregulation CXCR4, FGFR1 and FSCN1 EGFR tumor sup-
pressor

Decrease cell proliferation, migra-
tion and invasiveness

[99]

miR-205 Chr 1 and Chr 12 downregulation N-chimaerin, ErbB3, E2F1, E2F5, ZEB2, 
and protein kinase Cε, BCL2, PSAP, ARA24, 
HRAS, PARK7, AR, NR4A2, EPCAM, MED1 
(also called TRAP220 and PPARBP)

the MAPK/ERK, Toll-
like receptor and IL-6 
signaling pathways

tumor sup-
pressor

Counteract EMT, promote cell apop-
tosis, impair cell growth

[49, 58, 
89, 90]

miR-663 20p11.1 upregulation onco-
miRNA

promotes cell proliferation and inva-
sion, neuroendocrine differentiation

miR-23b 
and miR-

27b

9q22.32 downregulation Rac1 and E-cadherin PI3-kinase, MAPK, 
TGF-Beta, Wnt, mTOR, 
Jak-STAT, toll-like 
receptor and Notch

suppresses key metastatic 
processes including cell invasion, 
migration and anchorage-indepen-
dent survival without affecting cell 
proliferation.

miR-182 
and 187

7q32.2/18q12.2 upregulation promising biomarkers for prostate 
cancer prognosis 
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Predicting hi- 
gh risk PCa

let-7b 22q13.31 downregulation AR, c-MYC, HMGA2, E2F2, CCND2, RAS, 
EZH2

tumor sup-
pressor

Suppress cell proliferation, Sup-
press advanced tumor progression, 
Induce cell cycle arrest in vitro and 
suppress tumor development in 
vivo, Inhibit tumor growth

[72-78]

miR-221 XP11.3 upregulation  SOCS3 and IRF2 JAK/STAT signalling 
pathway

onco-
miRNA

stimulates cell growth and influeces 
cell cycle progression, Enhance cell 
proliferation, colony formation, inva-
sion, and cell survival

[112, 113]

miR-203 14q32 downregulation CKAP2, LASP1, WASF1, BIRC5, ASAP1, 
RUNX2, PARK7, BRCA1, ZEB2, Bmi, 
Survivin

tumor sup-
pressor

Suppress cell proliferation, promote 
cell apoptosis, and inhibit metasta-
sis dissemination, suppress bone 
metastasis via inhibition of cell 
motility, invasion and EMT

[58, 87, 
88]

miR-34a 1p36.23 downregulation CD44, AR, CDK6, BCL2, SIRT1 c-MYC tumor sup-
pressor

Inhibit tumor progenitor cells and 
suppress metastasis, induce cell 
senescence and apoptosis

[91-95]

miR-101 downregulation EZH2 tumor sup-
pressor

Attenuate tumor cell invasiveness [97, 98]

miR-146a 5q34 downregulation ROCK1, EGFR, MMP2 EGFR tumor sup-
pressor

Suppress cell metastasis to bone 
marrow endothelium, Inhibit cell 
growth, colony formation and migra-
tion in vitro

[100, 101]
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name, gene name, or from conserved, or poorly 
conserved miRNA families across several spe-
cies. TargetScan is easy to use, but only consid-
ers stringent seeds, and ignores many potential 
targets. RNAhybrid [11, 12] is another tool for 
the easy, fast and flexible prediction of miRNA 
targets. RNAhybrid allows the user to find the 
minimum free energy hybridization of a long 
and a short RNA. A number of advanced set-
tings are available such as specification of hits 
per target, helix constraints, maximal internal 
loop size, maximal bulge loop size and maxi-
mum free energy cutoff. PicTar is a combinato-
rial miRNA target prediction tool and provides 
search function for miRNA targets on mRNA 
transcripts. Searches can be performed by 
miRNA or gene name. PicTar minimizes false 
positive results by using sequence alignment to 
eight vertebrate species and the candidate 
genes of each species are scored to create a 
combined score for a gene [13-15]. PITA is a 
miRNA target prediction tool that uses target-
site accessibility as its major feature. PITA uses 
complementarity analysis within seed regions 
to predict miRNA targets, then compares the 
free energy to make it accessible to the miRNA 
[16]. Other available tools include miRanda [17, 
18], miTarget [19], MirTif [20], HOCTAR [21] and 
TargetBoost [22].

Among all miRNA target prediction tools, there 
are four main characteristics of miRNA: mRNA 
target interaction that emerge as common fea-
tures: seed match, conservation, free energy, 
and site accessibility [23]. Earlier computation-
al tools focused on identification of functional 
miRNA binding sites and co-expression of miR-
NAs and their targets [6, 24]. Sumazin et al. 
found miRNA interactions which mediate cross-
talk between canonical oncogenic pathways by 
analyzing gene expression data in glioblastoma 
[25]. Tsang et al. developed a computational 
method by using gene expression data and find 
that both positive and negative transcriptional 
coregulation of a miRNA and its targets are 
prevalent in the human and mouse genomes 
[26]. Recently, Afshar et al. developed a new 
integrative analysis method which can be used 
to infer certain types of regulatory loops of 
deregulated miRNA/Transcription factor (TF) 
interaction. They analyzed mRNA/miRNA 
expression data from tumor and normal sam-
ples and identified several known and novel 
deregulated loops in PCa [27]. Computational 

prediction of miRNA target sites is an efficient 
tool to understand the molecular mechanisms 
of miRNA-mediated interactions and plays a 
key role in miRNA-based therapeutics in clinic. 

MiRNAs bind to complementary sequences on 
target mRNA transcripts, and regulate gene 
expression post-transcriptionally. TFs are a 
type of regulator that bind to specific DNA 
sequences within gene regulatory elements 
and induce or inhibit transcription. Motifs com-
prising miRNAs, TFs, and target genes make up 
transcription networks. The regulation of 
miRNA transcription involves feedback loops 
(FBLs) and feed-forward loops (FFLs) in which 
miRNAs participate together with transcription 
factors (TFs) [28, 29]. These motifs play crucial 
roles in regulation of gene expression. For 
example, O’Donnell found miR-17, E2F1, and 
c-Myc cluster controls cellular proliferation in 
cancer [30]. Muniategui et al. reviewed and 
analyzed the interplay between miRNAs and 
mRNAs. They grouped different mathematical 
models and computational prediction methods 
into: dependency analysis, linear regression 
(multiple and regularized) and Bayesian meth-
ods. They also emphasized that those models 
combining more heterogeneous experimental 
data might be more reliable predictors of miR-
NA-mRNA interactions. Schmeier et al identi-
fied 12 TFs which can regulate the expression 
of several important miRNAs during the differ-
entiation process. They analyzed the transcrip-
tional circuitry of miRNA genes during mono-
cytic differentiation by using time-course 
expression data for TFs and miRNAs [31]. 

Predicting the risk of PCa recurrence after 
treatment

Recently, a study identified 25 differentially 
expressed miRNAs between the high and low 
biochemical failure risk groups. This study iden-
tified that specific miRNA expression levels 
could be used as potential predictors of bio-
chemical failure risk at the time of prostatecto-
my [32].

The miR-200 family contains miR-200a, miR-
200b, miR-200c, miR-141, and miR-429. 
Studies showed that members of the miR-200 
family are down-regulated in human cancer 
cells and play a critical role in the suppression 
of epithelial-mesenchymal transition (EMT) by 
repressing the expression of key mRNAs that 
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are involved in EMT (ZEB1 and ZEB2) [33, 34]. 
miR-200a over expression reduces PCa cell 
growth [35]. Kong et al found miR-200 plays an 
important role in the processes of EMT and 
mesenchymal-epithelial transition (MET) in 
PDGF-D over-expressing PCa cells [36]. The 
loss of miR-200 induces EMT phenotype in 
LNCaP and PC3 cells, and the re-expression of 
miR-200 causes reversal of the EMT phenotype 
to MET phenotype.

miR-21 regulates the expression of multiple 
mRNA targets associated with tumor invasive-
ness and micro-vascular proliferation. Positive 
miR-21 expression is associated with poor bio-
chemical recurrence-free survival and has pre-
dictive value for biochemical recurrence risk in 
patients with PCa after radical prostatectomy 
[37]. Amankwah et al. found that miR-21 is also 
related to PCa recurrence after radical prosta-
tectomy and the differential expression of miR-
21 in PCa is more prominent in obese than in 
non-obese cases [38]. 

Androgen receptor (AR) plays a critical role in 
cell survival and proliferation in PCa. The TGFβ 
signaling pathway is one of the important path-
ways that AR cross-talks with. Mishra et al. 
showed that the AR and miR-21 drive the down-
regulation of TGFβR2 by acting through a posi-
tive feedback loop that inhibits growth respons-
es in PCa [39]. 

Using the Cox regression test, Leite et al. com-
pared four miRNAs (miR-100, miR-145, miR-
191 and miR-let7c) with risk of PCa biochemical 
recurrence. They showed that miR-100 and 
tumor volume were independently related to 
tumor recurrence [40].

Spahn et al. found that miR-221 was progres-
sively down-regulated in more aggressive PCa 
and the down-regulation of miR-221 was linked 
to tumor progression and recurrence [41]. 
Androgen-dependent PCa typically progresses 
to castration-resistant prostate cancer (CRPC) 
after androgen deprivation therapy. Sun et al. 
found miR-221/222 were significantly incre- 
ased in CRPC cells and miR-221/222 might be 
involved in the development or maintenance of 
the CRPC phenotype [42] .

MiR-145 is a tumor suppressor and its expres-
sion is regulated by the p53 pathway [43]. MiR-
145 has been shown to be down-regulated in 

breast cancer and colorectal cancer [44, 45]. 
Avgeris et al. found that down-regulated miR-
145 expression is associated with higher risk 
for biochemical recurrence and significantly 
shorter disease-free survival. In addition, the 
reduction of miR-145 expression in PCa was 
correlated with higher tumor grade (Gleason 
scores), advanced clinical stage, larger tumor 
diameter and higher prostate-specific antigen 
(PSA) and follow-up PSA levels [46]. MiR-133b 
locates at chromosome 6p12.2, and is down-
regulated in several solid cancers. Li et al. stud-
ied miR-133b expression in LNCaP and PC3 
PCa cells and clinical PCa samples. They found 
that miR-133b displays tumor-promoting prop-
erties and inhibits apoptosis in LNCaP cells, 
whereas it acts as a tumor suppressor in PC-3 
cells. RB1-inducible coiled-coil 1 (RB1CC1), 
which is found on chromosome 8q11 and is a 
target of miR-133b, is an independent prognos-
tic indicator for PCa. They concluded that miR-
133b and RB1CC1 might be two independent 
prognostic factors for biochemical recurrence 
[47]. Omer et al found that miR-1 and miR-133b 
were significantly down-regulated in recurrent 
PCa specimens and might be used as novel bio-
markers for prediction of PCa progression [48].

MiR-205 was significantly down-regulated in 
PCa and re-expression of miR-205 induced 
apoptosis, cell cycle arrest and EMT [49, 50]. 
Hagman et al. [51] found that the expression of 
miR-205 is inversely correlated to the occur-
rence of metastases and shortened overall sur-
vival, and is lower in CRPC patients. Gandellini 
et al. found replacement of miR-205 in PCa 
cells can restore basal membrane deposition 
and 3D organization into normal-like acinar 
structures by involving ΔNp63α, which is essen-
tial for maintenance of the BM in prostate epi-
thelium [49]. They found that ectopic miR-205 
over-expression in PCa cells impaired enhance-
ment of cell invasion, acquisition of stem cell 
traits, tumorigenicity and metastatic dissemi-
nation by counteracting cancer associated 
fibroblasts induced EMT [52].

Previous studies have shown that miR-663 is 
associated with viral infection, inflammatory 
responses, and autoimmune diseases. MiR-
663 may also be a potential tumor suppressor 
in gastric cancer, colorectal carcinoma, PCa, 
and acute lymphoblastic leukemia. Jiao L et al. 
[53] showed that miR-663 is upregulated in 
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CRPC tissues. Overexpression of miR-663 in 
LNCaP cells promotes cell proliferation and 
invasion. Jiao et al. showed that miR-663 plays 
a critical role in the progression of LNCaP cells 
to androgen independence. They found miR-
663 promotes the growth and invasion of 
LNCaP and LNCaP-AI cells, and the level of 
miR-663 in the samples from hormone naive 
PCa and CRPC (consistent nomenclature with 
rest of paper) patients correlate with tumor 
grade (Gleason scores) [53].

MiR-23b and miR-27b are two members of the 
same miR cluster (miR-23b/-27b). Meghan et 
al. showed that miR-23b and miR-27b are 
down-regulated in metastatic PCa and CRPC. 
Overexpression of miR-23b/-27b in aggressive 
PCa cell lines decreases migration, invasion 
and anchorage-independent growth. They con-
cluded that miR-23b/-27b is specifically linked 
to metastasis suppression and may be a useful 
biomarker for poor prognosis in addition to hav-
ing therapeutic potential as a target for ad- 
vanced metastatic PCa [54].

GABRE~miR-452~miR-224 is significantly do- 
wn-regulated in PCa. Kristensen et al. showed 
that miR-224 and miR-452 inhibit proliferation, 
migration, and invasion in PC3 and DU145 cells 
by regulation of the cell cycle and cellular adhe-
sion and motility. In addition, high GABRE~miR-
452~miR-224 promoter methylation was sig-
nificantly associated with biochemical recur-
rence in PCa and is a new promising epigenetic 
candidate biomarker for PCa diagnosis and 
prognosis [48]. 

MiR-182 and 187 are another miRNAs most 
differentially expressed between normal pros-
tate and tumor tissue. Casanova-Salas I et al. 
found that miR-182 and 187 are promising bio-
markers for PCa prognosis to identify patients 
at risk for progression [55]. 

Predicting more aggressive/high risk PCa

The treatment of more aggressive/high-risk 
prostate cancer (HRPCa) is a tremendous chal-
lenge for oncologists. The identification of pre-
dictive moleculobiological markers allowing 
earlier assessment of metastasis and systemic 
progression and avoiding overtreatment is one 
of the most urgent clinical needs in PCa.

High-motility group AT-hook gene 1 (HMGA1) is 
a non-histone nuclear binding protein, and is 
significantly overexpressed in PCa and associ-
ated with high grade and advance stage [56]. 
Schubert et al. showed that HMGA1 is a target 
of the miRNA let-7b and found correlation of let-
7b down-regulation with HMGA1 over-expres-
sion in primary PCa samples. They concluded 
that let-7b is a tumor suppressor miRNA in high-
risk PCa and presents a basis for improved indi-
vidual therapy for high-risk PCa patients [57]. 

Some studies have reported that miR-205 is 
up-regulated in lung cancer. However, in PCa, 
miR-205 is down-regulated, and may be associ-
ated with a poorer prognosis in PCa [50, 58]. 
Kalogirou et al. showed that miR-205 to be sig-
nificantly down-regulated in over 70% of the 
HRPCa samples. In addition, miR-205 is inc- 
reasingly down-regulated in lymph node metas-
tases compared to the primary tumor. According 
to their study, miR-205 is involved in the devel-
opment and metastasis of PCa, but failed to 
work as a useful clinical biomarker for HRPCa 
[59]. 

Several studies have shown that miR-221 is 
one of the most strongly and frequently down-
regulated miRNAs in primary-PCa [60-62]. 
Spahn et al. [63] showed that miR-221 is pro-
gressively down regulated in aggressive PCa, 
lymph node-metastases, clinical recurrence 
and has potential as a biomarker predicting 
progression and recurrence in high-risk PCa 
[63]. The same group found that miR-221 regu-
lates proliferation, invasion and apoptosis in 
PCa, partially via STAT1/STAT3 by activation of 
the JAK/STAT signaling pathway. miR-221 
directly inhibits the expression of oncogenes 
SOCS3 and IRF2 [64].

Sapre et al. performed the study to determine if 
miRNA profiling of urine and plasma at radical 
prostatectomy can distinguish potentially lethal 
from indolent PCa. They found that the combi-
nation of miR-16, miR-21 and miR-222 mea-
sured in urine was a better predictor of high-
risk disease than any individual miRNA [65]. 

miRNA in body fluid of patients with PCa

Tumor-specific miRNAs were first discovered in 
the serum of patients with diffuse large B-cell 
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lymphoma. Patrick et al. showed the presence 
of circulating tumor-derived miR-629 and miR-
660 were confirmed in blood with 100% sensi-
tivity and specificity by using a xenograft mouse 
PCa model. Dysregulated miRNA expression is 
an early event in tumorigenesis, therefore mea-
suring circulating miRNA levels may be useful 
for early cancer detection, contributing greatly 
to the success of patient outcome. 

Zhang et al. evaluated the possibility of miR-
141 as a biomarker for bone-metastatic PCa by 
measuring the miR-141 level in serum of 
patients. They found that the serum miR-141 
level is positively correlated with alkaline phos-
phatase (ALP) level in patients with skeletal 
metastasis [66]. Additionally, Lodes et al. 
reported that fifteen miRNAs were found to be 
over-expressed in serum from all stage 3 and 4 
PCa patients including miR-16, -92a, -103, 
-107, -197, -34b, -328, -485-3p, -486-5p, -92b, 
-574-3p, -636, -640, -766, -885-5p compared 
to normal controls [67].

Liu et al. analyzed six matched cancer and non-
cancerous tissues from non-small cell lung can-
cer (NSCLC) patients by miRNA microarray and 
found that the level of serum miR-21 was 
increased in cancer patients. In additon, over-
expression of serum miR-21 was strongly asso-
ciated with lymph node metastasis and 
advanced clinical stage of NSCLC [68].

MiRNA database and oncomiR

miRNA databases play a critical role for miRNA 
target predictions. Numerous databases have 
been developed that facilitate easy and effi-
cient mining of data for miRNAs and their target 
genes involved in a specific cancer. Different 
miRNA target prediction algorithms can provide 
different results, thus researchers have to 
check across multiple algorithms to get an 
additional layer of confidence for true positive 
targets. starBase was developed to facilitate 
the comprehensive exploration of miRNA-target 
interaction maps from CLIP-Seq and Degra-
dome-Seq data [69]. This has allowed research-
ers to search targets predicted by different 
algorithms, including TargetScan, PicTar, PITA, 
miRanda and RNA22. The miRBase database is 
a well-known database that can search pub-
lished miRNA sequences and annotation. miR-
Base allows the user to search both hairpin and 
mature sequences, and entries can also be 
retrieved by name, keyword, references and 

annotation [70]. miRNA databases provide 
researchers an easy and open access to miRNA 
sequences and miRNA complex network 
analysis.

Recent studies showed some miRNAs are up-
regulated in PCa, suppressing apoptosis-relat-
ed genes and leading to increased tumor 
growth and metastasis. The upregulation of 
miR-221 and miR-222 have been reported in 
PCa and involved in the PCa tumorigenesis and 
metastasis. miR-21 is another potential 
oncomiR that is overexpressed in several solid 
tumors including lung, breast and PCa, and 
plays an important role in tumor growth, inva-
sion and metastasis. The expression level of 
miR-21 is high in more aggressive PCa cells, 
such as PC-3 and DU-145 cells, whereas it is 
low in androgen-dependent LNCaP cells. 
Additionally, miR-125b is found to be overex-
pressed in PCa and is essential for androgen 
independent PCa cell proliferation [71].

Conclusions

Recent studies have suggested that miRNAs 
play an important role in tumorigenesis, pro-
gression, and prognosis of PCa. Since miRNA 
signatures can reflect differences in molecular 
changes in PCa at different stages, level, and 
aggressiveness, they have potential as power-
ful tools to support the diagnosis and early 
detection of cases with poor prognosis. Future 
studies are needed to investigate the role of 
individual miRNAs in PCa initiation and progres-
sion and develop miRNA-based diagnostic and 
therapeutic strategies.
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