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1. Introduction

The potential outcomes framework for causal inference employs a number of assumptions 

(Neyman, 1923; Rubin, 1974, 1990; Robins, 1986). One of the assumptions that is generally 

made, either implicitly or explicitly, is an assumption that is sometimes described as the 

“no-multiple-versions-of-treatment assumption”; the assumption is part of what Rubin 

defined as the “Stable Unit Treatment Value Assumption” or SUTVA (Rubin, 1980, 1986). 

The assumption is made so that the potential outcomes for each individual under each 

possible treatment are well defined and take on a single value. If there are multiple versions 

of treatment present, as might arise for surgery treatment say if there are different surgeons 

who perform the surgery, and if these different versions of treatment give rise to different 

potential outcomes, then this assumption will be violated.

To circumvent the problems created by multiple versions of treatment in such contexts, one 

might restrict inference to a single version of treatment or, more generally, redefine each 

version of treatment as a different treatment. For example, one could consider the effect of 

surgery conducted by each particular surgeon rather that the effect of surgery generally. 

Such redefinition of the treatment of interest would make the no-multiple-versions-of-

treatment assumption more reasonable and we do consider this approach below (see 

Proposition 1). However, redefining each version of treatment as a different treatment may 

not always be possible or desirable. One may not have data on which version each patient 

received. Moreover, if a patient needs to decide whether or not to undergo surgery but has 

no control over the choice of the surgeon who will actually perform the surgery, the average 

effect of the surgery treatment generally, rather than the average effect of surgery for each 

particular surgeon, may be what is most relevant. Such average effects of a particular 

surgical procedure (averaged over the surgeon who administers it) may also be of interest 

from a policy perspective. If, for example, in the treatment of cancer patients we are 

comparing the effects of radiation versus surgery, although different surgeons (i.e. different 

versions of treatment) may have different effects on survival, from a policy perspective, we 

could not simply select the most competent surgeon to perform all of the surgeries as the 

number of surgeries needed would be far too numerous for one surgeon to undertake. The 

policy question of interest here would be evaluating the overall survival rates of radiation 

versus surgery, taking into account the fact that not all surgeons are equally skilled.
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Motivated by the above considerations, the purpose of this article is to consider causal 

inference under violations of the no-multiple-versions-of-treatment assumption. We will 

consider two broad settings: one in which the treatment precedes the version and one in 

which the version precedes the treatment. In the first setting, treatment is well-defined even 

before the version has been assigned but an individual’s potential outcomes are not fixed by 

the treatment alone; the potential outcome may be different under different versions of 

treatment. For the purposes of identification, we draw a distinction between confounders of 

the treatment-outcome relationship and the treatment-version relationship. We show that if 

data is available on version and one is simply interested in causal effects comparing one 

version to another, then adjustment does not need to be made for treatment-version 

confounders in the estimation of such causal effects (Proposition 1). We also show that if 

there is only one version of the control condition, then to estimate the effect of treatment on 

the treated, adjustment likewise does not need to be made for treatment-version confounders 

(Proposition 2). However, under multiple versions of treatment, to estimate overall causal 

effects for a population, adjustment needs to be made both for treatment-version 

confounders and for treatment-outcome confounders (Proposition 3) and failure to control 

for treatment-version confounders can result in bias. Propositions 1 and 3 follow also from 

theory for direct effects and from causal diagrams (e.g. Pearl, 2009; cf. Petersen, 2011) 

when applied to the multiple versions of treatment context. Further discussion of 

accommodating multiple versions of treatment using causal diagrams, and of the relative 

advantages of using the approach like that presented here versus expanded causal diagrams, 

is given elsewhere (Pearl, 2010; Hernán and VanderWeele, 2011; Petersen, 2011). In this 

setting in which treatment precedes version, additional identification results are given for 

several other types of causal effects which compare outcomes under various settings under 

which the version of treatment is randomly assigned from some specified distribution 

(Propositions 4–7). Some of these results (Propositions 5 and 6) have analogues in the 

literature on stochastic interventions in the context of direct effects (Didelez et al., 2006; 

Geneletti, 2007). In the Appendix, we also consider analogous results when there may be a 

time-dependent confounder that is affected by treatment assignment but confounds the 

version-outcome relationship (Propositions 9–11). Finally, we give a result for the perhaps 

even more common setting in which the version precedes the treatment variable or in which 

the actual treatment variable used in the analysis is in fact a coarsening of the underlying 

version of treatment variable. We show that use of the coarsened variable in the analysis 

yields effect estimates that can be interpreted as the effect of interventions in which the 

underlying version of treatment is randomly selected from certain distributions naturally 

arising in the population (Proposition 8). We discuss the relation of these results to those 

obtained from the treatment then version setting.

Although some of the results follow in a straightforward way from existing theory we 

believe it is of benefit for applied research to carefully consider, using the results in this 

paper as guidance, what different versions of treatment might be present and how this may, 

or may not, affect inferences. In the setting of treatment-then-version, ignoring multiple 

versions of treatment and potential treatment-version confounders can result in biased 

estimates of the overall treatment effect. In the version-then-treatment setting, if multiple 

versions of treatment are ignored, similar problems can arise with regard to bias due to 
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inadequate control for confounding. Moreover, in this case, even if adequate control for 

confounding is made, the interpretation of the effect estimates are considerably more subtle 

than they at first may seem.

The remainder of the paper is organized as follows. In section 2 we review the potential 

outcomes framework and discuss how it can accommodate settings of multiple versions of 

treatment; we discuss the definition of causal effects under multiple versions of treatment. In 

section 3, we discuss identification of these effects when first the treatment is assigned and 

then a particular version of treatment is assigned. We discuss the interpretation of causal 

effect estimates under multiple versions and we consider when multiple versions of 

treatment can be ignored. In section 4, we will consider what new questions might be of 

substantive interest when multiple versions of treatment are present; some of the 

identification results bear certain resemblances to the analysis of direct and indirect effects 

(Robins and Greenland, 1992; Pearl, 2001; Didelez et al., 2006), though, as discussed further 

below, the precise technical details are distinct. In section 5, we discuss cases in which the 

ordering is version then treatment rather than treatment then version. An illustration is given 

in section 6. In section 7, we offer some concluding remarks and discuss how the extensions 

given in this paper to allow for violations of the no-multiple-versions-of-treatment 

assumption parallels in certain ways extensions described elsewhere for violations of the 

other major component of SUTVA, the no-interference assumption (Sobel, 2006; Hong and 

Raudenbush, 2006; Rosenbaum, 2007; Hudgens and Halloran, 2008; VanderWeele and 

Tchetgen Tchetgen, 2011a b; Halloran and Hudgens, 2012; Tchetgen Tchetgen and 

VanderWeele, 2012).

2. Potential Outcomes and the No-Multiple-Versions-of-Treatment 

Assumption

We will use j = 1, …, N to index the individuals in the population. Let Aj and Yj denote 

respectively the actual treatment received by and the actual outcome for individual j. Under 

the standard potential outcomes framework (Rubin, 1974, 1990), one might use Yj(a) to 

denote the potential outcome Y for individual j if treatment A were set, possibly contrary to 

fact, to the value a. Suppose treatment takes values in some set ; often  = {0,1} with 0 

indicating the control condition and 1 indicating the treatment condition. Articulating the 

potential outcomes framework in this way requires what Rubin called the “Stable Unit 

Treatment Value Assumption” or “SUTVA.” Rubin (1980) points out that notation such as 

Yj(a) effectively presupposes (i) that if individual j is given treatment a then individual j’s 

outcome under treatment a does not depend on which treatment individual j′ ≠ j received 

and (ii) that there do not exist multiple versions of treatment a which might give rise to 

different outcomes depending on which version is administered. The first of these 

assumptions is sometimes referred to as “no-interference” which Rubin (1980) attributes to 

Cox (1958); the second assumption is a “no-versions-of-treatment assumption” which Rubin 

attributes to Neyman (1935). Included also within SUTVA is an assumption which in other 

literature is sometimes referred to as consistency. The consistency assumption (Robins, 

1986) states that Yj(a) = Yj when Aj = a i.e. that the value of Y which would have been 

observed if A had been set to what it in fact was is equal to the value of Y which was in fact 
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observed. The consistency assumption ties the potential outcomes (or counterfactual data) to 

the observed data. Under Rubin’s articulation of SUTVA, if there is only one version of 

treatment, then if Aj = a, the manner in which treatment Aj was in fact set to a is irrelevant, 

so Yj(a) is well defined and is equal to Yj when Aj = a. Rubin’s SUTVA thus includes a no-

multiple-versions-of-treatment assumption and this no-multiple-versions-of-treatment 

assumption itself includes the consistency assumption.

The assumption of “no multiple versions of treatment” and SUTVA generally are relevant 

both to experimental and non-experimental studies. Although SUTVA is often only 

explicitly noted in non-experimental observational research, the assumption is important in 

the interpretation of causal effects even in randomized trials.

As noted above, one potential approach for handling multiple versions of treatment would 

be to redefine the treatment variable A so as to include the version of treatment. This then 

generates an expanded set of potential outcomes, one for each “treatment level” (defined by 

the version of treatment) and under this redefined treatment the no-multiple-versions-of-

treatment assumption will hold. In a number of settings this may be an adequate solution, 

though limited sample size for each version may limit the effectiveness of this approach. 

However, if we do not observe the version, redefining treatment so as to indicate version 

makes it difficult to identify causal effects since we would then not be observing what was 

redefined to be the treatment variable. Schafer and Kang (2009), however, have presented 

work that makes some progress with this approach; their approach does still assume that 

some indicators related to version are at least available.

Rather than redefining treatment in this way, additional progress can be made by instead 

introducing separate notation for the treatment itself and for the version of treatment. By 

taking this approach instead we will sometimes be able to define and identify causal effects 

even if we do not observe the version of treatment that each individual received. We follow 

Cole and Frangakis (2009) and VanderWeele (2009) to extend the potential outcomes 

notation to allow for multiple versions of treatment. Let Yj(a, ka) be the potential outcome 

for individual j if treatment A is set to value a by means ka where ka takes values in some set 

 = {1, …, na}. For example, if comparing surgery at a hospital (A = 1) to a control 

condition (A = 0), the set  may simply be a singleton if there were only one version of the 

control condition and  might be the set {1,2,3} indicating surgeon 1, 2 or 3 respectively 

and the potential outcomes Yj(1,1), Yj(1,2) and Yj(1,3) would indicate how individual j 

would fare under surgery by surgeon 1, 2 or 3 respectively. For the next two sections we 

focus on settings in which causal ordering of variables is treatment then version (rather than 

version then treatment). In the surgery example, an individual is first assigned to surgery 

then to a surgeon. Note that in this setting in which treatment precedes version, the treatment 

variable itself is well-defined even before version has been assigned; however, the potential 

outcome is not fixed by treatment alone. It is not fixed until the version has also been 

specified. Once treatment has been assigned, but before version has been fixed, one could 

effectively view the potential outcomes as stochastic counterfactuals (Greenland, 1987; 

Robins and Greenland, 1989, 2000).
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If the two treatments being compared were surgery and radiation, some aspects of treatment 

variation (e.g. specific hospital, time of treatment initiation) may be common to the 

treatments being compared but generally not all will be. For each treatment a, we will 

consider a distinct set of versions  = {1, …, na}. For individuals with Aj = a we let 

denote the version of treatment Aj = a actually received by individual j; for individuals with 

Aj ≠ a we define  so that . For notational convenience, we define the 

vector  and recall that  for a ≠ Aj so that Kj thus denotes a vector in 

which all of the entries are 0 except the entry corresponding to the treatment that individual j 

actually received and this entry indicates what version of that treatment was in fact received 

by individual j. Note also that Kj gives no more information than Aj and  together. Note 

also that there is not variation independence between Aj and Kj; once we know the vector 

Kj, we know Aj; but Aj does not uniquely determine Kj.

Under this expanded potential outcomes notation the no-multiple-versions-of-treatment 

assumption can then simply be articulated as that

(1)

If (1) holds then the consistency assumption is simply that for all j,

(2)

and (1) and (2) together would bring us back to Rubin’s articulation of the no-multiple-

versions-of-treatment assumption. VanderWeele (2009) referred to (1) as an assumption of 

treatment variation irrelevance (which need not necessarily imply consistency assumption 

(2)). Under multiple versions of treatment, if the version has no relevance to the outcome 

under consideration then (1) will hold and, for all practical purposes, there are “no multiple 

versions of treatment,” at least with regard to the outcome Y under consideration. Note, 

however, that the version of treatment may be irrelevant (i.e. (1) holds) for some outcome 

but may not be irrelevant for a different outcome.

If the treatment variation irrelevance assumption (1) is violated we may still articulate a 

consistency assumption as follows. The consistency assumption would then require for all j,

(3)

This expanded potential outcomes notation essentially presupposes that, for a subject with Aj 

= a and , (i) the potential outcomes Yj(a, k′a) with k′a ≠ ka are well defined, 

and (ii) the potential outcomes Yj(a*, ka*
) with a* ≠ a, ka*

 ∈  are well defined. In the 

surgery example, for an individual who in fact received surgery by surgeon 1, we could 

conceive of what would have happened to this individual had they received surgery from 

surgeon 2 or surgeon 3, and also what would have happened if surgery had not been given at 
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all; for an individual who did not receive surgery we could conceive of what would have 

happened to the individual had the individual received surgery from surgeons 1, 2 or 3.

The average causal effect comparing treatment a, version ka with treatment a*, version 

ka</sup>*</sup> is defined by:

(4)

The potential outcomes Y(a, ka) might be conceived of as consisting of joint interventions on 

both Aj and  to respectively set them to levels a and ka (Pearl and Robins, 1995; Pearl, 

2001). This likewise is the effect that corresponds to redefining version as a new treatment 

variable. If the potential outcomes Y(a, ka) or Y(a*, ka*
) are only defined for individuals for 

whom S takes certain levels of some covariate set S then we may instead be interested in the 

conditional causal effect:

(5)

Note that a special case of (4) and (5) would be when the treatment a is the same and only 

different versions, ka and k′a are being compared.

A well known causal effect is the effect of treatment on the treated, which is usually 

represented as E{Y(a)|A = a} − E{y(0)|A = a}. In the presence of multiple versions of 

treatment A = a, the counterfactual outcome Y(a) can be represented as Y(a, Ka). For 

individuals for whom A = a, Ka is simply the version of treatment that was actually received. 

Note that Ka is a random variable whose value may be different for different subjects, not a 

fixed value ka. Suppose now that there is only one version of treatment for the control 

condition, A = 0, so that K0 = {1} and the only potential outcome for each individual under 

the control condition is Yj(0) ≡ Yj(0,1). Provided Yj(0) is well-defined for individuals with 

treatment Aj = a ≠ 0, we could then define the effect of treatment on the treated as:

(6)

We will use additional notation to define another familiar causal effect, the overall treatment 

effect, but here in the setting with multiple versions of treatment. For individuals with Aj = a 

we defined  to be the version of treatment Aj = a actually received by individual j. In 

some cases, for individuals with Aj = a, we might be willing to conceive of a counterfactual 

variable , a* ≠ a, corresponding to the version of treatment a* that an individual 

would have received had they in fact been assigned to treatment a* rather than a. For 

example, in the surgery context, for an individual j who did not receive surgery (Aj = 0), the 

variable  would denote which surgeon individual j would have been assigned to had 

the individual in fact undertaken surgery i.e. whether the individual would have been 

assigned to surgeon 1, 2 or 3. We then assume a consistency assumption for , namely, 

 when Aj = a. For each individual j, we assume there is a fixed version that 
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would have been received had the individual been given treatment a*; as with the case of 

stochastic counterfactuals (Robins and Greenland, 2000), analogous results to those that 

follow would hold if these “counterfactual versions of treatment” were assumed stochastic.

The variable , a* ≠ Aj bears some resemblance to the counterfactual value of the 

mediator in the literature on direct and indirect effects but, unlike in the mediation context, 

counterfactuals of the form  are only defined when a and a* coincide; that is, 

if a* is the actual (or the counterfactual) treatment the only possible versions of treatment are 

different versions Ka*
of treatment a*. If we are willing to postulate variables , a* ≠ 

Aj then we can define the overall treatment effect comparing giving everyone treatment a 

versus treatment a* by:

(7)

Assuming the relevant counterfactuals exist we can define, Y(a) ≡ Y(a, Ka(a)) and the 

expression above is simply E{Y(a)} − E{Y(a*)}. In the following section we will discuss the 

identification of these various treatment effects. Later we will also consider the definition 

and identification of some additional causal effect measures.

3. Identification of Causal Effects Under Multiple Versions of Treatment

We now consider identification in the setting of multiple versions of treatment. We partition 

the set of covariate (potential confounders) into two sets. We let W indicate a set of 

covariates that may be causes of treatment A or may be, for one or more treatment levels a, 

causes of which version of treatment Ka is administered but are not causes of Y except 

through either treatment or the version of treatment; let C denote all other covariates. We 

partition the covariates in this way because, as we will see below, to identify certain causal 

effect we do not need data on W i.e. certain effects, but not others, would still be identified 

even if data on W were unavailable. We can then represent the relations between treatment, 

version, outcome and covariates as in Figure 1.

Note that because K contains all of the information in A, there is no arrow directed from A to 

Y. An example of a covariate in W in the context of the surgery example might be the 

particular health plan that an individual has that might affect both the probability that the 

individual receives surgery and, if the individual does receive surgery, also which particular 

surgeon conducts the operation, but would perhaps not affect the outcome except through 

whether surgery is received and who performs the surgery.

The results below will require that the covariate sets C and W are sufficiently rich so that 

certain no unmeasured confounding assumptions (also sometimes referred to as 

“exchangeability” or “ignorability” assumptions) are met. We will use the notation A II B|C 

to denote that A is independent of B given C. We will first consider the following 

assumption: whether we have
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(8)

In other words, we will consider whether, within strata of the covariates C, groups defined 

by treatment and version are, for all a ∈ , ka ∈ , comparable in their potential outcomes 

under treatment a, version ka. Note that assumption (8) would hold if treatment A were 

randomized (or randomized conditional on C) and if, conditional on treatment A = a (or 

conditional on {A = a, C = c}), version of treatment Ka were also randomized. Intuitively, 

(8) states that the set C suffices to control for confounding of the joint effect of treatment 

and version on the outcome. Assumption (8) will hold if Figure 1 represents a causal 

directed acyclic graph (Pearl, 2009). Note that in Figure 1, C blocks all backdoor paths from 

the set {A, K} to Y. Note also that since K in fact contains all the information in A, 

assumption (8) could also be written as Y(a, ka) II K|C; the two are equivalent.

We then have the following identification results. The proofs of all results are given in the 

appendix; some of the proofs bear resemblance to certain identification results in the 

literature on direct and indirect effects and we will point out when this is so.

Proposition 1

If Yj(a, ka) and Yj(a*, ka*
) are well defined for all individuals j and if the no-unmeasured-

confounding assumption (8) holds then

Note for the quantity on the right hand side of the equation in Proposition 1 to itself be 

estimable from data we would need “positivity” (or “experimental treatment assignment” 

assumption) to hold that 0 < P(A = a, Ka = ka|C = c) < 1 for all a, ka and c. Similar 

“positivity” assumptions will be assumed to hold throughout.

Proposition 1 thus allows for the identification of the average causal effect comparing 

treatment a, version ka with treatment treatment a*, version ka*
. We could control for W as 

well in assumption (8) and Proposition 1, but data on W is not necessary to identify the 

effect given in Proposition 1; data on W will, however, be needed for the overall treatment 

effect result given below. The proof of Proposition 1 given in the appendix is for the 

identification of E{Y(a, ka)}; this proof is completely isomorphic to the proofs often used for 

the identification of counterfactuals for controlled direct effects (Robins and Greenland, 

1992; Pearl, 2001). Note however that the effect itself is somewhat different; even in the 

special case with a = a* but ka ≠ k′a, the effect E{Y(a, ka)} − E{Y(a, k′a)} corresponds to 

having the “treatment” variable fixed not the “mediator” variable as in controlled direct 

effects. If Y(a, ka) and/or Y(a*, ka*
) are only defined for those with certain covariate values 

of S ⊆ C then the result in Proposition 1 can be made conditional on S = s. In the appendix 

we also discuss settings in which there may be an effect, Q, of treatment A that affects both 

version K and the outcome Y, a setting sometimes referred to as “time-dependent” 

confounding. Analogous results hold but identification formulas are different.
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As already noted, some of the theory and results given here bear resemblance to results on 

direct and indirect effects. However a number of the precise technical details differ. First, in 

the setting considered here in which treatment precedes version, unlike in the context of 

direct and indirect effects, once the version is known the treatment is also known, whereas, 

with mediation, the same value of the mediator can arise for different treatment groups. 

Moreover, in the multiple versions of treatment context there is no direct effect of treatment 

on the outcome other than through version. Furthermore, within a deterministic potential 

outcomes framework (Rubin, 1974, 1990), even when studying direct and indirect effects, 

once treatment is assigned this fixes the potential outcome for an individual, whereas in the 

multiple versions of treatment context, the potential outcome is not fixed by treatment alone; 

it is not fixed until the version has also been specified. Finally, in the multiple versions of 

treatment context, we can distinguish between at least two scenarios, one in which treatment 

precedes version and one in which version precedes treatment, and it is the former rather 

than the latter scenario that bears resemblance to results on direct and indirect effects. In this 

paper, we develop theory and results for both settings. Nevertheless, in several cases, the 

actual proofs for the results on multiple versions of treatment, like Proposition 1, are 

formally identical to those for direct effects (Pearl, 2001; Didelez et al., 2006; Geneletti, 

2007).

An interesting special case of multiple versions of treatment and the causal effect identified 

under Proposition 1 is the setting of partial compliance (e.g. Jin and Rubin, 2008). If the 

treatment A is a randomized dose, the “version” K might be taken as a measure of the extent 

of compliance. Appeal to Proposition 1 does, however, require that control be made for 

common causes of the version and the outcome. This will often be a strong assumption and 

in the compliance setting it may not hold. Proposition 3 below, which identifies overall 

causal effect (analogous in the non-compliance setting to the intent-to-treat effect) will not 

require this assumption. However, when the effect of different levels of compliance is of 

interest, and when it is not possible to control for the confounders of relationship between 

version/compliance and outcome, then alternative approaches such as that of Jin and Rubin 

(2008) using principal stratification and a Bayesian analysis may be desirable. As yet 

another alternative when there are unmeasured version-outcome confounders, it may be 

possible to adapt sensitivity analysis techniques for controlled direct effects (VanderWeele, 

2010) to the multiple versions of treatment setting.

We now consider the identification of the effect of treatment on the treated.

Proposition 2

If there is only one version of treatment for the control condition so that and Yj(0) is well 

defined for all individuals j and if Y(0) II {A, K0}|C then

Note that Y(0) II {A, K0}|C would hold under assumption (8) above; however, for the 

application of Proposition 2 we only need the weaker condition Y(0) II {A, K0}|C rather than 

VanderWeele and Hernán Page 9

J Causal Inference. Author manuscript; available in PMC 2014 November 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



that (8) hold for all a ∈ , ka ∈ . Once again with Proposition 2 we do not need to control 

for the A – K confounders, W.

If we are willing to postulate variables , a* ≠ Aj, so that we can define Y(a) = Y(a, 

Ka(a)) we can also consider the identification of the overall treatment effect. As will be 

shown in Proposition 3, overall treatment effects are identified if

(9)

Assumption (9) requires that, within strata of the covariates {C, W}, groups defined by 

treatment are comparable in their potential outcomes Y(a) =Y(a, Ka(a)). Assumption (9) 

would hold if treatment A were randomized (or randomized conditional on {C, W}); 

assumption (9) holds if Figure 1 is a causal directed acyclic graph (Pearl, 2009).

Proposition 3

If  and  are well defined for all individuals j 

and if (9) holds then E{Y(a) − Y(a*)} =

Note for the quantity on the right hand side of the equation in Proposition 3 to itself be 

estimable from data we would need “positivity” to hold for both {C, W}, not just C i.e. 0 < 

P(A = a|C = c, W = w) < 1 for all a, c and w.

Proposition 3 states that even under violations of the no-multiple-versions-of-treatment 

assumption we can use the ordinary identification formula for overall treatment effects but 

control needs to be made not simply for variables C that might confound the relationship 

between treatment assignment and outcome but also for variables W that may affect both 

treatment assignment and version of treatment (even if these variables do not also affect the 

outcome except through treatment or version of treatment). Control must be made for these 

variables essentially because for the overall treatment effect we are examining the effect of 

A on Y and W is a confounder of the relationship between A and Y as it affect both A and also 

Y through K. Note, however, that if treatment is randomized there will be no common 

causes of treatment and version. In an observational study, such as that which might be 
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represented in Figure 1, if control is not made for W then there is an unblocked backdoor 

path from A to Y, namely, A ← W → K → Y. In the context of multiple versions of treatment 

a sufficient set of confounders for the effect of A on Y would need to include W. In the 

appendix we give a numerical example showing that without controlling for a common 

cause of A and K, one can obtain biased estimates of the overall treatment effect. 

Analytically, it follows from the results of VanderWeele and Arah (2011) that the difference 

between the estimate adjusted for only C versus that adjusted for C and W is given by

where w′ is an arbitrary reference level of W. The bias thus depends on the effect of W on Y 

(essentially through K), i.e. E(Y|a, c, w) − E(Y|a, c, w′) and E(Y|a*, c, w)−E(Y|a*, c, w′), and 

on the conditional distributions of W: P(w|a, c), P(w|a*, c) and P(w|c).

Several observations emerge from the results above. First, Propositions 2 and 3 demonstrate 

what may be intuitively clear, that it is not necessary to have data on the versions of 

treatment in order to estimate the effect of treatment on the treated or the overall treatment 

effect. For the overall treatment effect, adjustment needs to be made not only for common 

causes of treatment and outcome but also common causes of treatment and version of 

treatment. For the effect of treatment on the treated, if there are no multiple versions of 

treatment for the control condition, it is not necessary to have data on common causes of 

treatment and version. Finally, as shown in Proposition 1, if data are available on the version 

of treatment then one can identify causal effects comparing a version of one treatment to 

some other version of the same or a different treatment and to identify such effects one again 

does not need data on the common causes of treatment and version.

Proposition 3, in particular, has important implications for settings in which the multiple 

versions of treatment assumption is violated and the violation is ignored. The result implies 

that the ordinary estimator for average causal effects (i.e. standardizing outcome differences 

between treatment groups by confounders, ignoring versions) can be interpreted as a contrast 

between (i) the average outcome that would be expected if everyone had been assigned 

treatment A = 1 with each individual receiving the version that would have been received 

had they been assigned A = 1 versus (ii) the average outcome that would be expected if 

everyone had been assigned treatment A = 0 with each individual receiving the version that 

would have been received had they been assigned A = 0. The estimate carries this 

interpretation provided adjustment is made for all confounders of the relationship between 

treatment A and outcome Y; importantly, however, within the context of multiple versions of 

treatment, these confounders include common causes of treatment and version. Data on 
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version is not needed, and the no-multiple-versions-of-treatment assumption does not need 

to hold, but data on common causes of treatment and version are needed to interpret the 

estimate as a causal effect.

One way to think about these results are that if we conceive of a treatment and version 

combination, (a, ka), as a “regime”, and a treatment a, along with an unknown rule relating 

treatment to version as a “policy,” then Proposition 1 states that if the usual conditional 

independence assumption holds at the level of the regime (assumption 8) we can identify 

causal effects at the level of the regime. Proposition 3 states that if the usual conditional 

independence assumption holds at the level of the policy (assumption 9), then for the set of 

policies in place in the study, we can identify average causal effects at the level of the 

policy.

4. New Causal Effects and Applications with Multiple Versions of Treatment

In this section we will consider the identification and interpretation of a different type of 

causal effect which arises by setting the version of treatment to various prespecified 

distributions. These prespecified distributions may be fixed or may be defined by those of 

certain treatment groups or by those of individuals with certain pretreatment covariate 

values. For the results in this section we will rely principally on assumption (8) above but 

for one result we will consider another “exchangeability” or “no unmeasured confounding” 

condition, namely whether

(10)

In other words, we will consider whether, within strata of the covariates {C, W}, groups 

defined by treatment are comparable in the versions of treatment they would have received 

under each possible treatment a. Note that assumption (10) would hold if treatment A were 

randomized (or randomized conditional on {C, W}. Intuitively, (10) states that within strata 

of {C, W} the version of treatment which an individual would be assigned if given treatment 

a is independent of the treatment actually received; note the set {C, W} blocks all backdoor 

paths from A to K in Figure 1; assumption (10) would thus hold if Figure 1 were a causal 

directed acyclic graph (Pearl, 2009).

Taubman et al. (2008) considered what the incidence of coronary heart disease would be if 

everyone exercised at least 30 minutes per day compared to what it actually was, E[Y]. Note 

that there are clearly multiple versions of treatment for both A = 1 (“exercising at least 30 

minutes per day”) and A = 0 (“exercising less than 30 minutes a day”). With slight abuse of 

notation (by not beginning the indices of each Ka with 1), we might index K1 by {30, 31, 

32…} and K0 by {0, 1, 2, …29}. Taubman et al. (2008) considered two hypothetical 

intervention regimes g that would ensure “exercising at least 30 minutes per day.” Here we 

consider a simplified version of the Taubman et al. (2008) example, with a point-treatment 

rather than time-varying treatment, and provide formal identification results for the two 

hypothetical intervention regimes that Taubman et al. (2008) discussed. This simplification 

of the Taubman et al. (2008) example could also be analyzed under the partial compliance 

framework of Jin and Rubin (2008). Under the first intervention regime, those with A = 1 
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who in fact exercised at least 30 minutes were allowed to retain their actual number of 

minutes of exercise K1 and those with A = 0 who in fact exercised less than 30 minutes 

were, under treatment, assigned version of treatment K1 = 30. The counterfactual quantity of 

interest was thus E[Y(1, G)] where G = K1 if A = 1 and G = 30 otherwise. Taubman et al. 

described this as a “threshold intervention.” Since, E{Y(1, G)|A = 1} = E{Y(1, K1)|A = 1} = 

E(Y|A = 1), to identify E{Y(1, G)} it suffices to identify E{Y(1, G)|A = 0} = E{Y(1, 30)|A = 

0}. Identification conditions for this quantity are given in the following result.

Proposition 4

If for some a* ≠ a, and some ka, Yj(a, ka) is well defined for all individuals with Aj = a* and 

if the no-unmeasured-confounding assumption (8) holds then

The second regime g considered by Taubman et al. again lets individuals with A = 1 who in 

fact exercised at least 30 minutes retain their actual number of minutes of exercise K1; under 

the second regime those with A = 0 who in fact exercised less than 30 minutes were, under 

treatment, randomly assigned a version of treatment K1 from the distribution of those with A 

= 1 who had the same covariates. Taubman et al. described this second regime as a 

representative regime. If we now let Gj denote a randomly assigned version, K1, of treatment 

from the distribution of those with A = 1 with covariates Cj then the quantity E{Y(1, G)|A = 

0} is needed to identify the counterfactual incidence of coronary heart disease under the 

“representative regime.” This quantity is identified by the following result.

Proposition 5

For individuals j with Aj = a* ≠ a, let  be a random variable with distribution defined by 

pr(Ka = ka|A = a, C = Cj). If for all j such that Aj = a*, the potential outcome Yj(a, ka) is well 

defined for all  and if the no-unmeasured-confounding assumption (8) holds 

then

(11)

Note that the quantity E{Y(a, Ga)|A = a*} in Proposition 5 does not necessary reflect what 

would happen if we were to set the version of treatment to the version it would have been if 

those with A = a* had in fact been given treatment A = a. The formula in (11) will however 

identify this latter quantity if, as stated formally in the next proposition, for individuals with 

Aj = a*,  is well defined and if the set of covariates for which control is made contains 

both C and W in Figure 1 so that in addition to identification assumption (8), identification 

assumption (10) also holds. Whereas Proposition 5 gave a result for randomly setting 

version of treatment to the distribution of those with A = a, Proposition 6 gives a result for 

randomly setting version of treatment to the distribution of those with A = a* had they been 

given treatment A = a.
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Proposition 6

If for all individuals j with Aj = a* ≠ a, the potential outcome  is well defined then let 

 be a random variable with distribution defined by pr(Ka(a) = ka|A = a*, C = Cj, W = 

Wj). If for all j such that Aj = a*, the potential outcome Yj(a, ka) is well defined for all 

 and if the no-unmeasured-confounding assumptions (8) and (10) hold then

Under assumptions (8) and (10) of Proposition 6, ordinary estimators of treatment effects 

will, for each treatment group, estimate the effect of randomly setting the version to one 

selected from the distribution of versions of those who were in fact in that treatment group; 

note this is a somewhat stronger interpretation than that provided in Proposition 3. The 

analytic formulas in Propositions 5 and 6 bear resemblances to those for so-called “natural 

direct and indirect effects” (Robins and Greenland, 1992; Pearl, 2001) when these effects are 

identified. Unlike in the literature on natural direct effects, all of the assumptions made here, 

namely (8)–(10), would be satisfied if both treatment and version were randomized whereas 

the identification of natural direct and indirect effects requires counterfactual independence 

assumptions that may not hold even in a doubly randomized trial (Robins, 2003). The effects 

are thus much closer to those defined in the direct effects literature by stochastic 

interventions on the mediator (Didelez et al., 2006; Geneletti, 2007) and Propositions 5 and 

6 would in fact follow from those results appropriately replacing the mediator by version.

We define and provide an identification result for one further counterfactual quantity. In 

health disparities research, health outcomes are compared by strata of race or socioeconomic 

status. In some cases, access to care or receipt of a treatment or procedure may be equal 

across strata of racial groups but health outcome disparities may still persist. One possibility 

is that race itself modifies the effect of treatment. Another possibility is that there may in 

fact be disparities in the version of the treatment being administered. Thus even if outcome 

disparities are not explained by disparities in the receipt of treatment, they may be explained 

by disparities in the version of treatment. Let A denote some treatment; for example, for 

patients with acute respiratory distress syndrome, A = 1 might denote low-volume 

ventilation and A = 0 traditional ventilation (Acute Respiratory Distress Syndrome Network, 

2000). Let K1 denote the version of treatment A = 1 (e.g. K1 might denote the quality of the 

monitoring for low-volume ventilation) and let Y denote the health outcome (e.g. 180 day 

survival). Let S ⊆ C denote one or more covariates of interest; here we will let S denote 

race. We might, for example, then be interested in how much better outcomes would have 

been for black individuals (S= 1) who received treatment if they had obtained the same 

quality of treatment as white individuals (S = 0). If for individuals with S = 1, we let Gj 

denote a randomly assigned version of treatment K1 from the distribution of those with A = 

1, S = 0 and with covariates C\S equal to Cj\Sj then this quantity is given by
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The counterfactual quantity E{Y(1, G)|A = 1, S = 1} is identified by the following result.

Proposition 7

Let S ⊆ C and let  be a random variable with distribution defined by pr(Ka = ka|A = a, S 

= s′, C\S = Cj\Sj). If for all j such that Aj = a and S = s, the potential outcome Yj(a, ka) is well 

defined for all  and if the no-unmeasured-confounding assumption (8) 

holds then

Note that the hypothesis that different versions of treatment were given to groups S = 1 and 

S = 0, not because of discrimination, but because differing versions of treatment, ka and k′a, 

have differing effects across strata of S could be examined by contrasting E{Y(a, ka)|c, S = 

1}− E{Y(a, k′a)|c, S = 1} and E{Y(a, ka)|c, S = 0} − E{Y(a, k′a)|c, S = 0} which would be 

identified under assumption (8).

5. When Version Precedes Treatment and Consequences of Coarsening the 

Treatment Variable

All the material thus far considered a setting where treatment is set first and then the version 

of treatment; in this section we consider the reverse scenario, wherein the version precedes 

the treatment variable used in the analysis. For example, a researcher may be interested in 

assessing the effect on five-year all-cause mortality of having low density lipoprotein (LDL) 

cholesterol of 140 versus 100. In this case, there is no clear unambiguous intervention to fix 

LDL cholesterol to 140 or 100. Setting LDL cholesterol to a particular level could 

potentially be accomplished by a dietary intervention or by cholesterol medications or by 

changes in exercise, but each of these may have different implications for mortality 

outcomes. The treatment variable itself is poorly defined for the purposes of thinking about 

causal effects. We might conceive of a broad range of potential interventions to fix LDL 

cholesterol to 140 or 100 or to some other level. In this case the version (the different ways 

of setting LDL cholesterol) precedes the treatment variable (the actual level of LDL 

cholesterol itself).

As another example of when version precedes treatment, we will consider the case of the 

dichotomization or coarsening of an underlying treatment variable. Often researchers will 

coarsen, categorize or dichotomize a continuous exposure to simplify an analysis. For 

example, if the continuous exposure is the number of minutes of exercise, a researcher may 

form a new dichotomous “treatment” variable defined by exercising at least 30 minutes. One 
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might then speak of different “versions” of the treatment “exercise at least 30 minutes” e.g. 

exercise 30 minutes, exercise 31 minutes, etc. In the analysis for multiple versions of 

treatment given above we have presupposed that the causal order of the variables was 

treatment then version. However, when a continuous exposure has been dichotomized an 

alternative conceptualization might be that the version precedes treatment.

Suppose then that there is some underlying version of treatment variable K but that the 

analyst has data on a coarsened variable A where each value of A corresponds to one or more 

values of K (i.e. the mapping from K to A is a many-to-one map). Let Y be the outcome and 

Y(k) be the potential outcome for an individual if K had been k. Suppose that in an 

observational study for a set of covariates L we had Y(k) II K|L i.e. no confounding of the 

effect of K on Y conditional on covariates L. Suppose also the consistency assumption held 

such that Y(k) = Y when K = k. An analyst who had used the treatment A might then compute 

the “causal effect” comparing treatment levels A = a and A = a* by calculating Σl E(Y|A = a, 

l)pr(l) − Σl E(Y|A = a*, l)pr(l). The following result re-expresses this quantity in terms of 

interventions on K. We state the result and then consider its interpretation.

Proposition 8

If Y(k) II K|L then

This latter expression can itself be interpreted as a comparison in a randomized trial in 

which, within strata of covariates L = l, one arm is randomly assigned a “version of 

treatment” K from the observed distribution of K in the population amongst with A = a and L 

= l (e.g. if K is minutes exercised, and A = a corresponds to K ≥ 30, then this would be the 

distribution of minutes of exercise amongst those with L = l who exercise at least 30 

minutes) and the other arm is randomly assigned a “version of treatment” K from the 

observed distribution of K in the population amongst with A = a* and L = l (e.g. the 

distribution of minutes of exercise amongst those with L = l who exercise less than 30 

minutes).

Note that nothing in the analysis above required that K itself be continuous; the variable K 

might indicate a complex set of potential interventions which are coarsened in treatment 

variable A by partitioning the support of K. The ordinary estimator for the causal effect 

adjusting for L, namely, Σl E(Y|A = a, l)pr(l) − Σl E(Y|A = a*, l)pr(l), thus, even in the 

presence of multiple versions of treatment (and even when the treatment variable A does not 

unambiguously correspond to a single intervention) has the interpretation of a causal effect 

comparing two randomized interventions.
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We note that in some cases there may be ambiguity as to whether “treatment” precedes 

“version” as in the previous section or whether “version” precedes “treatment” as in this 

section. In the exercise example, it is perhaps not unreasonable to argue that the number of 

minutes of exercise is constituted by a number of decisions (whether to exercise more than 5 

minutes, whether to exercise more than 10 minutes, etc.). One of these decisions, namely 

whether to exercise more than 30 minutes, could be taken as A; once this is determined then 

there is still the question of which version of A = 1 (how many minutes above 30) or A = 0 

(how many minutes below 30) is selected; this was how the issue was conceptualized in the 

previous section. Interestingly, however, under either conceptualization, one obtains the 

same empirical formula for the estimate of the overall treatment effect: replacing L with {C, 

W} in Proposition 8 gives the same empirical formula as in Proposition 3.

In other cases, there is arguably less ambiguity concerning the ordering of version and 

treatment. If, for example, the exposure A = 1 is experiencing high levels of loneliness and A 

= 0 experiencing low loneliness, then there are numerous decisions or interventions that may 

lead to high loneliness and it is difficult to conceive of these as following rather than 

preceding the high level of loneliness itself. In such cases the approach of this section will 

be of interest. In the next section we illustrate this approach with an empirical data analysis 

illustration.

Several important points merit attention, however. First, the ordinary estimate only merits 

the interpretation of the effect comparing two randomized interventions if we have 

adequately controlled for confounding for the underlying version of treatment variable K. 

Second, even if we can potentially interpret the effect of treatment in this manner, an 

intervention corresponding to the treatment effect we are supposedly estimating will often 

not be possible to realistically implement in practice. Finally, if we do not know what the 

underlying version of treatment K is, it may be difficult to assess whether we have indeed 

controlled for all relevant confounders. We have elsewhere discussed these points in greater 

detail along with their implications for epidemiologic research (Hernán and VanderWeele, 

2011).

6. Illustration

We illustrate some of the prior discussion with an example in which an exposure has been 

dichotomized. Loneliness (measured on the UCLA-R scale from 20 to 80) has been shown 

to prospectively predict depressive symptoms (measured on the CES-D scale from 0 to 60) 

even after control is made for baseline depressive symptoms and other covariates (Cacioppo 

et al., 2006). Longitudinal data available on loneliness and depressive symptoms in the 

Chicago Health, Aging, and Social Relations Study of 229 older adults; this data also 

include as covariates: age, gender, ethnicity, marital status, education, psychiatric conditions 

and psychiatric medications. Suppose a researcher were to median dichotomize measured at 

loneliness at follow-up 1 so as to define A = 1 when loneliness is greater than 35. A 

regression of depressive symptoms at follow-up 2 on dichotomized loneliness at follow-up 

1, along with baseline loneliness, baseline depressive symptoms and baseline covariates 

gives an estimate of 2.44 (95% CI: 0.03,4.85) for dichotomized loneliness at follow-up 1. If 

we thought that baseline covariates (including baseline loneliness and depressive symptoms) 
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were sufficient to control for confounding of the effect of loneliness at follow-up 1 on 

depressive symptoms at follow-up 2 then we could interpret this as an estimate of an 

intervention trial that, conditional on covariates, assigned each individual in one arm to a 

“version of treatment” of loneliness > 35 randomly drawn from the distribution of “versions 

of treatment” in the population of those with loneliness > 35 and assigned each individual in 

the other arm to a “version of treatment” of loneliness ≤ 35 randomly drawn from the 

distribution of “versions of treatment” in the population of those with loneliness ≤ 35. Note 

that the estimate only has this interpretation under the strong assumption of no unmeasured 

confounding, which may not be realistic here.

7. Discussion

In this article we have described how the potential outcomes framework can be extended to 

allow for multiple versions of treatment, which are present to varying degrees in both 

observational studies and in randomized clinical trials. In clinical trials, guidelines are often 

given to reduce the number or relevance of versions but it is generally not possible to 

eliminate this problem entirely (Hernán and VanderWeele, 2011). Fortunately, as we have 

seen, even with multiple versions of treatment, it is possible to use the ordinary estimators 

for causal effects (outcome differences between treatment groups standardized by 

confounders) to compare the effects of treatments on average under no-unmeasured-

confounding assumptions. Ordinary estimators can be interpreted as the causal effects of 

well-defined interventions that mimic the assignment of versions of treatment in the study 

population. For such an interpretation in an observational study control must, however, in 

general be made for common causes of treatment and version; in a randomized trial there 

will be no such common causes. Although the ordinary estimators have an interpretation as 

an overall causal effect, multiple versions of treatment still renders ambiguous statements 

such as “treatment is on average better than control” since these statements will always be 

with reference to the current policies for assigning versions. Even if treatment is better on 

average than control under current policies for assigning versions, it is nevertheless possible 

that certain versions of control, if administered to an entire population, would be better than 

administering certain versions (or even all versions) of treatment. This could arise if the 

most effective version of the control were generally infrequently assigned. Analysis of the 

effects of a specific version of treatment (Proposition 1) or of varying regimes and policies 

(as considered in section 4) can be useful in assessing this possibility. We have also seen 

how ignoring multiple versions of treatment can lead to problems with bias and 

interpretation. In the setting of treatment-then-version, ignoring multiple versions of 

treatment and potential treatment-version confounding can result in biased estimates of the 

overall treatment effect. In the version-then-treatment setting, if multiple versions of 

treatment are ignored, similar problems can arise with regard to bias due to inadequate 

control for confounding. Moreover, in this case, even if adequate control for confounding is 

made, the interpretation of the effect estimates are, as noted above, considerably more subtle 

than is the case with only a single version of treatment.

The contributions in this paper have attempted to extend the potential outcomes framework 

to allow for multiple versions of treatment. Recent work in causal inference has also 

attempted to extend the standard potential outcomes notation to accommodate possible 
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interference between units (Sobel, 2006; Hong and Raudenbush, 2006; Rosenbaum, 2007; 

Hudgens and Halloran, 2008; VanderWeele, 2010; VanderWeele and Tchetgen Tchetgen, 

2011a b; Halloran and Hudgens, 2012; Tchetgen Tchetgen and VanderWeele, 2012). We 

would like to conclude this paper by drawing some parallels between the existing work on 

interference and our discussion above concerning multiple versions of treatment. First, both 

the no-interference assumption and the no-multiple-versions-of-treatment assumption are 

concealed by the notation Yj(a); these two assumptions are often not stated explicitly but are 

implicitly assumed to hold when using potential outcomes notation such as Yj(a); such 

notation is in general only justified under the assumptions of no-interference and no-

multiple-versions-of-treatment. Second, with both the no-interference assumption and the 

no-multiple-versions-of-treatment assumption, although the traditional potential outcomes 

framework presupposes these assumptions, the framework and notation can in fact be 

extended so as to allow for potential violations; in the case of interference, the potential 

outcomes notation can be extended so as to allow the potential outcome of one individual to 

depend on the treatments received by other individuals; in the case of multiple versions of 

treatment, the notation can be expanded so that an individual may have different potential 

outcomes for each possible version of treatment. Third, in certain settings, violations of the 

no-interference assumption or the no-multiple-versions-of-treatment assumption can be 

ignored; Rosenbaum (2007) showed that the no-interference assumption could be ignored in 

certain randomized experiments; in our discussion above we have seen that if covariates are 

available to adjust not just for treatment-outcome confounding but also for “treatment-

version confounding” then the multiple versions of treatment can be ignored in the 

estimation of average causal effects (it is not necessary to have data on which individuals 

received which version). Fourth, with both the no-interference assumption and the no-

multiple-versions-of-treatment assumption, once notation has been introduced to expand the 

potential outcomes framework in order to accommodate violations, then this new notation 

can give rise to new questions of theoretical and substantive interest; notation 

accommodating interference gives rise to questions of the identification and estimation of 

spillover effects; notation accommodating multiple versions of treatment gives rise to 

questions about hypothetical interventions on the version of treatment to address policy 

relevant questions about resource allocation and assignment.

The extension of the potential outcomes framework to address interference and spillover 

effects has been of use in a variety of substantive contexts (Hong and Raudenbush, 2006; 

Sobel, 2006; Hudgens and Halloran, 2008; VanderWeele and Tchetgen Tchetgen, 2011a). 

We hope that the contributions in this article will similarly clarify and extend the 

possibilities for causal inference when multiple versions of treatment are present.
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Appendix

Proofs of Propositions 1–8

Proof of Proposition 1

For any a ∈ , ka ∈  we have that

Proof of Proposition 2

We have that
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Note that if there is only one version of treatment for the control condition, A = 0, then  = 

{1} and the only potential outcome for each individual under the control condition is 

. We have that

where the final equality holds because when A = 0 we have that K0 = 1 since there is only 

one version of treatment.

Proof of Proposition 3

For any a ∈ , we have that

This completes the proof.

Proof of Proposition 4

We have that

Proof of Proposition 5

We have that
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Proof of Proposition 6

We have that

Proof of Proposition 7

We have that

Proof of Proposition 8

If Y(k) II K|L then

where the first equality follows by iterated expectations, the second because K contains all 

the information in A, the third from consistency and the fourth because Y(k) II K|L.

Example of Treatment-Version Confounding

Let A = 1 denote surgery and A = 0 denote the control (no surgery). Suppose there is only 

one version of A = 0 (no surgery) but two versions of surgery: surgeon 1 (k1 = 1) and 

surgeon 2 (k1 = 2). Suppose that there are no confounders C that affect both the outcome Y 

and either treatment or version but that there is a binary treatment-version confounder W 

with W = 0 and W = 1 indicating two different health plans. Suppose P(W = 1) = 0.5; P(A = 

1|W = 0) = 0.2; P(A = 1|W = 1) = 0.6 so that by Bayes’ Theorem, P(W = 1|A = 1) = 3/4 and 

P(W = 1|A = 0) = 1/3. Suppose also P(K1 = 1|A = 1, W = w) = (420 + 300W)/1000. Finally, 

suppose P(Y = 1|A = 0, W = w) = 1/2 and P(Y = 1|A = 1, K1 = k1, W = w) = 1/2 + k1/5. Note 

that W affects both A and K1 but W has no effect on Y except through A and K1.

VanderWeele and Hernán Page 23

J Causal Inference. Author manuscript; available in PMC 2014 November 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Now if the entire population were given surgery (A = 1) then the proportion of the 

population with K1 = 1 would be {420 + 300 E(W)}/1000 = 0.57 and the proportion with K1 

= 2 would thus be 0.43. The proportion with Y = 1 would be 1/2 + E(K1)/5 = 1/2 + (0.57 + 

2*0.43)/5 = 0.786. If the entire population were not given surgery (A = 0) the proportion 

with Y = 1 would be 0.5. The true overall average causal effect of surgery in this population 

is thus 0.786 − 0.5 = 0.286.

Suppose now that no information is available on version of treatment. Suppose that we did 

not control for W and simply computed E(Y|A = 1) − E(Y|A = 0). We would obtain:

We would get a biased estimate of the overall average causal effect of surgery. If we did 

control for W and computed Σw{E(Y|A = 1, w) − E(Y|A = 0, w)}pr(w) we would obtain:

We get a correct estimate of the overall average causal effect of surgery if we control for the 

treatment-version confounder W but a biased estimate if we do not control for it.

Analogous Results Under Time-Dependent Confounding

Suppose now that there is an effect, Q, of treatment A that affects both version K and the 

outcome Y as in the Appendix Figure. We will continue to let W denote a set of variables 

that affects only treatment A and version K.

We replace assumption (8) with

(A1)
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(A2)

Under these two assumptions, the effect of the version of treatment remains identified but 

data must be available on both version Ka and on the time-dependent confounder Q as stated 

in the following result which provides the analogue to Proposition 1 under time-dependent 

confounding. The proof is somewhat analogous to that for “controlled direct effects” in the 

context of mediation with a time-dependent confounder.

Proposition 9

Under assumptions (A1) and (A2),

Proof—For any a ∈ , ka ∈  we have that

Even in the presence of time-dependent confounding as in the Appendix Figure, assumption 

(9) in the text that Y(a) II A|{C, W} for all a will still hold and the overall causal effect will 

be identified by the proof of Proposition 3 given above. As before, data on version of 

treatment is thus not necessary to estimate overall treatment effects. Throughout the paper 

and in the Appendix we have, however, assumed point treatment. If treatment is time-

varying then the version of treatment may serve as a confounder for the effect of subsequent 

treatment and data would then be needed on the version of treatment for the purposes of 

confounding control. The development of a formal analytic framework for this setting is left 

to future research.

In the text, Propositions 5 and 6 considered the effects on those with A = a* of intervening to 

set A = a with version randomly set to the distribution of those with A = a (Proposition 5) or 

to the distribution of those with A = a* had they been given treatment A = a. Propositions 10 

and 11 give analogous results under time-dependent confounding. Proposition 10 requires 

assumptions (A1) and (A2). Proposition 11 requires assumptions (A1) and (A2) along with 

assumption (10) in the text that Ka(a) II A|{C, W} for all a.

Proposition 10

For individuals j with Aj = a* ≠ a, let  be a random variable with distribution defined by 

pr(Ka = ka|A = a, C = Cj). If for all j such that Aj = a*, the potential outcome Yj(a, ka) is well 

defined for all  and assumptions (A1) and (A2) hold then
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Proof—We have that

Proposition 11

If for all individuals j with Aj = a* ≠ a, the potential outcome  is well defined then let 

 be a random variable with distribution defined by pr(Ka(a) = ka|A = a*, C = Cj, W = 

Wj). If for all j such that Aj = a*, the potential outcome Yj(a, ka) is well defined for all 

 and if assumptions (A1), (A2) and (10) hold then

Proof—We have that
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Appendix Figure. 
Time-dependent confounding in which an effect, Q, of treatment A, may affect both version 

K and outcome Y.
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Figure 1. 
Causal diagram illustrating relationships between treatment A, version K, outcome Y and 

confounding variables C and W.
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