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Abstract

We consider the problem of estimating the density of a random variable when precise 

measurements on the variable are not available, but replicated proxies contaminated with 

measurement error are available for sufficiently many subjects. Under the assumption of additive 

measurement errors this reduces to a problem of deconvolution of densities. Deconvolution 

methods often make restrictive and unrealistic assumptions about the density of interest and the 

distribution of measurement errors, e.g., normality and homoscedasticity and thus independence 

from the variable of interest. This article relaxes these assumptions and introduces novel Bayesian 

semiparametric methodology based on Dirichlet process mixture models for robust deconvolution 

of densities in the presence of conditionally heteroscedastic measurement errors. In particular, the 

models can adapt to asymmetry, heavy tails and multimodality. In simulation experiments, we 

show that our methods vastly outperform a recent Bayesian approach based on estimating the 

densities via mixtures of splines. We apply our methods to data from nutritional epidemiology. 
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Even in the special case when the measurement errors are homoscedastic, our methodology is 

novel and dominates other methods that have been proposed previously. Additional simulation 

results, instructions on getting access to the data set and R programs implementing our methods 

are included as part of online supplemental materials.
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1 Introduction

Many problems of practical importance require estimation of the unknown density of a 

random variable. The variable, however, may not be observed precisely, observations being 

subject to measurement errors. Under the assumption of additive measurement errors, the 

observations are generated from a convolution of the density of interest and the density of 

the measurement errors. The problem of estimating the density of interest from available 

contaminated measurements then becomes a problem of deconvolution of densities.

This article proposes novel Bayesian semiparametric approaches for robust estimation of the 

density of interest when the variability of the measurement errors depends on the associated 

unobserved value of the variable of interest through an unknown relationship. The proposed 

methodology is fundamentally different from existing deconvolution methods, relaxes many 

restrictive assumptions of existing approaches by allowing both the density of interest and 

the distribution of measurement errors to deviate from standard parametric laws, and 

significantly outperforms previous methodology.

The literature on the problem of density deconvolution is vast. Most of the early literature on 

density deconvolution considers scenarios when a single contaminated measurement is 

available for each subject and assumes that the measurement errors are independently and 

identically distributed according to some known probability law (often normal) with 

constant variance. See, for example, Carroll and Hall (1988), Liu and Taylor (1989), 

Devroye (1989), Fan (1991a, 1991b, 1992) and Hesse (1998) among others. Of course, in 

reality the distribution of measurement errors is rarely known, and the assumption of 

constant variance measurement errors is also often unrealistic. The difficulty of a 

deconvolution problem depends directly on the shape (more specifically the smoothness) of 

the measurement error distribution (Fan 1991a, 1991b, 1992). Misspecification of the 

distribution of measurement errors may therefore lead to biased and inefficient estimates of 

the density of interest. The focus of recent deconvolution literature has thus been on robust 

deconvolution methods that relax the restrictive assumptions on the error distribution, 

assuming the availability of replicated proxies for each unknown value of the variable of 

interest. See, for example, Li and Vuong (1998) and Carroll and Hall (2004) among others.

All the above mentioned papers still assume that the measurement errors are independent of 

the variable of interest. Staudenmayer, et al. (2008) further relaxed this often unrealistic 

assumption and considered the problem of density deconvolution in the presence of 
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conditionally heteroscedastic measurement errors. They took a Bayesian route and modeled 

the density of interest by a penalized positive mixture of normalized quadratic B-splines. 

Measurement errors were assumed to be normally distributed but the measurement error 

variance was modeled as a function of the associated unknown value of the variable of 

interest using a penalized positive mixture of quadratic B-splines.

The focus of this article is also on deconvolution in the presence of conditionally 

heteroscedastic measurement errors, but the proposed Bayesian semiparametric methods are 

vastly different from the approach of Staudenmayer, et al. (2008), as well as from other 

existing methods. The density of interest is modeled by a flexible location-scale mixture of 

normals induced by a Dirichlet process (Ferguson, 1973; Lo, 1984). For modeling 

conditionally heteroscedastic measurement errors, it is assumed that the measurement errors 

can be factored into ‘scaled errors’ that are independent of the variable of interest and have 

zero mean and unit variance, and a ‘variance function’ component that explains the 

conditional heteroscedasticity. This multiplicative structural assumption on the measurement 

errors was implicit in Staudenmayer, et al. (2008), where the scaled errors were assumed to 

come from a standard normal distribution.

Our approach is based on a more flexible representation of the scaled errors. The density of 

the scaled measurement errors is modeled using an infinite mixture model induced by a 

Dirichlet process, each component of the mixture being itself a two-component normal 

mixture with mean zero. This gives us the flexibility to model other aspects of the 

distribution of scaled errors. This deconvolution approach, therefore, uses flexible Dirichlet 

process mixture models twice, first to model the density of interest and second to model the 

density of the scaled errors, freeing them both from restrictive parametric assumptions, 

while at the same time accommodating conditional heteroscedasticity through the variance 

function.

It is important to see that even when the measurement errors are homoscedastic, our 

methodology is novel and dominates other methods that have been proposed previously. Our 

methods apply to this problem, allowing flexibility in the density of the variable of interest, 

flexible representations of the density of the measurement errors, and, if desired, at the same 

time build modeling robustness lest there be any remaining heteroscedasticity.

The article is organized as follows. Section 2 details the models. Sections 3 discusses some 

model diagnostic tools. Section 4 presents extensive simulation studies comparing the 

proposed semiparametric methods with the method of Staudenmayer, et al. (2008) and a 

possible nonparametric alternative. Section 5 presents an application of the proposed 

methodology in estimation of the distributions of daily dietary intakes from contaminated 24 

hour recalls in a nutritional epidemiologic study. Section 6 contains concluding remarks. 

Appendices discuss model identifiability (Appendix A), the choice of hyper-parameters 

(Appendix B) and details of posterior computations (Appendix C). The supplementary 

materials provide results of additional simulation experiments and R programs 

implementing our methods.
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2 Density Deconvolution Models

2.1 Background

The goal is to estimate the unknown density of a random variable X. There are i = 1, 2, …, n 

subjects. Precise measurements of X are not available. Instead, for j = 1, 2, …, mi, replicated 

proxies Wij contaminated with heteroscedastic measurement errors Uij are available for each 

subject. The replicates are assumed to be generated by the model

(1)

(2)

where Xi is the unobserved true value of X; εij are independently and identically distributed 

with zero mean and unit variance and are independent of the Xi, and v is an unknown smooth 

variance function. Identifiability of model (1)–(2) is discussed in Appendix A, where we 

show that 3 replicates more than suffices. Some simple diagnostic tools that may be 

employed in practical applications to assess the validity of the structural assumption (2) on 

the measurement errors are discussed in Section 3.

Of course, a special case of our work is when the measurement errors are homoscedastic, so 

that v(x) is constant. Even in this case, the use of Dirichlet process mixtures for both the 

target density and error distribution has not been considered previously.

The density of X is denoted by fX. The density of εij is denoted by fε. The implied 

conditional distributions of Wij and Uij, given Xi, is denoted by the generic notation fW|X and 

fU|X, respectively. The marginal density of Wij is denoted by fW.

Model (2), along with the moment restrictions imposed on the scaled errors εij, implies that 

the conditional heteroscedasticity of the measurement errors is explained completely 

through the variance function v, while other features of fU|X are derived from fε. In a 

Bayesian hierarchical framework, model (1)–(2) reduces the problem of deconvolution to 

three separate problems: (a) modeling the density of interest fX; (b) modeling the variance 

function v, and (c) modeling the density of the scaled errors fε.

2.2 Modeling the Distribution of X

We use Dirichlet process mixture models (DPMMs) (Ferguson, 1973, Escobar and West, 

1995) for modeling fX. For modeling a density f, a DPMM with concentration parameter α, 

base measure P0, and mixture components coming from a parametric family {fc(· | ϕ): ϕ ~ 

P0}, can be specified as
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In the literature, this construction of random mixture weights  (Sethuraman, 1994), 

is often represented as π ~ Stick(α). DPMMs are, therefore, mixture models with a 

potentially infinite number of mixture components or ‘clusters’. For a given data set of finite 

size, however, the number of active clusters exhibited by the data is finite and can be 

inferred from the data.

Choice of the parametric family {fc(· | ϕ): ϕ ~ P0} is important. Mixtures of normal kernels 

are, in particular, very popular for their flexibility and computational tractability (Escobar 

and West, 1995; West, et al. 1994). In this article also, fX is specified as a mixture of normal 

kernels, with a conjugate normal-inverse-gamma (NIG) prior on the location and scale 

parameters

(3)

(4)

Here Normal(· | μ, σ2) denotes a normal distribution with mean μ and standard deviation σ. 

In what follows, the generic notation p0 will sometimes be used for specifying priors and 

hyper-priors.

2.3 Modeling the Variance Function

Examples of modeling log-transformed variance functions using flexible mixtures of splines 

are abundant in the literature when there is no measurement error. Yau and Kohn (2003), for 

example, modeled log{v(X)} using flexible mixtures of polynomial and thin-plate splines. 

Liu, et al. (2006) proposed a penalized mixture of smoothing splines, whereas Chan, et al. 

(2006) considered mixtures of locally adaptive radial basis functions.

In this article we model the variance function as a positive mixture of B-spline basis 

functions with smoothness inducing priors on the coefficients. For a given positive integer 

K, partition an interval [A, B] of interest into K subintervals using knot points t1 = ··· = tq+1 = 

A < tq+2 < tq+3 < ··· < tq+K < tq+K+1 = ··· = t2q+K+1 = B. For j = (q +1), …, (q + K), define Δj = 

(tj+1 − tj) and Δmax = maxj Δj. It is assumed that Δmax → 0 as K → ∞. Using these knot 

points, (q + K) = J B-spline bases of degree q, denoted by Bq,J = {bq,1, bq,2, …, bq,J}, can be 

defined through the recursion relation given on page 90 of de Boor (2000), see Figure S.1 in 

the supplementary materials. A flexible model for the variance function is

(5)

(6)

Here ξ = {ξ1, ξ2, …, ξJ}T; exp(ξ) = {exp(xi;1), exp(xi;2), …, exp(xi;J)}T, MVNJ(μ, Σ) 

denotes a J-variate normal distribution with mean μ and positive semidefinite covariance 
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matrix Σ, and IG(a, b) denotes an inverse-Gamma distribution with shape parameter a and 

scale parameter b. We choose P = DTD, where D is a J × (J + 2) matrix such that Dξ 

computes the second differences in ξ. The prior  induces smoothness in the 

coefficients because it penalizes , the sum of squares of the second 

order differences in ξ (Eilers and Marx, 1996). The variance parameter  plays the role of 

smoothing parameter - the smaller the value of , the stronger the penalty and the smoother 

the variance function. The inverse-Gamma hyper-prior on  allows the data to have strong 

influence on the posterior smoothness and makes the approach data adaptive.

2.4 Modeling the Distribution of the Scaled Errors

Three different approaches of modeling the density of the scaled errors fε are considered 

here, successively relaxing the model assumptions as we progress.

2.4.1 Model-I: Normal Distribution—We first consider the case where the scaled errors 

are assumed to follow a standard normal distribution

(7)

This implies that the conditional density of measurement errors is given by fU|X(U | X) = 

Normal{U | 0, v(X)}. Such an assumption was made by Staudenmayer, et al. (2008).

2.4.2 Model-II: Skew-Normal Distribution—The strong parametric assumption of 

normality of measurement errors may be restrictive and inappropriate for many practical 

applications. As a first step towards modeling departures from normality, we propose a 

novel use of skew-normal distributions (Azzalini, 1985) to model the distribution of scaled 

errors. A random variable Z following a skew-normal distribution with location ξ, scale ω 

and shape parameter λ has the density f(Z) = (2/ω)ϕ{(Z − xi;)/ω}Φ{λ(Z − ξ)/ω}. Here ϕ and 

Φ denote the probability density function and cumulative density function of a standard 

normal distribution, respectively. Positive and negative values of λ result in right and left 

skewed distributions, respectively. The Normal(· | μ, σ2) distribution is obtained as special 

cases with λ = 0, whereas the folded normal or half-normal distributions are obtained as 

limiting cases with λ → ±∞, see Figure S.2 in the supplementary materials. With δ = λ/(1 + 

λ2)1/2, the mean and the variance of this density are given by μ = ξ + ωδ(2/π)1/2 and σ2 = 

ω2(1 − 2δ2/π), respectively. Although the above parametrization is more constructive and 

intuitive in revealing the relationship with the normal family, we consider a different 

parametrization in terms of μ, σ2 and λ, denoted by SN(· | μ, σ2, λ), that is more useful for 

specifying distributions with moment constraints, namely f(Z) = (2ζ2/σ)ϕ{ζ1 + ζ2(Z − 

μ)/σ}Φ[λ{ζ1 + ζ2(Z − μ)/σ}], where ζ1 = δ(2/π)1/2 and ζ2 = (1 − 2δ2/π)1/2. For specifying the 

distribution of the scaled errors we now let

(8)
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(9)

The implied conditionally heteroscedastic, unimodal and possibly asymmetric distribution 

for the measurement errors is given by fU|X(U | X) = SN{U | 0, v(X), λ}.

2.4.3 Model-III: Infinite Mixture Models—While skew-normal distributions can capture 

moderate skewness, they are still quite limited in their capacity to model more severe 

departures from normality. They can not, for example, model multimodality or heavy tails. 

In the context of regression analysis when there is no measurement error, moment 

constrained infinite mixture models have recently been used by Pelenis (2014) (see also the 

references therein) for flexible modeling of error distributions that can capture 

multimodality and heavy tails. They considered the mixture 

 , with the 

moment constraint pkμk1 +(1−pk)μk2 = 0 for all k. Use of a two-component mixture of 

normals as components with each component constrained to have mean zero restricts the 

mean of the mixture to be zero while allowing the mixture to model other unconstrained 

aspects of the error distribution. Incorporating covariate information X in modeling the 

mixture probabilities, this model allows all aspects of the error distribution, other than the 

mean, to vary nonparametrically with the covariates, not just the conditional variance. 

Designed for regression problems, these nonparametric models, however, assume that this 

covariate information is precise. If X is measured with error, as is the case with 

deconvolution problems, the subject specific residuals may not be informative enough, 

particularly when the number of replicates per subject is small and the measurement errors 

have high conditional variability, making simultaneous learning of X and other parameters 

of the model difficult.

In this article, we take a different semiparametric middle path. The multiplicative structural 

assumption (2) on the measurement errors that reduces the problem of modeling fU|X to the 

two separate problems of modeling (a) a variance function and (b) modeling an error 

distribution independent of the variable of interest is retained. The difficult problem of 

flexible modeling of an error distribution with zero mean and unit variance moment 

restrictions is avoided through a simple reformulation of model (2) that replaces the unit 

variance identifiability restriction on the scaled errors by a similar constraint on the variance 

function. Model (2) is rewritten as

(10)

where X0 is arbitrary but fixed point, ṽ(Xi) = v(Xi)/v(X0), and ε̃
ij = v1/2(X0)εij. With this 

specification, ṽ(X0) = 1, var(ε̃
ij) = v(X0) and var(U | X) = v(X0)ṽ(X). The problem of 

modeling the unrestricted variance function v has now been replaced by the problem of 

modeling ṽ restricted to have value 1 at X0. The problem of modeling the density of ε with 

zero mean and unit variance moment constraints has also been replaced by the easier 

problem of modeling the density of εĩj with only a single moment constraint of zero mean.
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The conditional variance of the measurement errors is now a scalar multiple of ṽ. So ṽ can 

still be referred to as the ‘variance function’. The variance of ε̃
ij, however, does not equal 

unity, but is, in fact, unrestricted. With some abuse of nomenclature, ε̃
ij is still referred to as 

the ‘scaled errors’. For notational convenience εĩj is denoted simply by εij.

The problem of flexibly modeling ṽ is now addressed. For any X, (i) bq,j(X) ≥ 0 ∀j, (ii) 

, (iii) bq,j is positive only inside the interval [tj, tj+q+1], (iv) for j ∈ {(q + 1), 

(q+2), …, (q+K)}, for any X ∈ (tj, tj+1), only (q+1) B-splines bq,j−q(X), bq,j−q+1(X), …, 

bq,j(X) are positive, and (v) when X = tj, bq,j(X) = 0. We let ṽ(X) = Bq,J (X) exp(ξ), as before, 

and we use the above mentioned local support properties of the B-spline bases to propose a 

flexible model for ṽ subject to ṽ(X0) = 1. When X0 ∈ (tj, tj+1), properties (ii) and (iv) cause 

the constraint to be simply . This is a restriction on 

only (q + 1) of the ξj’s, and the coefficients of the remaining B-splines remain unrestricted 

which makes the model for ṽ very flexible. In a Bayesian framework, the restriction ṽ(X0) = 

1 can be imposed by restricting the support of the prior on ξ to the set 

{ }. Choosing X0 = tj0 for some j0 ∈ {(q + 1), …, (q + K)}, 

we further have bj0(tj0) = 0, and the complete model for ṽ is given by

(11)

(12)

(13)

where I(·) denotes the indicator function.

Now that the variance of εij has become unrestricted and only a single moment constraint of 

zero mean is required, a DPMM with mixture components as specified in Pelenis (2014) can 

be used to model fε. That is, we let , πε ~ 

Stick(αε), where , 

subject to the moment constraint pμ1 + (1 − p)μ2 = 0. The moment constraint of zero mean 

implies that each component density can be described by four parameters. One such 

parametrization that facilitates prior specification is in terms of parameters (p, μ ̃, ), 

where (μ1, μ2) can be retrieved from μ̃ as μ1 = c1μ̃, μ2 = c2μ̃, where c1 = (1 − p)/{p2 + (1 − 

p)2}1/2 and c2 = −p/{p2 + (1 − p)2}1/2. Clearly the zero mean constraint is satisfied, since 

pμ1 + (1 − p) μ2 = {pc1 + (1 − p)c2}μ̃ = 0. The family includes normal densities as special 

cases with (p, μ̃) = (0.5, 0) or (0, 0) or (1, 0). Symmetric component densities are obtained as 

special cases when p = 0.5 or μ̃ = 0. The mixture is symmetric when the all components are 

as well. Specification of the prior for fε is completed assuming non-informative priors for (p, 
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μ̃, ). Letting Unif(ℓ, u) denote a uniform distribution on the interval (ℓ, u), the complete 

DPMM prior on fε can then be specified as

(14)

(15)

2.5 Choice of Hyper-parameters and Posterior Calculations

Appendix B describes the choice of hyper-parameters, while Appendix C gives the details of 

posterior computations.

3 Model Diagnostics

In practical deconvolution problems, the basic structural assumptions on the measurement 

errors may be dictated by prominent features of the data extracted by simple diagnostic tools 

and expert knowledge of the data generating process. Conditional heteroscedasticity, in 

particular, is easy to identify from the scatterplot of  on W̄, where W̄ and  denote the 

subject specific sample mean and variance, respectively (Eckert, et al., 1997). The 

multiplicative structural assumption (2) on the measurement errors provides one particular 

way of accommodating conditional heteroscedasticity in the model. When at least 4 

replicates are available for sufficiently many subjects, one can define the pairs (Wij1, Cij2j3j4) 

for all i and for all j1 ≠ j2 ≠ j3 ≠ j4, where Cij2j3j4 = {(Wij2 − Wij3)/(Wij2 − Wij4)}. When (2) is 

true, Cj2j3j4= {(εj2 − εj3)/(εj2 − εj4)} is independent of Wj1. Therefore, the absence of non-

random patterns in the plots of Wj1 against Cj2j3j4 and nonsignificant p-values in 

nonparametric tests of association between Wj1 and Cj2j3j4 for various j1 ≠ j2 ≠ j3 ≠ j4 may 

be taken as indications that (2) is valid or that the departures from (2) are not severe. For 

those cases with m (≥ 4) replicates per subject, the total number of possible such tests is 

m!/(m−4)! = L, say, where, for any positive integer r, r! = r ·(r −1) … 2·1. The p-values of 

these tests can be combined using the truncated product method of Zaykin, et al. (2002). The 

test statistic of this combined left-sided test is given by  , where pℓ 

denotes the p-value of the ℓth test and ς is a prespecified truncation limit. If minℓ{pℓ} ≥ ς, the 

p-value of the combined test is trivially 1. Otherwise, the bootstrap procedure described in 

Zaykin, et al. (2002) may be used to estimate it.

4 Simulation Experiments

4.1 Background

The mean integrated squared error (MISE) of estimation of fX by f̂X is defined as MISE = ∫ 

E{fX(x) − f̂X(x)}2dx. A Markov chain Monte Carlo (MCMC) algorithm, implemented for 

drawing samples from the posterior to calculate estimates of fX and other functions of 

secondary interest, is detailed in Appendix C. Based on B simulated data sets, a Monte Carlo 
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estimate of MISE is given by , where 

 are a set of grid points on the range of X and  for all i.

The simulation experiments are designed to evaluate the MISE performance of the proposed 

models for a wide range of possibilities. The Bayesian deconvolution models proposed in 

this article all take semiparametric routes to model conditional heteroscedasticity assuming a 

multiplicative structural assumption on the measurement errors. Performance of the 

proposed models is first evaluated for ‘semiparametric truth scenarios’ when the truth 

conforms to the assumed multiplicative structure. Efficiency of the proposed models will 

also be illustrated for ‘nonparametric truth’ scenarios when the truth departs from the 

assumed multiplicative structure.

The reported estimated MISE are all based on B = 400 simulated data sets. For the proposed 

methods 5,000 MCMC iterations were run in each case with the initial 3,000 iterations 

discarded as burn-in. In our R code, with n = 500 subjects and mi = 3 proxies for each 

subject, on an ordinary desktop, 5,000 MCMC iterations for models I, II and III required 

approximately 5 minutes, 10 minutes and 25 minutes, respectively. In comparison, the 

method of Staudenmayer, et al. (2008) and the nonparametric alternative described below in 

Section 4.3 took approximately 100 minutes.

4.2 Semiparametric Truth

This subsection presents the results of simulation experiments comparing our methods with 

the method of Staudenmayer, et al. (2008), referred to as the SRB method. The methods are 

compared over a factorial combination of three sample sizes (n = 250,500,1000), two 

densities for  and 

, nine different types of 

distributions for the scaled errors (six light-tailed and three heavy-tailed, see Table 1 and 

Figure 1), and one variance function v(X) = (1 + X/4)2. For each subject, mi = 3 replicates 

were simulated. The MISE are presented in Table 2. Additional simulation results, where the 

true fX is a normalized mixture of B-splines, are presented in the supplementary materials.

4.2.1 Results for Light-tailed Error Distributions—This section discusses MISE 

performances of the models for the 36 (3×2×6) cases where the scaled errors were light-

tailed, distributions (a)–(f), see Table 1 and Figure 1. Results of the simulation experiments 

show that all three models proposed in this article significantly out-performed the SRB 

model in all 36 cases considered. When measurement errors are normally distributed, the 

reductions in MISE over the SRB method for all three models and for all six possible 

combination of sample sizes and true X distributions are more than 50%. This is particularly 

interesting, since the SRB method was originally proposed for normally distributed errors, 

even more so because our Model-II and Model-III relax the normality assumption on the 

measurement errors.

4.2.2 Results for Heavy-tailed Error Distributions—This section discusses MISE 

performances of the models for the 18 (3 × 2 × 3) cases where the distribution of scaled 
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errors were heavy-tailed, distributions (g), (h) and (i), see Table 1 and Figure 1. Results for 

the error distribution (g) are summarized in Figure 2. The SRB model and Model-I assume 

normally distributed errors; Model-II assumes skew-normal errors whose tail behavior is 

similar to that of normal distributions. The results show the MISE performances of these 

three models to be very poor for heavy-tailed error distributions and the MISE increased 

with an increase in sample size due to the presence of an increasing number of outliers. 

Model-III, on the other hand, can accommodate heavy-tails in the error distributions and is, 

therefore, very robust to the presence of outliers. MISE patterns produced by Model-III for 

heavy-tailed errors were similar to that for light-tailed errors, and improvements in MISE 

over the other models were huge. For example, when the density for the scaled was (i), a 

mixture of Laplace densities with a very sharp peak at zero, for n = 1000, the improvements 

in MISEs over the SRB model were 54.03/0.94 ≈ 57 times for the 50–50 mixture of normals 

and 57.87/0.83 ≈ 70 times for the 80–20 mixture of normals.

In simpler settings, when the measurement errors are independent of the variable of interest 

and have a known density, Fan (1991a, 1991b, 1992) showed that the dificulty of a 

deconvolution problem depends directly on the shape (more specifically the smoothness) of 

the measurement error distribution. The results of our simulation experiments provide 

empirical evidence in favor of a similar conclusion in more complicated and realistic 

deconvolution scenarios, where the measurement errors show strong patterns of conditional 

heteroscedasticity, and illustrate the importance of modeling the shape of the error 

distribution when it is unknown.

4.3 Nonparametric Truth

This subsection is aimed at providing some empirical support to the claim made in Section 

2.4.3, where it was argued that for deconvolution problems the proposed semiparametric 

route to model the distribution of conditionally heteroscedastic measurement errors will 

often be more efficient than possible nonparametric alternatives, even when the truth departs 

from the assumed multiplicative structural assumption (2) on the measurement errors. This 

is done by comparing our Model III with a method that also models the density of interest by 

a DPMM like ours but employs the formulation of Pelenis (2014) to model the density of the 

measurement errors. This possible nonparametric alternative was reviewed in Section 2.4.3 

and will be referred to as the NPM method. Recall that by modeling the mixture 

probabilities as functions of X the NPM model allows all aspects of the distribution of errors 

to vary with X, not just the conditional variance. In theory, the NPM model is, therefore, 

more flexible than Model-III as it can also accommodate departures from (2). However, in 

practice, for reasons described in Section 2.4.3, Model-III will often be more efficient than 

the NPM model, as is shown here.

In the simulation experiments the true conditional distributions that generate the 

measurement errors are designed to be of the form 

, where each component density has mean zero, 

the kth component has variance , and θUk denotes additional parameters. For the true and 

the fitted mixture probabilities we used the formulation of Chung and Dunson (2009) that 
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allows easy posterior computation through data augmentation techniques. That is, we took 

 with  for k = 1; 2;…; (K − 1) 

and . The truth closely resembles the NPM model and clearly 

departs from the assumptions of Model III. The conditional variance is now given by 

. The two competing models are then compared over a factorial 

combination of three sample sizes (n = 250, 500, 1000), two densities for  and , as 

defined in Section 4.2, and three different choices for the component densities 

 and (l) . In each case, K = 8 

and the parameters specifying the true mixture probabilities are set at αk = 2, βk = 1/2 for all 

k with  taking values in {−1.9, −1, 0, 1, 2.5, 4, 5.5} in that order. We chose the priors for 

αk; βk and  as in Chung and Dunson (2009). The component specific variance parameters 

 are set by minimizing the sum of squares of  on a 

grid. For the density (k) we set λU = 7. For the density (l) λUk take values in {7, 3, 1, 0, −1, 

−3, −7}, with λUk decreasing as X increases. For each subject, mi = 3 replicates were 

simulated.

The estimated MISE are presented in Table 3. The results show that Model III vastly 

outperforms the NPM model in all 18 (3 × 2 × 3) cases even though the truth actually 

conforms to the NPM model closely. The reductions in MISE are particularly significant 

when the true density of interest is a 50–50 mixture of normals. The results further 

emphasize the need for flexible and efficient semiparametric deconvolution models such as 

the ones proposed in this article.

5 Application in Nutritional Epidemiology

5.1 Data Description and Model Validation

Dietary habits are known to be leading causes of many chronic diseases. Accurate 

estimation of the distributions of dietary intakes is important in nutritional epidemiologic 

surveillance and epidemiology. One large scale epidemiologic study conducted by the 

National Cancer Institute, the Eating at America’s Table (EATS) study (Suber, et al., 2001), 

serves as the motivation for this paper. In this study n = 965 participants were interviewed 

mi = 4 times over the course of a year and their 24 hour dietary recalls (Wij’s) were recorded. 

The goal is to estimate the distribution of true daily intakes (Xi’s).

Figure 3 shows diagnostic plots (as described in Section 3) for daily intakes of folate. 

Conditional heteroscedasticity of measurements errors is one salient feature of the data, 

clearly identifiable from the plot of subject-specific means versus subject-specific variances. 

We did not see any non-random pattern in the scatterplots of Wj1 vs Cj2j3j4 for various j1 ≠ j2 

≠ j3 ≠ j4. A combined p-value of 1 given by nonparametric tests of association combined by 

the truncated product method of Zaykin, et al. (2002) with truncation limit as high as 0.50 is 

also strong evidence in favor of independence of Wj1 and Cj2j3j4 for all j1 ≠ j2 ≠ j3 ≠ j4. By 

the arguments presented in Section 3, model (1)–(2) may therefore be assumed to be valid 

for reported daily intakes of folate. Data on many more dietary components were recorded in 
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the EATS study. Due to space constraints, it is not possible to present diagnostic plots for 

other dietary components. However, it should be noted that the combined p-values for 

nonparametric tests of association between Wj1 and Cj2j3j4 for various j1 ≠ j2 ≠ j3 ≠ j4 for all 

25 dietary components, for which daily dietary intakes were recorded in the EATS study, are 

greater than 0.50 even for a truncation limit as high as 0.50, see Table S.1 of the 

supplementary materials.

5.2 Results for Daily Intakes of Folate

Estimates of the density of daily intakes of folate and other nuisance functions of secondary 

importance produced by different deconvolution models are summarized in Figure 4. When 

the density of scaled errors is allowed to be flexible, as in Model-III, the estimated density 

of daily folate intakes is visibly very different from the estimates when the measurement 

errors are assumed to be normally or skew-normally distributed, as in Model-I, Model-II or 

the SRB model, particularly in the interval of 3–6 mcg. Estimated 90% credible intervals for 

fX(3.7) for Model-I is (0.167, 0.283), for Model-II is (0.237, 0.375), and for Model-III is 

(0.092, 0.163). Since the credible interval for Model-III is disjoint from the credible 

intervals for the other models, the differences in the estimated densities at 3.7 may be 

considered to be significant.

Our analysis also showed that the measurement error distributions of all dietary components 

included in the EATS study deviate from normality and exhibit strong conditional 

heteroscedasticity. These findings emphasize the importance of flexible conditionally 

heteroscedastic error distribution models in nutritional epidemiologic studies.

6 Summary and Discussion

6.1 Summary

We have considered the problem of Bayesian density deconvolution in the presence of 

conditionally heteroscedastic measurement errors. Attending to the specific needs of 

deconvolution problems, three different approaches were considered for modeling the 

distribution of measurement errors. The first model made the conventional normality 

assumption about the measurement errors. The next two models allowed, with varying 

degrees of flexibility, the distribution of measurement errors to deviate from normality. In 

all these models conditional heteroscedasticity was also modeled nonparametrically. The 

proposed methodology, therefore, makes important contributions to the density 

deconvolution literature, allowing both the distribution of interest and the distribution of 

measurement errors to deviate from standard parametric laws, while at the same time 

accommodating conditional heteroscedasticity. Efficiency of the models in recovering the 

true density of interest was illustrated through simulation experiments, and in particular we 

showed that our method vastly dominates that of Staudenmayer, et al. (2008). Results of the 

simulation experiments suggested that all the models introduced in this article out-perform 

previously existing methods, even while relaxing some of the restrictive assumptions of 

previous approaches. Simulation experiments also showed that our Bayesian semiparametric 

deconvolution approaches proposed in this article will often be more efficient than possible 
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nonparametric alternatives, even when the true data generating process deviates from the 

assumed semiparametric framework.

6.2 Data Transformation and Homoscedasticity

In our application area of nutrition, many researchers assume that W is unbiased for X in the 

original scale that the nutrient is measured, i.e., E(WjX) = X as in our model, see Willett 

(1998), Spiegelman, et al. (1997, 2001, 2005) and Kipnis, et al. (2009). It is this original 

scale of X then that is of scientific interest in this instance. An alternative technique is a 

transform-retransform method: attempt to transform the Wij data to make it additive and with 

homoscedastic measurement error, fit in the transformed scale, and then back-transform the 

density. For example, if  where , then 

, the classical homoscedastic deconvolution problem with 

target . One could then use any homoscedastic deconvolution method to 

estimate the density of X*, and then from that estimate the density of X. Our methods 

obviously apply to such a problem. We have used the kernel deconvolution R package 

“decon” (Wang and Wang, 2011), the only available set of programs, and compared it to our 

method both using transform-retransform with homoscedasticity and by working in the 

original scale, using Model III. In a variety of target distributions for X and a variety of 

sample sizes, our methods consistently have substantially lower MISE.

It is also the case though that transformations to a model such as h(W) = h(X) + U with 

 do not satisfy the unbiasedness condition in the original scale. In the log-

transformation case, there is a multiplicative bias, but in the cube-root case, 

, a model that many in nutrition would find uncomfortable and, 

indeed, objectionable.

Of course, other fields would be amenable to unbiasedness on a transformed scale, and hope 

that the measurement error is homoscedastic on that scale. Even in this problem, our 

methodology is novel and dominates other methods that have been proposed previously. Our 

methods apply to this problem, allowing flexible Bayesian semiparametric models for the 

density of X in the transformed scale, flexible Bayesian semiparametric models for the 

density of the measurement errors, and, if desired, at the same time build modeling 

robustness lest there be any remaining heteroscedasticity. We have experimented with this 

ideal case, and even here our methods substantially dominate those currently in the 

literature. It also must be remembered too that it is often not possible to transform to 

additivity with homoscedasticity: one example in the EATS data of Section 5, where this 

occurs with vitamin B for the Box-Cox family. Details are available from the first author.

6.3 Extensions

Application of the Bayesian semiparametric methodology, introduced in this article for 

modeling conditionally heteroscedastic errors with unknown distribution where the 

conditioning variable is not precisely measured, is not limited to deconvolution problems. 

An important extension of this work and the subject of an ongoing research project is an 

application of the proposed methodology to errors-in-variables regression problems.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A Model Identifiability

Hu and Schennach (2008) showed that models such as ours are identified under very weak 

conditions. They show that when four variables, (Y, W, Z, X), where X is the only 

unobserved variate, are continuously distributed, their joint distribution is identified under 

the following conditions; their conditions are even weaker, but these suffice for our case.

Conditions 1

1. fY|W,Z,X = fY|X. 2. fW|Z,X = fW|X. 3. (W | X) = X. 4. The set {Y: fY|X(Y | X1) ≠ fY|X(Y | X2)} 

has positive probability under the marginal of Y for all X1 ≠ X2. 5. The marginal, joint and 

conditional densities of (Y, W, Z, X) are bounded.

They also have a highly technical assumption about injectivity of operators, which is 

satisfied if the distributions of W given X and Z given X are complete. This means, for 

example, that if ∫ g(W)fW|X(W | X)dW = 0 for all X, then g ≡ 0. This is a weak assumption 

and we comment upon it no further.
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When mi ≥ 3, identifiability of our model (1)–(2) is assured as it falls within the general 

framework of Hu and Schennach (2008). To see this, replace their Yi by our Wi1, their Wi by 

our Wi2, their Zi by our Wi3 and their Xi by our Xi. Conditions 3.1–3.4 then follow from the 

fact that (εi1, εi2, εi3, Xi) have a continuous distribution and are mutually independent with 

E(εij) = 0. Condition 3.5 follows assuming the variance function v is continuous.

We conjecture that model (1)–(2) is identifiable even with mi ≥ 2 under very weak 

assumptions. We have numerical evidence to support the claim.

Appendix B Choice of Hyper-Parameters

For the DPMM prior for fX, the prior variance of each  is , whereas 

the prior variance of each μk, given  is . Small values of γ0 and ν0 imply large prior 

variance and hence non-informativeness. We chose γ0 = 3 and ν0 = 1/5. The prior marginal 

mean and variance of X, obtained by integrating out all but the hyper-parameters, are given 

by μ0 and  respectively. Taking an empirical Bayes type approach, we 

set μ0 = W̄ and , where W̄ is the mean of the subject-specific 

sample means W̄
1:n, and  is an estimate of the across subject variance from a one way 

random effects model. To ensure noninformativeness, hyper-parameters appearing in the 

prior for fε are chosen as σμ̃ = 3, aε = 1 and bε = 1. For real world applications, the values of 

A and B may not be known. We set [A, B] = [min(W̄
1:n) − 0.1 range(W̄

1:n), max(W̄
1:n) + 0.1 

range(W̄
1:n)]. The DP concentration parameters αX and αε could have been assigned gamma 

hyper-priors (Escobar and West, 1995), but in this article we kept them fixed at αX = 0.1 and 

αε = 1, respectively. The prior mean and standard deviation of λ were set at μ0λ= 0 and σ0λ = 

4. For modeling the variance functions v and ṽ, quadratic (q=2) B-splines based are used. 

See the supplementary materials for detailed expressions. The B-splines are based on (2 × 2 

+ 10 + 1) = 15 knot points that divide the interval [A, B] into K = 10 subintervals of equal 

length. We take X0 = t5. The identifiability restriction on the variance function for Model III 

now becomes {exp(ξ3) + exp(ξ4)} = 2. The inverse-gamma hyper-prior on the smoothing 

parameter  is non-informative if bξ is small relative to ξTPξ. We chose aξ = bξ = 0.1.

Appendix C Posterior Inference

Define cluster labels C1:n, where Ci = k if Xi is associated with the kth component of the 

DPMM. Similarly for Model-III, define cluster labels , where Zij = k if εij comes 

from the kth component of (14). Let  denote the total number of observations. 

With a slight abuse of notation, define  and . Then for 

Model-I, fW|X(Wij | Xi, ξ) = Normal {Wij | Xi, v(Xi, ξ)}; for Model-II, fW|X(Wij | Xi, ξ, λ) = 

SN{Wij | Xi, v(Xi, ξ), λ}; and for Model-III, given Zij = k, 
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. In what follows ζ denotes a 

generic variable that collects all other parameters of a model, including X1:n, that are not 

explicitly mentioned.

It is possible to integrate out the random mixture probabilities from the prior and posterior 

full conditionals of the cluster labels. Classical algorithms for fitting DPMMs make use of 

this and work with the resulting Polya urn scheme. Neal (2000) provided an excellent review 

of this type of algorithm for both conjugate and non-conjugate cases. In this article, the 

parameters specific to DPMMs are updated using algorithms specific to those models and 

other parameters are updated using the Metropolis-Hastings algorithm. In what follows, the 

generic notation q(current → proposed) denotes the proposal distributions of the 

Metropolis-Hastings steps proposing a move from the current value to the proposed value.

The starting values of the MCMC chain are determined as follows. Subject-specific sample 

means W̄
1:n are used as starting values for X1:n. Each Ci is initialized at i with each Xi 

coming from its own cluster with mean μi = Xi and variance . In addition,  is 

initialized at 0.1. The initial value of ξ is obtained by maximizing ℓ(ξ | 0.1, W̄
1:n) with 

respect to ξ, where  denotes the conditional log-posterior of ξ. The parameters 

of the distribution of scaled errors are initialized at values that correspond to the special 

standard normal case. For example, for Model-II, λ is initialized at zero. For Model-III, Zij’s 

are all initialized at 1 with . The MCMC iterations comprise 

the following steps.

1. Updating the parameters of the distribution of X: Conditionally given X1:n, the 

parameters specifying the DPMM for fX can be updated using a Gibbs sampler 

(Neal, 2000, Algorithm 2). The full conditional of Ci is given by

where b denotes the appropriate normalizing constant; for each i, C−i = C1:n −{Ci}; 

n−i,k =Σ{l:l≠i}1{cl=k} is the number of cl’s that equal k in C−i; and 

. tm denotes the density of a t-distribution with 

m degrees of freedom.

For all k ∈ C1:n, we update (μk, ) using the closed-form joint full conditional 

given by , where 

is the number of Xi’s associated with the kth cluster; νnk = (ν0 + 

Sarkar et al. Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2014 November 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



nk); γnk = (γ0 + nk/2); μnk = (ν0μ0 + nkΣ{i:Ci=k} Xi)/(ν0 + nk) and 

.

2. Updating X1:n: Because the Xi’s are conditionally independent, the full conditional 

of Xi is given by . We use a 

Metropolis-Hastings sampler to update the Xi’s with proposal 

, where σX = (the range of W̄
1:n)/6 

and TN(· | m, s2, [ℓ,u]) denotes a truncated normal distribution with location m and 

scale s restricted to the interval [ℓ, u].

3. Updating the parameters of the distribution of scaled errors: For Model-II and 

Model-III, the parameters involved in the distribution of scaled errors have to be 

updated.

For Model-II, the distribution of scaled error is SN(0, 1, λ), involving only the 

parameter λ. The full conditional of λ is given by 

. We use Metropolis-Hastings 

sampler to update λ with random walk proposal 

.

For Model-III, we use Metropolis-Hastings samplers to update the latent 

parameters Z1:N as well as the component specific parameters (pk, μ̃
k, )’s 

(Neal, 2000, Algorithm 5). We propose a new value of Zij, say Zij,new, according to 

its marginalized conditional prior

where, for each (i, j) pair, Z−ij = Z1:N − {Zij}; N−ij,k = Σ[rs:rs≠ij} 1{Zrs=k}, the 

number of Zrs’s in Z−ij that equal k. If Zij,new ∉ Z−ij, we draw (pZij,new, μ̃Zij,new, 

) from the prior p0(p, μ̃, . We update Zij to its proposed value 

with probability
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For all k ∈ Z1:N, we propose a new value for (pk, μ̃
k, ) with the proposal 

. We update θk 

to the proposed value θk,new with probability

4. Updating the parameters of the variance function: The full conditional for ξ is 

given by . We use Metropolis-

Hastings sampler to update ξ with random walk proposal q(ξ → ξnew) = MVN(ξnew 

| ξ, Σξ). For Model III, the identifiability restriction is imposed by replacing ξnew,3 

= log{2 − exp(ξnew,4)}.

Finally, we update the hyper-parameter  using its closed-form full conditional 

.

The covariance matrix Σξ of the proposal distribution for ξ is taken to be the inverse of the 

negative Hessian matrix of l(ξ | 0.1, W̄
1:n) evaluated at the chosen initial value of ξ. See 

Appendix D for more details. Other variance parameters appearing in the proposal 

distributions are tuned to get good acceptance rates for the Metropolis-Hastings samplers, 

the values σλ = 1, σp = 0.01 and σσ = 0.1 working well in the examples considered. In 

simulation experiments, 5,000 MCMC iterations with the initial 3,000 discarded as burn-in 

produced very stable estimates of the density and the variance function.

The posterior estimate of fX is given by the unconditional predictive density fX(· | W1:N). A 

Monte Carlo estimate of fX(· | W1:N), based on M samples from the posterior, is given by

where  is the sampled value of (μk, 

) in the mth sample,  is the number of Xi’s associated with the kth cluster, and k(m) is 

the total number of active clusters. With  and  defined in 

a similar fashion, the posterior Monte Carlo estimate of fε for Model-III is
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The integral above can not be exactly evaluated. Monte Carlo approximation may be used. If 

N ≫ αε, the term may simply be neglected. For Model II, fε can be estimated by 

. For Models I and II, an estimate of the variance 

function v can similarly be obtained as . An estimate of 

the restricted variance function ṽ for Model III can be obtained using a similar formula. For 

Model III, v̂ and a scaled version of , scaled to have unit variance, can be obtained using 

the estimate of ṽ(X0).

Appendix D Initial Values and Proposals for ξ

The conditional posterior log-likelihood of ξ for Model-I is given by

The initial values for the M-H sampler for ξ is obtained as ξ (0) = arg max ℓ(ξ | 0.1, W̄
1:n). 

Numerical optimization is performed using the optim routine in R with the analytical 

gradient supplied.

The covariance matrix of the random walk proposal for ξ is taken to be the inverse of the 

negative of the matrix of second partial derivatives of ℓ(ξ | 0.1, W̄
1:n) evaluated at ξ (0). 

Expressions for the gradient and the second derivatives are given below.
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Figure 1. 
The distributions used to generate the scaled errors in the simulation experiment, 

superimposed over a standard normal density. The difierent choices cover a wide range of 

possibilities - (a) standard normal (not shown separately), (b) asymmetric skew-normal, (c) 

asymmetric bimodal, (d) symmetric bimodal, (e) asymmetric trimodal, (f) symmetric 

trimodal, (g) symmetric heavy-tailed, (h) symmetric heavy-tailed with a sharp peak at zero 

and (i) symmetric heavy-tailed with even a sharper peak at zero. The last six cases 

demonstrate the flexibility of mixtures of moment restricted two-component normals in 

capturing widely varying shapes.
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Figure 2. 
Results for heavy-tailed error distribution (g) with sample size n=1000 corresponding to 25th 

percentile MISE. The top panel shows the estimated densities under different models. The 

bottom left panel shows estimated densities of scaled errors under Model-II (dashed line) 

and Model-III (solid bold line) superimposed over a standard Normal density (solid line). 

The bottom right panel shows estimated variance functions under different models. For the 

top panel and the bottom right panel, the solid thin line is for Model-I; the dashed line is for 

Model-II; the solid bold line is for Model-III; and the dot-dashed line is for the Model of 

Staudenmayer, et al. (2008). In all three panels the bold gray lines represent the truth.
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Figure 3. 
Diagnostic plots for reported daily intakes of folate. The left panel shows the plot of W̄ vs 

 with a simple lowess fit superimposed. The right panel shows the plot of W4 vs C123.

Sarkar et al. Page 24

J Comput Graph Stat. Author manuscript; available in PMC 2014 November 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Results for data on daily folate intakes from EATS example. The top panel shows the 

estimated densities of daily folate intake under different models. The bottom left panel 

shows estimated densities of scaled errors under Model-II (dashed line) and Model-III (solid 

bold line) superimposed over a standard Normal density (solid line). The bottom right panel 

shows estimated variance functions under different models. The gray dots represent subject-

specific sample means (x-axis) and variances (y-axis). For the top panel and the bottom right 

panel, the solid thin line is for Model-I; the dashed line is for Model-II; the solid bold line is 

for Model-III; and the dot-dashed line is for the Model of Staudenmayer, et al. (2008).
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Table 1

The distributions used to generate the scaled errors in the simulation experiment. Let MRTCN(K, πε, p, μ̃ 

) denote a K component mixture of moment restricted two-component normals: 

. Then SMRTN denotes a scaled version of MRTCN, scaled to have variance 

one. Laplace(μ, b) denotes a Laplace distribution with location μ and scale b. SMLaplace(K, πε, 0, b) denotes a 

K component mixture of Laplace densities: , scaled to have variance one. With μk 

denoting the kth order central moments of the scaled errors, the skewness and excess kurtosis of the 

distribution of scaled errors are measured by the coeficients γ1 = μ3 and γ2 = μ4 − 3, respectively. The 

densities (a)–(f) are light-tailed, whereas the densities (g)–(i) are heavy-tailed. The shapes of these 

distributions are illustrated in Figure 1.

Distribution of scaled errors Skewness (γ1) Excess Kurtosis (γ2)

(a) Normal(0,1) 0 0

(b) Skew-normal(0,1,7) 0.917 0.779

(c) SMRTCN(1,1,0.4,2,2,1) 0.499 −0.966

(d) SMRTCN(1,1,0.5,2,1,1) 0 −1.760

(e) SMRTCN{2,(0.3,0.7),(0.6,0.5),(5,0),(1,4),(2,1)} −0.567 −1.714

(f) SMRTCN{2,(0.3,0.7),(0.6,0.5),(0,4),(0.5,4),(0.5,4)} 0 −1.152

(g) SMRTCN{2,(0.8,0.2),(0.5,0.5),(0,0),(0.25,5),(0.25,5)} 0 7.524

(h) Laplace(0,2−1/2) 0 3

(i) SMLaplace{2,(0.5,0.5),(0,0),(1,4)} 0 7.671
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Table 3

Mean integrated squared error (MISE) performance of Models III compared with the NPM model for different 

measurement error distributions. See Section 4.3 for additional details. The minimum value in each row is 

highlighted.

True Error Distribution True X Distribution Sample Size
MISE × 1000

NPM Model3

(j)

50–50 mixture of normals
250
500
1000

29.25
23.83
20.11

5.25
3.61
2.45

80–20 mixture of normals
250
500
1000

8.09
6.71
7.34

4.62
3.12
2.05

(k)

50–50 mixture of normals
250
500
1000

23.18
20.45
20.37

4.81
3.18
2.13

80–20 mixture of normals
250
500
1000

11.62
8.26
8.01

4.42
2.77
1.43

(l)

50–50 mixture of normals
250
500
1000

21.69
17.72
16.43

5.65
3.86
2.67

80–20 mixture of normals
250
500
1000

5.67
3.67
3.37

4.71
2.98
2.01

J Comput Graph Stat. Author manuscript; available in PMC 2014 November 04.


