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Abstract

Identifying replicable genetic variants for addiction has been extremely challenging. Besides the 

common difficulties with genome-wide association studies (GWAS), environmental factors are 

known to be critical to addiction, and comorbidity is widely observed. Despite the importance of 

environmental factors and comorbidity for addiction study, few GWAS analyses adequately 

considered them due to the limitations of the existing statistical methods. Although parametric 

methods have been developed to adjust for covariates in association analysis, difficulties arise 

when the traits are multivariate because there is no ready-to-use model for them. Recent 

nonparametric development includes U-statistics to measure the phenotype-genotype association 

weighted by a similarity score of covariates. However, it is not clear how to optimize the 

similarity score. Therefore, we propose a semiparametric method to measure the association 

adjusted by covariates. In our approach, the nonparametric U-statistic is adjusted by parametric 

estimates of propensity scores using the idea of inverse probability weighting. The new 

measurement is shown to be asymptotically unbiased under our null hypothesis while the previous 

non-weighted and weighted ones are not. Simulation results show that our test improves power as 

opposed to the non-weighted and two other weighted U-statistic methods, and it is particularly 

powerful for detecting gene-environment interactions. Finally, we apply our proposed test to the 

Study of Addiction: Genetics and Environment (SAGE) to identify genetic variants for addiction. 

Novel genetic variants are found from our analysis, which warrant further investigation in the 

future.
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1 INTRODUCTION

Identifying genetic risk variants for addiction (substance dependence) has drawn much 

attention due to the popularity of genome-wide association studies (GWAS) based on high 

throughput data. Many genetic signals for addiction have been discovered using GWAS in 

recent years. Studies focusing on nicotine dependence include Bierut et al. (2007), Uhl et al. 

(2007), Luo et al. (2008), Drgon et al. (2009), Rice et al. (2012), and Wang et al. (2012), 

among others. Similarly, there are many important discoveries for alcohol dependence, 

including but not limited to, Reich et al. (1998), Treutlein et al. (2009), Edenberg et al. 

(2010), Bierut et al. (2010), Johnson et al. (2006), Kendler et al. (2011), Heath et al. (2011), 

Wang et al. (2011), and Frank et al. (2012).

Despite these important findings, it still remains to be a very challenging problem to identify 

genetic variants for addiction, especially taking into account the following two issues. First, 

comorbidity of addiction is widely observed in the existing literature (National Institute on 

Drug Abuse, 2010). For example, Zuo et al. (2012a) and Zuo et al. (2012b) studied the risk 

gene regions in alcohol and nicotine co-dependence. Substance dependence can also be 

comorbid with other diseases such as depression (Edwards et al., 2012). Second, 

environmental factors (covariates) are known to play an important role in the association 

analysis between genetic risk factors and addiction. Examples include stress and history of 

violence. These factors can potentially produce confounding effects, or they can interact 

with genotypes known as the gene-environment interactions.

In this work, we aim to analyze the data from the Study of Addiction: Genetics and 

Environment (SAGE), which is part of the Gene Environment Association Studies initiative 

(GENEVA) funded by the National Human Genome Research Institute. In the SAGE data, 

addiction to six different substances were measured simultaneously for the subjects, 

including alcohol, nicotine, marijuana, cocaine, opiates, and other drugs. A preliminary 

analysis shows that different addictions are dependent. In the data, there are about 45% 

subjects who are addicted to nicotine and 47% subjects addicted to alcohol. The nicotine and 

alcohol co-dependence rate is 32%, much higher than the rate if assuming these two traits 

are statistically independent. Moreover, information about important environmental factors 

was also collected. Environmental factors such as history of sexual abuse or violence and 

socioeconomic status have a non-negligible effect on substance dependence. To analyze the 

SAGE data, it remains an open question on how to properly adjust for these important 

covariates with such a complicated constitution of phenotypes. This motivates us to develop 

a new statistical method to fill this gap.

Traditionally, covariates were usually adjusted in GWAS by being added into a parametric 

association model such as a binary or an ordinal logistic regression model (Wang et al., 

2006). However, there are two major drawbacks when using a parametric model-based 

approach for analysis of comorbidity of multiple traits. First, it is challenging to build a 

parametric model for multiple traits especially with different scales. Second, it is not clear 

how to remove the confounding effects through the model. Therefore, nonparametric tools 

were recently proposed. To handle comorbidity, Zhang et al. (2010) proposed a 

nonparametric U-statistic to measure association, called the “generalized Kendall’s tau”, 
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which can take any hybrid of dichotomous, ordinal and quantitative traits. The generalized 

Kendall’s tau is applicable to both population-based and family-based designs. It is also 

noteworthy that the family-based association tests (FBAT) (Laird et al., 2000; Rabinowitz 

and Laird, 2000) are a special case of the generalized Kendall’s tau. To further adjust for 

environmental factors in a nonparametric setting, Zhu et al. (2012) and Jiang and Zhang 

(2011) proposed weighted versions of generalized Kendall’s tau. For the weight function, 

Zhu et al. (2012) used covariates themselves while Jiang and Zhang (2011) used propensity 

scores (Rosenbaum and Rubin, 1983). The weighted nonparametric tests have shown their 

power for detecting genetic effects after considering environmental effects.

The weighted tests are proven useful but still face difficulties. For instance, researchers are 

often required to select the tuning parameters in the weight function (Jiang and Zhang, 2011; 

Zhu et al., 2012). Although suggestions were made, this extra step makes the tests less 

accessible. In this work, we propose an alternative that is more natural and convenient. 

Instead of directly weighting the generalized Kendall’s tau, we employ the idea of “inverse 

probability weighting” from the applications of propensity scores (Rosenbaum, 1987; 

Robins et al., 2000; Lunceford and Davidian, 2004). First, we use a parametric model to 

estimate the genomic propensity scores (Zhao et al., 2009) which summarize all covariates. 

Then, we apply the inverse probability weighting using the parametric propensity score 

estimates to the genotype kernel of the nonparametric U-statistic. These procedures result in 

our proposed semiparametric measurement of association adjusted by covariates.

In an observational study, the inverse probability weighting method aims to construct an 

unbiased estimator of treatment effect. Similarly, we show that our U-statistic is an 

asymptotically unbiased estimator of the phenotype-genotype association under the null 

hypothesis, while the non-weighted and other weighted U-statistics are not necessarily 

asymptotically unbiased. Moreover, the inverse probability weighted U-statistic is free of 

tuning parameters. Another contribution of this work is to provide the null distribution of 

our test statistic incorporating the estimation step of propensity scores. Interestingly, we find 

that if the propensity scores are estimated consistently ( -consistency indeed), the U-

statistic has even a smaller variance than the one with true propensity scores. This confirms 

a surprising but known fact that “it is better to use the ‘estimated propensity score’ than the 

true propensity score even when the true score is known” (Robins et al., 1992). Nonetheless, 

it is the first time (to the best of our knowledge) to rigorously formalize this idea either from 

a U-statistic viewpoint or in the framework of genome-wide association tests.

To evaluate the performance of our proposed test, we perform simulation studies to compare 

with the generalized Kendall’s tau and its weighted versions in terms of type I error and 

power. The simulation results show that our test possesses a higher power in most situations 

we examined and is particularly powerful for detecting gene-environment interactions.

Finally, we apply our proposed test to the SAGE data, together with non-weighted and other 

weighted tests, for comorbidity of multiple addictions. We also compare the comorbidity 

based analyses with the analysis from a single addiction at a time. Interestingly, besides a 

few overlapped markers, novel regions have been detected using multiple phenotypes, and 

different approaches may be more powerful under different settings; for example, a 
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comorbidity genetic analysis is more powerful only for shared genes. Among the tests for 

multiple addictions, we clearly see the advantage of adjusting for important covariates in our 

analysis. Without any adjustment, no SNP was identified to be genome-wide significant. 

With adjustment, different adjusted tests work complementarily to each other. Our proposed 

test, in particular, reveals SNPs/genes that are not discovered by other tests. For example, 

the SNP rs251133 (on chromosome 5) achieves the genome-wide significance only using 

our proposed test. The new findings from our analyses warrant further investigation with 

either a replication study or a biological verification.

2 SEMIPARAMETRIC ASSOCIATION TEST

2.1 Non-weighted and Weighted Association Measurements

Suppose we observe a vector of traits , a test-locus genotype Gi, and 

a vector of covariates  for the ith subject in the n study subjects from 

a population association study. Our data are independent samples 

. In the following, we denote Y = {Y1, … , Yn} and Z = {Z1, 

… , Zn} for all the traits and covariates, respectively. We present here a few nonparametric 

association statistics to measure the association between the multiple traits and the genetic 

marker.

The first statistic was proposed by Zhang et al. (2010). For individuals i and j, let Yi and Yj 

be their vectors of traits respectively. Then, a trait kernel is defined as

where function fk(·) (k = 1, … , p) can be chosen as the identity function for a quantitative or 

binary trait (Rabinowitz, 1997), or the sign function for an ordinal trait (Zhang et al., 2006). 

Traditionally, a genotype kernel is chosen as

Based on these two kernels, Zhang et al. (2010) proposed a nonparametric U-statistic to 

measure the association between the phenotype and genotype as

(1)

which is a generalization of Kendall’s tau (Kendall, 1938). This U-statistic was used there to 

test the null hypothesis that there is no phenotype-genotype association.

For the purpose of adjusting for the covariates, Zhu et al. (2012) introduced another statistic, 

which is a weighted version of U in (1). Let w(Zi, Zj) be a weight function measuring the 
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similarity between Zi and Zj. For instance, the most intuitive weight function w(Zi, Zj) can 

be defined as a function of the distance or similarity of the two covariate vectors Zi and Zj. 

Afterwards, they defined the weighted U-statistic as

(2)

This weighted U-statistic is used to measure the covariate-adjusted association between the 

multiple traits and the genetic marker.

Considering the fact that there exist potentially continuous (such as age) and categorical 

(such as gender) covariates, their distance or similarity can become arbitrary and 

complicated especially when we have many covariates. Therefore, Jiang and Zhang (2011) 

proposed to summarize all the covariates, continuous or categorical, into the propensity 

score (Rosenbaum and Rubin, 1983; Zhao et al., 2009). Its definition is the likelihood of an 

individual having a particular test-locus genotype based on that individual’s covariate 

makeup, which can be explicitly stated as

with  being the set of possible values for the genotype G; while in our context,  = {0, 1, 

2} representing {aa, Aa, AA} for a SNP marker with two alleles A and a. Then the weighted 

U-statistic in (2) becomes

(3)

These weighted U-statistics (2) and (3) were proposed to adjust the association taking into 

account the covariate effects. They have been proven useful in both theory and application 

especially when the covariates have direct or indirect effects on the traits (Jiang and Zhang, 

2011; Zhu et al., 2012).

2.2 Inverse Probability Weighting

In the case without covariates, a natural choice of measurement of genotype-phenotype 

association is given by U in (1). One property of U is its unbiasedness under the null 

hypothesis. That is, E(U | Y) = 0 when there is no association between the genotype and 

phenotype (Zhang et al., 2010). It is noteworthy that conditioning on the traits is necessary 

to eliminate the need for assumptions about the phenotypic distribution (Laird et al., 2000).

When the covariate information is available, however, in order to remove the confounding 

effects of the covariates, one needs to test the conditional independence between the 

genotype and phenotype conditional on the covariates (Zhu et al., 2012). That is ℋ0 : Yi ⊥ 

Gi | Zi, i = 1, … , n. Under the new null hypothesis ℋ0, however, the U-statistic U in (1) is 

not necessarily an unbiased measure. The reason is that, under ℋ0,
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which is a similar association measurement to U in (1) with the genotype Gi replaced by its 

conditional mean E(Gi | Yi). This implies that E(U | Y) would have a non-degenerate 

distribution (when Yi’s are regarded as random) unless all E(Gi | Yi)’s are equal. Therefore, 

E(U | Y) cannot always be zero. The same conclusion holds for the weighted U-statistics 

UW,1 and UW,2 in (2) and (3). They are also not necessarily unbiased under the null 

hypothesis ℋ0.

Therefore, we need to revise the above-mentioned U-statistics to ensure the theoretical 

unbiasedness. Borrowing the idea of the inverse probability weighting method for 

propensity scores (Rosenbaum, 1987; Robins et al., 2000; Lunceford and Davidian, 2004), 

we revise the genotype kernel from ϕg(Gi, Gj) = Gi − Gj to

where e(zi) = E(Gi | Zi = zi) is the conditional expectation of Gi given Zi = zi. In general, 

e(zi) can be directly obtained from the propensity score as

Then we propose the propensity score-inverse probability weighted U-statistic as

(4)

From (4), we see that

as E{ϕg(Gi, Gj; Zi, Zj) | Zi, Zj} = 0 under ℋ0. This shows that UIPW is an unbiased estimator 

of the conditional association between the genotype and phenotype under ℋ0, provided that 

the true values of propensity scores are known.

2.3 Asymptotic Distribution with True Propensity Scores

As illustrated by Zhu et al. (2012), the asymptotic distribution of UIPW may be derived 

conditioning on both traits Y = y and covariates Z = z. Write , then
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Conditioning on both traits and covariates, the mean of UIPW is still zero under ℋ0. The 

asymptotic distribution of UIPW can be derived by applying the central limit theorem. 

Theorem 1 reveals that UIPW has an asymptotic normal distribution after normalization by 

its variance.

Theorem 1. Let v(zi) = var(Gi | Zi = zi). Assume infn,i |e(zi)| > 0 and infn,i |v(zi)| > 0. Suppose 

, where λmin represents the minimum eigenvalue. 

Then, under the null hypothesis ℋ0,

in distribution, conditioning on all the traits and covariates, where

Uipw is a linear combination of the independent genotypes G1, … , Gn. This observation 

inspires the application of Corollary 1.3 in Shao (2003) to prove Theorem 1. The conditions 

infn,i |e(zi)| > 0 and infn,i |v(zi)| > 0 are assumed to ensure the positive definiteness of the 

covariance matrix Σ. Moreover, the condition  is 

used to control the contribution of each term in the linear combination so that no term is 

dominant of all the others (see the regularity condition in Corollary 1.3 in Shao (2003)).

2.4 Test Statistic with Estimated Propensity Scores

In Section 2.3, UIPW involves the true values of the propensity score p(zi) and the mean 

e(zi). However, in the real situation, the propensity scores are always estimated from the 

samples, i.e., by . So is the mean e(zi) in the statistic UIPW, estimated by . In this 

case, the test statistic becomes

Therefore, we aim to find the asymptotic distribution of the test statistic  in this 

subsection. This distribution will serve as the reference distribution for our association test.

We assume a parametric model indexed by parameters θ ∈ Rd to estimate the propensity 

scores. Therefore, we call  a semiparametric measurement given both its parametric 
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and nonparametric components. To estimate p(zi) and further e(zi), we make use of the 

maximum likelihood estimator or the root of the likelihood equations  from this model. It is 

noteworthy that we do not limit ourselves to any specific form of models. Instead, we build 

the theory upon the following general parametric form,

(5)

with . For clarity, θ0 is used for the true values of θ. Thus, eθ0(zi) and 

vθ0(zi) denote the true values of e(zi) and v(zi), respectively.

With model (5), we observe that  is a statistic with estimated parameters . 

To derive the asymptotic distribution of , we follow the approach suggested by Pierce 

(1982) and Randles (1982). The idea is to derive the asymptotic joint distribution of 

 and then to approximate the distribution of  using the mean value 

theorem.

Before presenting the main theoretical result, we need to introduce some necessary notation. 

With i = 1, … , n, the log-likelihood function log ℓi(θ) of model (5) is

We assume the score function ψθ(Gi, zi) and information matrix Iθ(zi) are well defined as

(6)

(7)

In addition, define the following matrices,

(8)

and vectors (for i = 1, … , n),
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Theorem 2 presents the asymptotic distribution of the test statistic , with the detailed 

derivation provided in the Appendix.

Theorem 2. Let the parameter space Θ be an open set. Suppose that, there exist some δ > 0 

andcθ0 > 0 such that pg(zi; θ) ∈ [δ, 1 − δ] for all θ satisfying ∥θ − θ0∥ ≤ cθ0 with g = 0, 1, 2 

and i = 1, … , n; ℓi(θ) is twice continuously differentiable; for each g = 0, 1, 2,

(9)

and there exists constants Cθ0 > 0 and α > 0 such that for all θ satisfying ∥θ − θ0∥ ≤ cθ0,

(10)

where ∥A∥ = {tr(A′A)}1/2 is the Frobenius norm for any matrix A; there exists a positive 

definite matrix Iθ0 such that  and 

; furthermore, 

 and 

 for some ϵ > 0, where λmax represents the maximum 

eigenvalue. Let . Then, under the null hypothesis ℋ0,

in distribution, conditioning on all the traits and covariates.

The condition  in 

Theorem 2 has the same role as the condition  in 

Theorem 1. It is a typical requirement of the central limit theorem for a weighted sum of 

independent random variables. That is, none of the weights would dominate all the others in 

an asymptotic sense.

Theorem 2 implies the asymptotic unbiasedness of the semiparametric statistic  under 

our null hypothesis ℋ0, when the propensity scores are estimated using a parametric model. 

This property has not been achieved by either the non-weighted or the weighted statistics in 

the previous work (Zhang et al., 2010; Jiang and Zhang, 2011; Zhu et al., 2012). This agrees 

with our observation in Section 2.2 when the true values of propensity scores are assumed to 

be known.

In addition, a comparison between Theorems 1 and 2 reveals that the asymptotic variance of 

 is smaller than that of UIPW, the U-statistic with true propensity scores. This confirms 
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a surprising but known fact that “it is better to use the ‘estimated propensity score’ than the 

true propensity score even when the true score is known” (Robins et al., 1992). This 

phenomenon has been revealed by both theory (Rosenbaum, 1987; Robins et al., 1992) and 

empirical studies (Gu and Rosenbaum, 1993). Nonetheless, it is the first time (to the best of 

our knowledge) to rigorously formalize the idea either from a U-statistic viewpoint or in the 

framework of association tests.

2.5 A Specific Example

As a specific example of model (5), we consider the ordinal logistic regression model

(11)

where λ0 < λ1 are ascending level parameters, and β reflects the association between the 

gene and covariates. Using the notation in Section 2.4, θ = (λ0, λ1, β′)′ ∈ Rq+2 and d = q + 2.

Let

be the cumulative probabilities with qg(zi; θ) = Σg′≤g pg′(zi; θ), then the first-order 

derivatives in (6) can be explicitly written as follows,

with π(x) = x(1 − x),  and . The second-order derivatives 

in (9) and (10) can also be explicitly written as

with . In this way, we can write the explicit form of the 

information matrix in (7) as

(12)

and the matrix Γθ0 in (8) as

Jiang et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(13)

The main result in Theorem 2 follows as long as its conditions are satisfied. Indeed, some of 

the conditions become redundant in this specific example, such as the twice continuous 

differentiability of the likelihood function. Moreover, conditions (9) and (10) can be 

simplified into a simple condition max1≤i≤n ∥zi∥ = O(1). In summary, we present the 

following corollary parallel to Theorem 2 specifically for this example.

Corollary 1. Assume model (11) holds. Suppose that, there exist some δ > 0 andcθ0 > 0 such 

that pg(zi; θ) ∈ [δ, 1 − δ] for all θ satisfying ∥θ − θ0∥ cθ0 with g = 0, 1, 2 and i = 1, … , n; 

max1≤i≤n ∥zi∥ = O(1), , and 

and  for some ϵ > 0, where

with the simplified notation pig = pg(zi; θ0); there exists a positive definite matrix Iθ0 such 

that  with Iθ0(zi) in (12). Then, the conclusion of Theorem 2 holds with 

the explicit form of Γθ0 given in (13).

Following the asymptotic distribution of  in Corollary 1, we define the test statistic

where  is the estimator of Λθ0. The consistency of  can be verified under the 

conditions of Corollary 1. Therefore, it is clear that

in distribution, conditioning on all the traits and covariates. This serves as the reference 

distribution in our numerical studies.

2.6 Genotype Coding

As mentioned in Section 2.1, the genotype G is coded as 0, 1, 2 representing aa, Aa, AA 

respectively, which record the number of a reference allele A. The choice of a different 
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reference allele a leads to a different coding of genotype such as G′ = 2 − G. We illustrate in 

this subsection the effect of different genotype codings on the association measurements we 

studied in Sections 2.1–2.2.

Firstly, notice that the genotype kernel ϕg(Gi, Gj) in (1) is invariant to the change of 

genotype coding from G to G′, i.e., . Therefore, the non-weighted 

U-statistic U in (1) and the weighted U-statistic UW,1 in (2) are both invariant to the 

genotype codings.

Secondly, the propensity score vector p(zi) = {P(Gi = g | Zi = zi) : g ∈ }′ in the weighted 

U-statistics UW,2 in (3) is invariant except that the order of its elements is reversed. It leads 

to the invariance of UW,2, as long as the weight function w(u1, u2) in (3) is not changed by 

the synchronous permutation of the elements in u1 and u2. This is often the case. For 

example, Jiang and Zhang (2011) used w(u1, u2) = exp(−∥u1−u2∥2/2), which satisfies the 

above condition.

Finally, we should note that our proposed measurement UIPW does not possess the 

invariance property under the two genotype codings. The revised genotype kernel ϕg(Gi, Gj; 

Zi, Zj) is not invariant under codings G and G′. Using a different genotype coding will 

actually change our association measurement UIPW and further change the test result. This is 

understandable because we apply a new weighting scheme. In the non-weighted U-statistic 

U, the genotypes Gi are treated equally in the genotype kernel. However, to achieve the 

unbiasedness under ℋ0, the new U-statistic UIPW inversely weights the genotypes by their 

expected values conditional on the covariates. It is the new weighting scheme that violates 

the invariance but achieves the unbiasedness. From the practical viewpoint, the new method 

can give us more flexibility to choose a genotype coding which better fits the real situation.

For clarity, we recommend the simple genotype coding. We choose the major allele as the 

reference allele for practical reasons. In practice, the inverse probability weighting often 

encounters the difficulty of small weights in the denominator. However, it is fairly easy to 

see that the above choice is much less likely to result in small denominators e(zi) (or ) 

in UIPW (or ) than the other choice. Therefore, we try to avoid the situation where the 

weights e(zi) (or ) in the denominator are close to zero.

3 SIMULATION STUDIES

3.1 Settings

We conduct simulation studies to compare the performance of our semiparametric 

association test  with the three methods mentioned in Section 2.1. They are the non-

weighted and weighted tests derived from the association measures (1)–(3), denoted by T, 

TW,1 and TW,2 respectively. We utilize the same “conditional independence” null hypothesis 

ℋ0 (see Section 2.2) for all four tests for a fair comparison. The simulation results are 

obtained from samples with size of 500, which are generated as follows.
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Step 1: For the ith sample, a continuous covariate Zi1 is simulated from N(0, 1) distribution, 

and a binary covariate Zi2 is randomly sampled from {−1, 1} with equal probabilities.

Step 2: For the relationship between the covariates and the test-locus genotype Gi, we 

generate Gi from the ordinal logistic regression model

where ν1 and ν2 control the association between the genotype and the covariates. An 

alternative genotype model is to generate Gi according to a binomial distribution Bin(2, ri) 

with probability ri satisfying

where ϵi ∼ N(0, 1) is a random error. We refer to the former model “OLR” and the latter 

model “BIN”. The former model is the one we specified in Section 2.5, while the latter 

model is used to assess the effect of model misspecification with ϵi deliberately added for 

additional complexity.

Step 3: Conditional on the genotype Gi and the covariates Zi1 and Zi2, two binary traits 

 are generated according to a logistic regression phenotype model,

with i = 1, … , n; j = 1, 2; and (ϵi1, ϵi2)′ ∼ N(0,Σϵ).

In the two genotype models (OLR and BIN), the minor allele frequency (MAF) of the 

simulated genotype depends on the values of μ0, μ1, μ and ν1, ν2. To investigate the possible 

effect of different minor allele frequencies on our results, we fix ν1 = ν2 = 1 and select 

appropriate values of μ0, μ1 and μ. Their values are chosen so that the simulated minor allele 

frequency is equal to one of the following values: 0.05, 0.10, 0.15, … , 0.40. These choices 

give a broad and reasonable range for evaluating how an association test performs with 

different minor allele frequencies.

In the phenotype model, we set α1 = −0.75, α2 = −1, and . The 

choices of the coefficients (βG, βZ1, βZ2, βGZ1, βGZ2)′ are provided by Table 1 as different 

phenotype models. The models N1 and N2 are null models under ℋ0 in which Yi and Gi are 

independent conditional on (Zi1, Zi2), and the models A1–A6 are under our alternative 

hypothesis.

3.2 Results for Bivariate Phenotypes

In this subsection, we present simulation results for the generated bivariate phenotypes. In 

terms of type I error, Table 2 presents the empirical type I error of the four tests based on 
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10,000 replications when the nominal level is set to 0.001. Table 2 also includes the type I 

error results when the nominal level is 5 × 10−7. To save the computational time, we fix the 

minor allele frequency at 0.10 there. This smaller nominal level provides an additional 

comparison among different methods in a situation similar to the real application (Burton et 

al., 2007). To illustrate the necessity of utilizing the “conditional independence” null 

hypothesis ℋ0, we also include T′, the non-weighted test under the original “unconditional 

independence” null hypothesis —no association between phenotype and genotype. In 

terms of power, Figures 1-4 present the statistical power of the four tests with respect to a 

wide range of minor allele frequencies. Figures 1-2 correspond to the nominal level 0.001 

and Figures 3-4 correspond to the nominal level 5 × 10−7.

From the perspective of type I error (in models N1 and N2), we find that all four tests under 

ℋ0 behave fairly well since they all possess reasonably accurate type I errors under both 

nominal levels. This is partially due to the fact that ℋ0 removes the confounding effects of 

covariates. By contrast, T′ cannot control its type I error in model N2. The reason is clear: T′ 

does not remove the confounding effect in model N2 (Jiang and Zhang, 2011; Zhu et al., 

2012).

From the perspective of power, we consider models A1–A6. Models A1–A2 are from a 

phenotype model without the gene-environment interaction, and A3–A6 are with an 

interaction. To assess situations with different gene-environment interactions, in models 

A5–A6, we double the interaction coefficients from models A3–A4, respectively.

In model A1 with the genetic effect only, the non-weighted test T possesses the highest 

power among all four methods, although their differences are actually quite small. This 

agrees with our expectation since it is not necessary to adjust for covariates in this case. But 

adjusting for covariates does not harm the statistical power. In model A2 with both genetic 

and environmental effects, the non-weighted test T performs the worst for most values of 

minor allele frequency. The other three methods are slightly better, indicating the 

essentiality of including covariates in the association test. It is noteworthy that the proposed 

inverse probability weighted test favors the region of a small minor allele frequency in both 

models A1 and A2. Compared to other weighted tests, the proposed test is comparable or 

even better for low MAF’s, but is slightly underpowered when the MAF is higher than 0.30.

By including gene-environment interactions (models A3–A4), different methods perform 

quite differently. It is fairly clear from all figures that the proposed test  outperforms all 

competitors for all minor allele frequencies. When the nominal level is 0.001, the proposed 

test has a power close to 1, which means that it can identify the genetic signal in almost 

every replicate of the simulated data. The covariate weighted test TW,1 wins the second 

place in terms of power. The non-weighted test T and the propensity score weighted test 

TW,2 do not have a comparable power for a wide range of minor allele frequencies.

A further study with stronger gene-environment interactions (models A5–A6) provides 

additional evidence for our conclusion drawn from models A3–A4. When the gene-

environment interactions dominate both genetic and environmental effects, the 

semiparametric inverse probability weighted test outperforms other tests in all minor allele 
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frequencies we considered, showing the power of the proposed test in detecting the gene-

environment interactions.

Comparing the two genotype models (OLR versus BIN), we have not observed a major 

impact from the misspecified model on testing the associations. When the genotype is 

generated using the binomial distribution, our test derived from the ordinal logistic 

regression (Section 2.5) still has a quite accurate type I error and also a high power (even 

higher in some cases) to detect either genetic effects or gene-environment interactions.

Between the two nominal levels (0.001 and 5 × 10−7), the statistical power becomes smaller 

with the lower nominal level given the same effect sizes (β’s in Table 1), especially in 

models A1–A2. All methods are underpowered there; with the sample size of 500, it is 

expected that we cannot achieve a reasonable power for a full GWAS scan, but 

unfortunately, the simulation for a much larger sample size takes a very long time to 

complete. Since our objective is to compare the relative power, we can achieve this goal 

with the modest sample size. In fact, for models A3–A6, the power of our proposed test is 

only slightly affected by this small nominal level, and it still dominates all others. In a 

situation similar to the real application (nominal level 5×10−7), it is clear that some 

adjustment is necessary when there is a gene-environment interaction.

3.3 Results for Individual Phenotypes

In addition to the simulation results for the bivariate phenotypes in Section 3.2, we also 

present the results for each individual phenotype Y(1) and Y(2) separately. For simplicity, we 

fix the nominal level to be 0.001 throughout this subsection. In terms of type I error, Table 3 

presents the empirical type I error of the tests based on 10,000 replications. In terms of 

power, Figures 5-8 present the statistical power of the four tests with respect to a wide range 

of minor allele frequencies, where Figures 5-6 correspond to the first phenotype and Figures 

7-8 correspond to the second phenotype.

In our simulations, the single-trait results are very similar to the bivariate-trait results in 

Section 3.2. From the perspective of type I error, all four tests under ℋ0 behave fairly well 

since they all possess reasonably accurate type I errors. By contrast, T′ cannot control its 

type I error in model N2. From the perspective of power, we observe that the inverse 

probability weighted test is generally comparable to others when there is only genetic effects 

and/or environmental effects, and it outperforms others when there are gene-environment 

interactions.

3.4 Impact of Model Misspecification

In Sections 3.2–3.3, we observed no major impact on testing the genetic associations caused 

by a possibly misspecified parametric gene-environment model. To better understand how 

the model misspecification affects the estimation of the propensity scores, we compare the 

estimation results under the two genotype models (OLR and BIN) used in Section 3.1. 

Figure 9 provides the boxplot of the mean squared errors of the estimated propensity scores 

 and  from random samples with size of 500 based on 1, 000 replications.
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Since we use the ordinal logistic regression model to estimate the propensity scores (Section 

2.5), when the genotype is simulated using model OLR, the estimation performance is the 

best. The mean squared errors of the estimated propensity scores are higher when the 

genotype data are simulated from model BIN.

We would like to note that we deliberately added a random error ϵi in model BIN for 

additional complexity, which can cause spurious estimation errors. For a more fair 

comparison, we also simulate genotype data using model BIN without the random error 

(referred to as model BIN’) and further present the results for BIN’ in Figure 9. From the 

results, it is obvious that the extra estimation error for model BIN is mainly caused by the 

random error we added. There is no significant difference between the estimation errors for 

models OLR and BIN’, indicating that the difference between the estimation performance 

under the two genotype models is negligible if no additional noise is included.

4 DATA ANALYSIS

4.1 Data and Methods

The Study of Addiction: Genetics and Environment (SAGE) aims to identify susceptible 

genetic factors that contribute to substance dependence through three large-scale 

genomewide association studies: the Collaborative Study on the Genetics of Alcoholism 

(COGA), the Family Study of Cocaine Dependence (FSCD), and the Collaborative Genetic 

Study of Nicotine Dependence (COGEND). These three studies have been reported 

separately in previous work (Reich et al., 1998; Hartel et al., 2006; Luo et al., 2008; Bierut 

et al., 2008). The SAGE data include 4,121 subjects for whom the addiction to alcohol, 

nicotine, marijuana, cocaine, opiates, and other drugs and genome-wide SNP data 

(ILLUMINA Human 1M platform) were available. Lifetime dependence on these six 

categories of substances was diagnosed in accordance with the Diagnostic and Statistical 

Manual of Mental Disorders, Fourth Edition (DSM-IV). We hypothesize that there is a 

common genetic effect for the comorbidity including the addiction to the six categories of 

substances. We thus use multivariate traits, each of which stands for whether or not the 

subject is addicted to a single substance. The six phenotypes are coded into binary scales 

according to whether the subject is addicted to a particular substance.

In our study, we excluded 60 duplicate genotype samples and removed nine subjects with 

ethnic backgrounds other than African origin (black) or European origin (white). In total we 

have 3,627 unrelated subjects for whom we have both genotype and phenotype data. 

Following Chen et al. (2011), we performed a separate analysis for both race (black or 

white) and gender (female or male), due to the complexity of substance dependence with 

possible environmental components. Therefore, our analysis was performed in each of the 

four subpopulations: 1,393 white women, 1,131 white men, 568 black women, and 535 

black men (Chen et al., 2011). In addition, we filtered SNPs by setting thresholds for call 

rate (> 90%), minor allele frequency (MAF) in each sub-population (> 1%), and Hardy-

Weinberg equilibrium in each sub-population (p-value > 0.0001).

As we have already split the data by the covariates race and gender, they were not adjusted 

in the further analysis in each subset. Hence, the remaining covariates include age and some 
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environmental risk factors, such as whether experienced rape/sexual assault, whether 

experienced physical assault, and whether experienced non-assaultive trauma. Some other 

risk factors, such as whether experienced neglect as a child, whether experienced physical 

abuse as a child, and childhood sexual abuse, were not included due to their high rates of 

missing values.

Similar to the simulation study, we compare four association tests: non-weighted test T, 

covariate-weighted test TW,1, propensity score-weighted test TW,2, and our semiparametric 

propensity score-inverse probability weighted test . With the above selected covariates, 

the weight functions w(·, ·) in both weighted tests TW,1 and TW,2 are chosen following 

previous work (Jiang and Zhang, 2011; Zhu et al., 2012) with default parameters. 

Meanwhile, we continue to use the ordinal logistic regression model for the genotype-

covariate relationship in our proposed test. In addition to the above tests with multivariate 

traits, we also tabulate the results from analyses using a single trait at a time. For each of the 

six traits, we utilize two approaches to analyze them. Firstly, we fit a logistic regression 

model including both genotype and the selected covariates. The statistical significance is 

drawn from a likelihood ratio test based on the logistic regression model. Secondly, we 

apply the same association tests T, TW,1, TW,2, and  as above to each trait, and present 

the significant findings.

4.2 Summary Statistics

We provided in Table 4 the co-dependence information of the six substances among the 

3,627 unrelated subjects included in our final analysis. The diagonal entries are the rates of 

each substance dependence, and the lower-diagonal entries are the co-dependence rates of 

each pair of substances. Comparing a lower-diagonal entry to its two corresponding diagonal 

entries suggests the statistical dependence among the six addictions. For example, there are 

1,625 subjects (45%) who are addicted to nicotine and 1,693 subjects (47%) addicted to 

alcohol. The co-dependence rate of nicotine and alcohol is 32% (1,154 out of 3,627), which 

is much higher than the rate if assuming these two addictions are statistically independent. 

This observation supports the existence of comorbidity among the six addictions in this data 

set.

Table 5 summarizes the addiction distribution in each subset of data split by race and sex. 

We can see that the addiction to some categories of substances is homogeneous across the 

four subpopulations, such as nicotine, with addiction rates 47%, 48%, 47% and 41% 

respectively. However, other substance dependencies differ by race (e.g., cocaine, 46% and 

36% for black men and women versus 27% and 12% for white men and women) and/or sex 

(e.g., alcohol, 62% and 62% for black and white men versus 39% and 31% for black and 

white women). Throughout our analysis, the data are divided into four subsets according to 

sex and race of the subjects. Therefore, we focus on the subset specific analysis, removing 

the heterogeneity across the subpopulations.

4.3 Single-Trait Results

Before presenting the multiple-trait results, we summarize the single-trait results from 

logistic regression models and the association tests in Table 6 and Table 7, respectively. The 
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p-values in bold characters indicate that they reach the genome-wide significance level after 

Bonferroni correction for the number of traits (p-value < 5 × 10−7/6) (Burton et al., 2007).

From Table 6, only one SNP achieves the genome-wide significance level (after Bonferroni 

correction) in the subpopulation of white women: rs445057 in gene FHIT is identified as a 

significant marker for addiction to alcohol. Very recently, FHIT has been documented to be 

in correlation with lifetime cigarette addiction (Antczak et al., 2013). This existing result, 

combined with our finding that FHIT is associated with alcohol dependence, partially 

supports the hypothesis that common genes underlie the comorbidity of multiple substance 

dependencies.

From Table 7, we have identified several significant SNP markers for each of the two 

phenotypes: addiction to opiates and addiction to other drugs, using the association tests T, 

TW,1, TW,2, and .

For the addiction to opiates, three SNPs are identified to be genome-wide significant in 

black men. Among these SNPs, rs2377339 is located within gene NCK2, which has a strong 

association with normal angle glaucoma (Akiyama et al., 2008; Fuse, 2010). Furthermore, a 

meta-analysis (Bonovas et al., 2004) reported that smoking is a risk factor for glaucoma. 

These findings indicate some intriguing interplay between smoking and NCK2. A more 

recent study also verified the association of NCK2 with opiates addiction (Liu et al., 2013).

Three SNPs, all in gene PCDH9, are significantly associated with opiates dependence in 

white men. PCDH9 was discovered to contain variants that contribute to general addiction 

vulnerability (Liu et al., 2006), agreeing with our current finding.

Five additional SNPs, located in four known genes, achieve the genome-wide significance in 

black women. Among these genes, UBE3C has recently been discovered to be one of the 

four particularly promising candidate genes susceptible to cocaine dependence and major 

depressive episode (Yang et al., 2011); PCDH15 was also found to be associated with 

nicotine dependence by multiple human genome-wide association studies (Uhl et al., 2008; 

Lind et al., 2010). These results partially support our findings about the association between 

these two genes and opiates dependence.

Three SNPs in gene EML2 are discovered for addiction to opiates in white women. EML2 

was found to be one of the potential candidate genes for bipolar disorder comorbid with 

alcoholism in mice (Le-Niculescu et al., 2008). However, no human studies have suggested 

the association of EML2 with substance dependence yet.

In addition to opiates, we have two more findings for addiction to other drugs, for which we 

have not found supporting evidence in the literature. All these single-trait findings can be 

potentially important for researchers to better understand the genetic components of 

substance dependence.
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4.4 Multiple-Trait Results

The results from the analysis of multivariate traits are summarized in Table 8, with the p-

values in bold characters indicating that they reach the genome-wide significance level (p-

value < 5 × 10−7) (Burton et al., 2007). Comparing the four tests for multivariate traits, it is 

fairly clear to see the advantage of adjusting for important covariates in this data set. 

Without any adjustment, no SNP can be identified at the genome-wide significance level 

using test T. In addition, we find that different adjusted tests work complementarily to each 

other. These three tests (TW,1, TW,1 and ) have some common findings and also non-

overlapping discoveries. The results of the weighted tests might depend on the strength of 

the genetic signals and/or gene-environment interactions, as illustrated by our simulation 

studies. Similar conclusions can also be drawn from the comparison among different 

methods for single-trait results in Table 7.

Interestingly, we have several common findings between the multiple-trait results in Table 8 

and the single-trait results in Table 7. These common genes, such as NCK2, PCDH15, and 

EML2, can be of particular interest to the addiction research. In the following, we provide a 

brief overview of the multiple-trait findings.

Three SNPs, rs2377339, rs251133 and rs10483285, which are located in genes NCK2, 

STARD4-AS1 and ADCY4 respectively, reach the genome-wide significance in black men. 

In addition to NCK2, previous research has also provided evidence for ADCY4: it is 

associated with opioid dependence (Wang et al., 2005; Li et al., 2008). All these results 

support NCK2 and ADCY4 as potentially relevant genes to substance dependence.

Two other SNPs, rs4016435 and rs1477908, in genes CTNNB1 and MMP16, achieve the 

genome-wide significance level in white men. It has come to our attention that the gene 

CTNNB1 has been suggested by microarray studies of nicotine exposure in rats (Sullivan et 

al., 2004), but it is the first time that this gene is discovered to be related to substance 

dependence in a human study. In addition, MMP16 belongs to a family of genes (matrix 

metalloproteinases, i.e., MMPs) that is known to play an important role in drug addiction 

(Wright and Harding, 2009).

Four SNPs located in four different genes are discovered to be associated with substance 

dependence in black women. Similar to CTNNB1, RASAL2 is also a candidate gene for 

nicotine dependence from pathway analysis (Sullivan et al., 2004). Furthermore, multiple 

human genome-wide association studies identified PCDH15 to be associated with nicotine 

dependence (Uhl et al., 2008; Lind et al., 2010). These existing results provide partial 

support to our findings.

Eight other SNPs are identified using multiple addictions in white women. Similar to EML2, 

previous microarray study in mice has provided evidence that MPV17 is associated with 

alcohol dependence (Li et al., 2008). However, no human studies have suggested the 

association of these two genes with substance dependence yet.
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Besides the SNPs/genes discussed above, there are other SNPs/genes showing strong 

evidence of association with substance dependence in our study, and those SNPs/genes 

warrant further investigation.

5 DISCUSSION

Understanding comorbidity related with addictions is one of the most pressing challenges 

with enormous public health significance (National Institute on Drug Abuse, 2010). In this 

work, we studied genetics of multiple addictions by analyzing the data from the Study of 

Addiction: Genetics and Environment (SAGE). To properly utilize the information collected 

by this study, we propose a novel statistical method to incorporate environmental factors 

into a nonparametric U-statistic (generalized Kendall’s tau) which can handle comorbidity 

of multiple traits. Compared with directly imposing a weight function on the U-statistic, the 

idea of inverse probability weighting is more natural and convenient. On the one hand, the 

inverse probability weighted U-statistic is asymptotically unbiased under the null hypothesis 

while the non-weighted and other weighted tests are not necessarily. On the other hand, the 

proposed test is free of tuning parameters, which is more convenient and accessible than 

other weighted tests.

A byproduct of our theoretical work is to confirm a previous finding that estimated 

propensity scores can be preferable to their true values in applications. It is shown that our 

semiparametric U-statistic has a smaller asymptotic variance with -consistent propensity 

score estimates than with true propensity scores. Although this phenomenon has been 

revealed before, to the best of our knowledge this is the first time to formalize it in the areas 

of U-statistics and genetic association tests. Moreover, a recently proposed multiple-trait 

association test called “Scaled Multiple-phenotype Association Test” (SMAT) (Schifano et 

al., 2013) was brought to our attention by a referee. It is noteworthy that SMAT can only 

handle continuous phenotypes while our proposed test can take any hybrid of dichotomous, 

ordinal and quantitative traits. Since we focus on binary responses in our current 

investigation of addictions, we will leave the comparison study with SMAT to our future 

work.

We have demonstrated numerical performance of our method, and should note the topics 

that deserve further research. For example, a key assumption for the distribution of our 

statistic is that the propensity scores are estimated under the correct parametric model. We 

assessed the impact of model misspecification in simulation studies, and our empirical 

results did not reveal a major impact. Nonetheless, a deeper theoretical understanding is still 

important. Another issue is the choice of genotype coding in our method. As discussed in 

Section 2.6, our test is not invariant to the genotype coding and we provided a practical 

suggestion. Although it is not the focus of the current study, it warrants some future 

investigations.

Applying the new method (together with other methods) to the SAGE data leads to a few 

interesting findings. Firstly, the multiple-trait analysis reveals new markers that were not 

identified by the single addiction analysis. When a genetic signal is not strong enough for 
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any single addiction and yet underlies multiple ones, it can become stronger (to a detectable 

level) by combining different substance dependencies.

Secondly, our analysis of the SAGE data reveals an advantage of adjusting for 

environmental factors. To study comorbidity, adjusted tests identified a few genetic variants 

to addiction but the unadjusted test did not have any findings. This agrees with the 

observations from our simulation studies. Most of the time, the inclusion of important 

environmental factors can increase the power to detect either the genetic effect or the gene-

environment interaction. Even under the situation with a genetic effect only (no 

environmental effects), an unnecessary adjustment for the environmental factors has little 

effect on the power of a test.

Lastly, tests with different adjustments behave differently. Due to the nature of the real data 

analysis, we cannot really tell which method performs the best. In a real application, it is 

usually not practical to have one method that is always superior to all others. Therefore, it is 

useful that different adjusted tests work complementarily to each other in this data set.
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A APPENDIX

We split our derivation of Theorem 2 into three steps as follows. The first step is to obtain 

an asymptotic representation of . Under regularity conditions, there exists a -consistent 

estimator  of θ0. The following lemma presents the result, with its proof given in Appendix 

A.1.

Lemma 1. Let the parameter space Θ be an open set. Suppose that, there exists some δ > 0 

and cθ0 > 0 such that pg(zi; θ) ∈ [δ, 1 − δ] for all θ satisfying ∥θ − θ0∥ ≤ cθ0 with g = 0, 1, 2 

and i = 1, … , n; ℓi(θ) is twice continuously differentiable; for each g = 0, 1, 2, condition (9) 

holds, and there exists constants Cθ0 > 0 and α > 0 such that for all θ satisfying ∥θ − θ0∥ ≤ 

cθ0, condition (10) holds; there exists a positive definite matrix Iθ0 such that 

. Then, there exists a root of the likelihood equations  of θ0 which has 

the following representation

(A.1)

The result of Lemma 1 is fairly standard for a root of the likelihood equations  in the 

framework of maximum likelihood. We refer to Theorem 5.21 in van der Vaart (1998) and 
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Theorem 4.17 in Shao (2003) as similar conclusions. A distinct part of this lemma is that the 

samples are only independent but not identically distributed due to the conditional inference 

given all the covariates. In other words, the covariates are regarded as non-random. This 

characteristic results in the unique conditions (9) and (10) involving the covariate zi’s, 

compared with the traditional theories. Thus, we provide a proof in Appendix A.1 for being 

clear and self-contained.

The second step is to investigate the asymptotic joint distribution of . The 

idea becomes clear with the conclusion of Lemma 1, as both UIPW(θ0) and  can be 

written in the form of a sum of independent random vectors. Hence, 

 becomes a sum of independent random vectors, on which we can 

apply the central limit theorem. Thus, we leave the proof in Appendix A.2 and present the 

result in the following lemma.

Lemma 2. In addition to the conditions in Lemma 1, assume that 

 and 

. Then, under the null 

hypothesis ℋ0,

(A.2)

in distribution, conditioning on all the traits Y = y and covariates Z = z. In (A.2),

where Σθ0 and Γθ0 are defined in Section 2.4.

Finally, as the last step, the asymptotic distribution of  follows from the joint 

asymptotic distribution of UIPW(θ0) and , borrowing the idea from Pierce (1982) and 

Randles (1982). The proof of this step can be found in Appendix A.3.

A.1 Proof of Lemma 1

In this section, all probability related arguments/operations will be conditioning on the 

covariates. However, to simplify the notation, we still write E(·) or var(·) instead of E(· | Z = 

z) or var(· | Z = z).

We first prove that . This is implied by the fact that for any ϵ > 0, there 

exists C > 0 and n0 > 1 such that

Jiang et al. Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(A.3)

where  and ∂Bn(C) is the boundary of 

. Let . The Taylor expansion 

gives that

(A.4)

where  is the generic notation of a vector lying between θ0 and θ. We will show at the end 

that,

(A.5)

Combining (A.4) and (A.5),

therefore (A.3) holds with large enough C and n0. The -consistency of  is proved.

To obtain the asymptotic representation (A.1) of , we consider the Taylor expansion of 

 at θ0. On the one hand,  by the definition of a root of the likelihood 

equations; on the other hand,

(A.6)

where  lies between θ0 and . Then the representation (A.1) in Lemma 1 holds by (A.6), 

, and the same result as the second part of (A.5) but with  denoting a 

vector between θ0 and  (which will be proved immediately).

At the end, we provide the proof of (A.5). For Ψn(θ0), it is seen that

because of the exchangeability of the partial derivative and integration with respect to a 

discrete measure. Then, for any ϵ > 0, we can choose Cϵ large enough such that
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This is the first part of (A.5). For the second part, we need to show it holds for  satisfying 

either  or . In either case, we have that

(A.7)

(A.8)

(A.9)

for an arbitrary d-dimensional vector c. (A.7) follows from the following equation

and the conditions (9) and (10) in Lemma 1. (A.8) follows from the exchangeability of the 

partial derivative and integration with respect to a discrete measure. (A.9) follows from the 

condition (9) in Lemma 1. By Markov’s inequality, for any ϵ > 0,

(A.

10)

The second part of (A.5) is implied by (A.7) and (A.10).

A.2 Proof of Lemma 2

In the next two subsections (Sections A.2 and A.3), all probability related arguments/

operations will be conditioning on the traits and covariates. However, to simplify the 

notation, we still write E(·) or var(·) instead of E(· | Y = y, Z = z) or var(· | Y = y, Z = z).

From the Cramér-Wold device, it suffices to find the asymptotic distribution of 

 for arbitrary p- and d-dimensional vectors c1 and c2. As 

 from Theorem 1 and the condition , it is 

seen that

(A.

11)

A direct calculation gives its variance
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(A.12)

(A.13)

where we have in (A.12) that

and in (A.13) that

Therefore,

In order to apply the central limit theorem as in Corollary 1.3 in Shao (2003), we need to 

rewrite (A.11) into

with di = (di1, di2)′, Ri = {I(Gi = 1), I(Gi = 2)}′, and

using the notation introduced in Lemma 2.

From the condition , 

we see that

Jiang et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The conditions in Lemma 2 also lead to infn,i λmin({var(Ri)}) > 0 and supn,i E(∥Ri∥
2+δ) < ∞ 

for δ = 2. These regularity conditions imply that

in distribution. If Ωθ0 is positive definite, then substituting 

already leads to the result in Lemma 2.

The last piece to prove is the positive definiteness of Ωθ0. Let Vi = var(Ri) and 

, then

We see that infn[λmin{diag(V1, … , Vn)}] > 0. In addition, there exists some δn > 0,

for arbitrary p- and d-dimensional vectors x and y. Therefore, for n sufficiently large,

(A.

14)

which implies the positive definiteness of Ωθ0.

A.3 Proof of Theorem 2

The proof follows from the idea in Pierce (1982) and Randles (1982) who provided a 

general guidance of deriving the asymptotic distribution of statistics with estimated 

parameters. In our situation, the statistic is  where  are the estimated 

parameters. The proof starts from the following fact,

(A.15)

with some  lying between θ0 and . As
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it is seen that

(A.16)

The equality in (A.16) follows from the facts that

due to the condition  and the first part of condition (9). In addition, 

since ,

(A.17)

with  between θ0 and . The equality in (A.17) follows from the fact that for each l = 1, 

… , p,

by the condition  and the condition (9). Substituting (A.16) and (A.

17) into (A.15) leads to

(A.18)

(A.19)

The equality in (A.18) follows if
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(A.20)

where ∥A∥2 = {λmax(A′A)}1/2 is the spectral norm for any matrix A. We will prove (A.20) 

at the end. Combining Lemma 2 and the fact that

(A.19) leads to the following convergence in distribution

At the end, we verify (A.20) to complete our proof. There exists a constant C > 0 such that

Also, for an arbitrary x ∈ Rp,

With the condition  in Theorem 2, δn in (A.14) can be 

replaced with nδ for some δ > 0, which in turn implies that infn{λmin(Ωθ0)} > 0. Then we 

know infn{λmin(Λθ0)} > 0 according to (A.21). So .
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Figure 1. 
Power versus minor allele frequency for bivariate phenotypes. The significance level is 

0.001. The genotype is simulated using model OLR. Solid line with circles: inverse 

probability weighted test ; dashed line with triangles: non-weighted test T; dotted line 

with pluses: covariate weighted test TW,1; dotdash line with crosses: propensity score 

weighted test TW,2.

Jiang et al. Page 32

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Power versus minor allele frequency for bivariate phenotypes. The significance level is 

0.001. The genotype is simulated using model BIN. Solid line with circles: inverse 

probability weighted test ; dashed line with triangles: non-weighted test T; dotted line 

with pluses: covariate weighted test TW,1; dotdash line with crosses: propensity score 

weighted test TW,2.
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Figure 3. 
Power versus minor allele frequency for bivariate phenotypes. The significance level is 5 × 

10−7. The genotype is simulated using model OLR. Solid line with circles: inverse 

probability weighted test ; dashed line with triangles: non-weighted test T; dotted line 

with pluses: covariate weighted test TW,1; dotdash line with crosses: propensity score 

weighted test TW,2.
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Figure 4. 
Power versus minor allele frequency for bivariate phenotypes. The significance level is 5 × 

10−7. The genotype is simulated using model BIN. Solid line with circles: inverse 

probability weighted test ; dashed line with triangles: non-weighted test T; dotted line 

with pluses: covariate weighted test TW,1; dotdash line with crosses: propensity score 

weighted test TW,2.
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Figure 5. 
Power versus minor allele frequency for phenotype Y(1). The significance level is 0.001. The 

genotype is simulated using model OLR. Solid line with circles: inverse probability 

weighted test ; dashed line with triangles: non-weighted test T; dotted line with pluses: 

covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.

Jiang et al. Page 36

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
Power versus minor allele frequency for phenotype Y(1). The significance level is 0.001. The 

genotype is simulated using model BIN. Solid line with circles: inverse probability weighted 

test ; dashed line with triangles: non-weighted test T; dotted line with pluses: covariate 

weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 7. 
Power versus minor allele frequency for phenotype Y(2). The significance level is 0.001. The 

genotype is simulated using model OLR. Solid line with circles: inverse probability 

weighted test ; dashed line with triangles: non-weighted test T; dotted line with pluses: 

covariate weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 8. 
Power versus minor allele frequency for phenotype Y(2). The significance level is 0.001. The 

genotype is simulated using model BIN. Solid line with circles: inverse probability weighted 

test ; dashed line with triangles: non-weighted test T; dotted line with pluses: covariate 

weighted test TW,1; dotdash line with crosses: propensity score weighted test TW,2.
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Figure 9. 
Mean squared error of the estimated propensity scores  and . Each panel includes the 

boxplots for mean squared errors of the estimated propensity scores  and , in that 

particular order, from genotype models OLR, BIN, and BIN’, respectively.
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Table 1

Phenotype models

Null Models

N1 βG = 0 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 0

N2 βG = 0 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 0

Alternative Models

A1 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 0

A2 βG = 0.5 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 0

A3 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 1

A4 βG = 0.5 βZ1 = βZ2 = 0.5 βGZ1 = βGZ2 = 1

A5 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 2

A6 βG = 0.5 βZ1 = βZ2 = 0 βGZ1 = βGZ2 = 2
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Table 4

Dependence and co-dependence rate of six substances. nic: nicotine; mj: marijuana; coc: cocaine; op: opiates; 

alc: alcohol; oth: other drugs. The percentage in the parenthesis is the dependence or co-dependence rate in the 

3,627 unrelated subjects.

Substance Dependence

nic (%) mj (%) coc (%) op (%) alc (%) oth (%)

nic 1625 (45)

mj 486 (13) 620 (17)

coc 686 (19) 464 (13) 937 (26)

op 203 (6) 145 (4) 217 (6) 258 (7)

alc 1154 (32) 577 (16) 820 (23) 238 (7) 1693 (47)

oth 332 (9) 258 (7) 335 (9) 168 (5) 406 (11) 432 (12)
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Table 5

Summary of substance dependence in each subpopulation. nic: nicotine; mj: marijuana; coc: cocaine; op: 

opiates; alc: alcohol; oth: other drugs. The percentage in the parenthesis is the substance dependence rate in 

each subpopulation.

Subset Total Substance Dependence

nic (%) mj (%) coc (%) op (%) alc (%) oth (%)

Black Men 535 254 (47) 136 (25) 248 (46) 44 (8) 332 (62) 61 (11)

Black Women 568 271 (48) 78 (14) 206 (36) 35 (6) 224 (39) 37 (7)

White Men 1131 528 (47) 285 (25) 309 (27) 112 (10) 704 (62) 203 (18)

White Women 1393 572 (41) 121 (9) 174 (12) 67 (5) 433 (31) 131 (9)

Total 3627 1625 (45) 620 (17) 937 (26) 258 (7) 1693 (47) 432 (12)
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Table 6

Significant SNPs in the genome-wide association study of a single substance dependence from logistic 

regression. nic: nicotine; mj: marijuana; coc: cocaine; op: opiates; alc: alcohol; oth: other drugs.

Chr SNP Gene MAF p-values

nic mj coc op alc oth

White Women

 3 rs445057 FHIT 0.174 5.9e-1 2.2e-2 2.0e-4 1.7e-1 4.5e-8 1.8e-2
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Table 7

Significant SNPs in the genome-wide association study of a single substance dependence from association 

tests. op: opiates; oth: other drugs.

Chr SNP MAF Gene p-values

T T W,1 T W,2 T̂ IPW

op

Black Men

2 rs2377339 0.019 NCK2 1.1e-8 1.1e-9 1.4e-9 8.2e-9

16 rs2042360 0.066 – 9.2e-7 6.5e-8 4.3e-7 9.6e-7

17 rs17544779 0.017 – 5.6e-8 6.3e-6 1.8e-6 4.6e-8

White Men

13 rs9529180 0.111 PCDH9 1.5e-7 4.6e-7 4.9e-8 1.1e-7

13 rs9540995 0.112 PCDH9 2.2e-7 7.0e-7 5.9e-8 1.5e-7

13 rs9529185 0.111 PCDH9 1.6e-7 4.7e-7 5.2e-8 1.1e-7

Black Women

5 rs2441010 0.012 – 1.0e-7 1.1e-4 8.2e-5 7.6e-8

7 rs2528381 0.084 UBE2D4 1.9e-5 5.1e-8 2.9e-5 1.6e-5

7 rs1182398 0.014 UBE3C 1.9e-7 5.6e-8 1.2e-6 1.1e-7

10 rs7911634 0.011 PCDH15 7.2e-5 2.7e-9 3.1e-6 6.6e-5

14 rs17197261 0.020 0R10G3 1.3e-5 4.5e-8 1.4e-3 1.0e-5

White Women

19 rs3745816 0.016 EML2 2.2e-5 4.4e-11 2.0e-5 1.3e-5

19 rs4445998 0.015 EML2 1.2e-5 1.2e-11 2.4e-5 6.7e-6

19 rs1545040 0.020 EML2 1.5e-3 5.7e-8 2.5e-3 1.1e-3

oth

Black Women

11 rs11603357 0.041 – 2.5e-7 2.6e-8 1.1e-8 1.5e-7

White Women

17 rs3098945 0.187 ANKRD13B 4.5e-6 1.8e-8 6.0e-7 1.1e-6
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Table 8

Significant SNPs in the genome-wide association study of multiple substance dependencies. The symbol * 

indicates that the same SNP is also found by single-trait analysis in Table 7.

Chr SNP MAF Gene p-values

T T W,1 T W,2 T̂ IPW

Black Men

2 rs2377339* 0.019 NCK2 1.1e-06 6.2e-08 1.4e-07 9.0e-07

5 rs251133 0.406 STARD4-AS1 5.3e-07 5.2e-06 2.8e-05 4.2e-07

5 rs10483285 0.037 ADCY4 2.4e-03 1.3e-07 5.0e-05 2.0e-03

White Men

3 rs4016435 0.042 CTNNB1 7.3e-07 6.2e-07 1.5e-07 2.6e-07

8 rs1477908 0.177 MMP16 1.1e-05 2.3e-05 2.3e-07 4.1e-06

Black Women

1 rs2175254 0.035 RASAL2 2.6e-05 4.1e-07 1.0e-05 1.7e-05

8 rs10504824 0.014 WWP1 1.1e-06 9.1e-09 2.7e-07 5.9e-07

8 rs17609515 0.014 CPNE3 1.1e-06 9.1e-09 2.7e-07 5.9e-07

10 rs7911634* 0.011 PCDH15 1.7e-04 1.1e-08 1.3e-05 1.6e-04

White Women

2 rs16866493 0.011 – 6.1e-04 1.9e-07 5.2e-04 3.3e-04

2 rs878167 0.010 – 1.3e-04 4.8e-08 1.0e-04 6.4e-05

2 rs6731600 0.039 – 2.1e-05 9.7e-06 7.1e-08 5.2e-06

2 rs6721762 0.039 MPV17 3.2e-05 1.1e-05 2.3e-07 8.7e-06

11 rs955396 0.068 TOLLIP/MUC5B 4.4e-05 1.5e-06 9.3e-08 4.4e-05

19 rs3745816* 0.016 EML2 5.2e-05 8.8e-10 1.7e-04 4.6e-05

19 rs4445998* 0.015 EML2 5.4e-05 3.8e-10 3.1e-04 4.6e-05

19 rs1545040* 0.020 EML2 6.7e-04 1.6e-07 2.4e-03 6.8e-04

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 02.


