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Abstract

Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic
cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were
administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain
S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and
dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing
dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to FLO11 expression.
Accordingly, L-histidine did not affect the viability of the Dflo11 and S288c strains. Also, L-histidine dramatically decreased
air–liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the
FLO11 gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings
reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts.
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Introduction

Nitrogen starvation triggers cell adhesion and multicellular

growth in different yeast species [1–2]. In Saccharomyces cerevisiae
flor strains, nitrogen limitation induces activation of the FLO11
gene and formation of the air–liquid biofilm, or flor velum [3].

The General Amino Acids Control (GAAC) pathway and/or the

plasma membrane localized Ssy1-Ptr3-Ssy5 (SPS) sensor, respon-

sible for nitrogen sensing, are also involved in the regulation of

FLO11 gene expression [4–7]. The FLO11 gene codes for an

extensively O-mannosylated cell-wall protein that triggers cell–cell

and cell–surface adhesion and air–liquid biofilm formation in flor

yeast strains [8–9]. The phosphorylation of the mannosyl side

chains on the outer surface of yeast creates abundant negatively

charged groups and provides yeast with an anionic surface charge

at pH$3 [10–11]. Therefore, nonspecific interactions, such as

hydrophobic and electrostatic interactions, are also involved in

cellular adhesion and binding [12–14]. Indeed, flo11 mutants

show a drastic decrease in cell-wall O-mannosylation sites, loss of

adhesion and biofilm formation ability, and loss of affinity for

hydrophobic solvents [8,15–20]. These phenotypes also appear to

be greatly influenced by gene length and expression levels of the

FLO11 gene [21]. Along with the FLO11 gene response to

adverse environments, cell-wall components such as chitin, b-

glucan, and mannosyl residues are also involved in the process of

adaptation to environmental stress, which is orchestrated mainly

by the cell-wall integrity pathway [22–23].

In the present study, the effects of 380 nitrogen sources were

evaluated for flor strains with different FLO11 alleles, using

Phenotype Microarray (PM) technique. The data show high

variability in nitrogen metabolism among the tested strains. The

flor strains metabolized a wide range of nitrogen sources, but

remarkably, did not metabolize dipeptides containing L-histidine.

Interestingly, subsequent biofilm formation and adhesion to

polystyrene analysis explored a novel role of L-histidine in

reducing dramatically these FLO11-related phenotypes.

Materials and Methods

Yeast strains
The yeast strains used in this study are reported in Table 1. The

A9, M23 and V80 strains are flor strains that were isolated from

different Vernaccia wineries in Sardinia, and that differ in their

FLO11 gene lengths (5, 3.1 and 6 kb) and expression levels (19.04,

7.2, 0.25 AU) [21]. Strain 3238-32 is a haploid derivative of A9,

and strain 3238-32Dflo11 is a derivative of 3238-32 that was

obtained by Zara et al. (2005) [16] and that lacks functional
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Flo11p. The S288c strain has a mutation in the FLO8 gene that

disables FLO11 expression [24].

Media and culture preparation
The media used in this study were YPD medium (1% yeast

extract, 2% peptone, 2% glucose), 20% YPD medium (0.2% yeast

extract, 0.4% peptone, 0.4% glucose), Biolog specific IFY-0 with

the appropriate additives (16 IFY-0 culture medium, 20 mM D-

glucose, 5 mM KH2PO4, 2 mM NaSO4 and 16 DyeD Biolog),

buffered SC minimal medium (0.17% yeast nitrogen base [YNB]

without ammonium sulfate and amino acids, 0.5% ammonium

sulfate, 20 mM glucose, and aliquots of 0.1 M C6H8O7.H2O and

0.2 M Na2HPO4 stock solutions that were added to buffer the

medium at pH 3, 4, 5 and 6, based on instructions from the

Sigma-Aldrich buffer reference center) and flor medium (0.17%

YNB without ammonium sulfate and amino acids, 0.5%

ammonium sulfate, 4% ethanol) [16]. The supplemented amino

acids were added at standard concentrations, as required. Unless

otherwise stated, the cell cultures were prepared by overnight

incubation in 5 mL YPD at 30uC and with 200 rpm agitation, and

then aliquots of the cultures were inoculated in fresh YPD medium

for 4 h under the same conditions, to reach the exponential phase

(optical density at 600 nm [OD600], 0.4 to 0.5). The cell cultures

were than washed twice with sterile water, the OD600 was

measured, and the appropriate cell concentrations were inoculated

into the different media.

Phenotype microarray
The phenotype microarray (PM) was carried out on microtiter

plates (PM3B, PM6, PM7 and PM8) purchased from Biolog,

Omnilog (Hayward, CA, USA), which allowed the screening of

380 different nitrogen sources, including single amino acids, di/

tripeptides, purines, pyrimidines and monoamines [25]. The PM

technology measures active metabolism by recording the irrevers-

ible reduction of tetrazolium violet to formazan, as indirect

evidence of respiratory activity. The strains were grown on YPD

agar plates overnight at 30uC and resuspended in 15 mL nutrient

supplement solution (9.12 mM L-leucine, 5.76 mM L-lysine,

2.59 mM uracil) using a sterile cotton swab, and the cell density

was adjusted to 62% transmittance on a Biolog turbidimeter, as

equivalent to OD600 0.22 (2–36106 cells/mL). The final

inoculating fluids were prepared by diluting the cell suspension

48-fold (62% transmittance in nutrient supplement solution) in

IFY-0 apposite culture medium. Then 100 uL of the final

inoculating fluids were seeded into the Biolog PM3B, PM6,

PM7 and PM8 plates. Next, the PM plates were sealed with

Breath-easy gas permeable membrane (Sigma-Aldrich, Milan,

Italy), and incubated statically at 30uC in an Omnilog Reader for

96 h. Each experiment was performed in duplicate. The

quantitative color changes were recorded automatically every

15 min using a CCD camera, to generate a growth curve for each

well. The metabolism of the control wells was considered as the

zero point for the other wells. The kinetic responses of the strains

in each well were analyzed using the Omnilog-PM software

(Biolog, Inc., Hayward, CA, USA).

For the analysis with the nitrogen metabolic assays, two kinetic

parameters were used: S, the slope of the kinetic curve; and DH,

the difference between the maximum and the minimum heights of

the kinetic curve. Both of these parameters were combined to

calculate the nitrogen activity index, IN, defined as in Equation (1):

IN~
DH

DHN max

� �
|

S

SN max

� �
ð1Þ

where DHNmax and SNmax are the highest DH and the highest

slope, respectively, recorded in the nitrogen panels (PM3B, PM6,

PM7 and PM8). The IN ranged between 0 (no metabolic activity)

and 1 (maximum metabolic activity), and was used as a parameter

for the cluster analysis of the metabolic profiles of the strains

grown on the nitrogen sources. As the negative controls (wells A01

in PM3, PM6, PM7, PM8, without a nitrogen source) showed high

background; the nitrogen sources were considered to be used when

IN was .0.33. Cluster analysis was performed using the

Bionumeric software (Applied Maths, Inc, Austin, TX, USA),

using Pearson’s coefficient and the Unweighted Pair Group

Method with Arithmetic Mean (UPGMA). The cophenetic

correlation coefficient was computed to evaluate the quality of

the cluster analysis.

Antimicrobial activity of L-histidine and L-histidine–
containing dipeptides

Dose response assays were carried out in 96-well microtiter

plates. Aliquots of 135 mL of the cell suspensions containing 104

cells/mL in 20% YPD were mixed in the microtiter plate wells

with 15 mL 106 concentrated L-histidine from serial two-fold

dilutions. Distilled water was used instead of L-histidine in the

control wells. All of the samples were prepared in triplicate. The

same test was repeated with the dipeptides histidine–methionine

(HM), histidine–valine (HV) and histidine–serine (HS) at $95%

purity (GenScript, NJ, USA), chosen for being representative of

the L-histidine containing dipeptides tested by the PM analysis,

and for their different physico-chemical features. The microtiter

plates were incubated statically at 30uC for 48 h. Growth was

measured automatically every 30 min at OD600 using a SPEC-

TROstar nano microplate spectrophotometer (BMG Labtech,

Ortenberg, Germany). The average of specific growth rates and

the lag time of the curves obtained were analyzed using the DMFit

software [26].

Table 1. Saccharomyces cerevisiae strains used in this study.

Strain Genetic background Reference

A9 Wild flor strain of S. cerevisiae isolated from Arvisonadu wine Zara et al., 2009

M23 Wild flor strain of S. cerevisiae isolated from Malvasia wine Zara et al., 2009

V80 Wild flor strain of S. cerevisiae isolated from Vernaccia wine Zara et al., 2009

3238-32 MATa leu2-D1 lys2-801 ura3-52 Zara et al., 2005

3238-32Dflo11 MATa leu2-D1 lys2-801 flo11D::URA3 ura3-52 Zara et al., 2005

S288c MATa SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6 Mortimer & Johnston, 1986

doi:10.1371/journal.pone.0112141.t001
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Biofilm formation, adhesion ability, and cell viability in
the presence of L-histidine and L-histidine–contained
dipeptides

Biofilm formation was analyzed in 24-well microtiter plates in

the presence of L-histidine, HM, HV and HS, as follows. Cell

suspensions containing 56106 cells/mL were prepared in flor

medium, and aliquots of 1350 mL were mixed in 24-well microtiter

plates with 150 mL 106 concentrated L-histidine or dipeptides

stock, to a final concentration of 10 mM; distilled water was added

to the control wells. The plates were prepared in duplicate and

were incubated statically at 30uC for 5 days. The biofilm weights

were measured and calculated as described by Zara et al. (2010)

[27], and the cell viability was determined by serial dilution spot

tests on YPD agar plates.

The yeast adherence to polystyrene was evaluated as described

by Reynolds and Fink (2001) [15], with some modifications.

Briefly, cell cultures were prepared as for the biofilm formation

test, and 90 mL cell suspensions containing 56106 cells/mL in flor

medium were placed into the 96-well polystyrene microtiter plates

with 10 mL 106 concentrated L-histidine, HM, HV and HS

solutions, to a final concentration of 10 mM. The cell suspensions

were incubated statically at 30uC for 48 h. An equal volume of 1%

(w/v) crystal violet was added to each well. After 30 min, the wells

were washed with sterile water, and the adherence of cells was

quantified by solubilizing the retained crystal violet in 100 mL

10% (w/v) SDS and an equal volume of sterile water. After

30 min, 50 mL of these solutions were transferred to fresh 96-well

polystyrene microtiter plates, and then A570 and A590 were

measured spectrophotometrically.

Quantitative real-time PCR
The yeast strain A9 was grown overnight and refreshed as

described above. Aliquots of 2.7 mL flor medium containing

56106 cells/mL were mixed with 300 mL of sterile water (Ctrl) or

with a 106 L-histidine (final concentration 10 mM), and further

incubated for 48 hours at 30uC without agitation. Three

independent biological replicates were conducted for each sample.

Cells were collected by centrifugation and kept at 280uC until

processed for RNA isolation. Total RNA was extracted using the

Aurum Total RNA Mini Kit (Bio-Rad, Milan, Italy). Two

micrograms of total RNA were retro transcribed with iscript

cDNA synthesis kit (Invitrogen Life Technologies, Milan, Italy).

Quantitative real time PCR (qPCR) was performed using a CFX

Connect Real-Time PCR System (Bio-Rad, Milan, Italy),

according to manufacturer’s protocols using the Syber GreenER

qPCR SuperMix for iCycler (Invitrogen Life Technologies, Milan,

Italy), with the following thermal profile: activation step (95uC for

10 min); amplification step (40 cycles of 95uC for 10 s, 56uC for

10 s, 72uC for 10 s); melting curve program (95uC for 10 s, 60uC
for 15 s, 95uC with a heating rate of 0.1uC/s); and cooling step

(40uC for 30 s). Primers for the target gene FLO11, as well as

ALG9, TAF10 and UBC6 as independent reference genes [28–

29], were designed to an equal annealing temperature of 56uC
(Table S1). The quantification cycle point (Cq) for each transcript

was obtained using the Bio-Rad CFX Manager software (Bio-Rad,

Milan, Italy). Three technical repeats of each one of the three

biological replicates were conducted. Normalization of the

expression levels among different samples was carried out by

considering the geometric mean of the expression levels of the

three reference genes ALG9, TAF10 and UBC6. FLO11 relative

expression levels were determined using the formula proposed by

Pfaffl et al. (2001) [30].

Flow cytometry analysis of mannose residues
Flow cytometry techniques were used to quantify the mannose

residues of the cells in the presence of L-histidine. Cell suspensions

of 56106 cells/mL in flor medium were incubated for 3 h without

or with 10 mM L-histidine, washed, and resuspended in

phosphate-buffered saline, pH 7.2 (1.18 g/L of Na2HPO4-

2H2O, 0.22 g/L NaH2PO4, 8.5 g/L NaCl). Then 10 mL conca-

navalin A lectin labeled with fluorescein isothiocyanate (ConA-

FITC; FITC contents 3.6 mol/mol lectin; Sigma-Aldrich Milan,

Italy; stock solution, 1 mg conjugate/mL) was added, and the cells

were incubated for 20 min at room temperature, in the dark. After

this incubation, the samples were immediately analyzed, using a

BD FACSCalibur flow cytometer (BD Biosciences, San Jose,

USA). The acquisition protocol of 20,000 cells/sample was defined

at FL1-h after measuring the background fluorescence and the

maximum fluorescence of each strain, to standardize the

fluorescence activity between them. The data were analyzed using

the Expo32 software included with the cytometer.

Fluorescence microscopy
Fluorescence microscopy was used to quantify the chitin

residues of all of the tested yeast strains in the presence of L-

histidine. One mL flor medium containing 56106 cells/mL was

incubated without or with 10 mM L-histidine for 3 h at 30uC. In

separate experiments, strains 3238-32 and 3238-32Dflo11 were

incubated in SC minimal medium buffered to pH 3 and 6 with

1 mM tetramethylrhodamine-labeled histidine–histidine dipeptide

(TMR-HH; $95% purity; GenScript, NJ, USA) for 3 h at 30uC.

After the incubations, aliquots of 25 mM calcofluor white (CFW)

were added for 5 min. The cells were washed and examined using

a YM10 monochrome fluorescence CCD camera (BX61 motor-

ized system microscope, Olympus, Tokyo, Japan) with excitation/

emission wavelengths of 395/440 nm for CFW detection, and

550/573 nm for TMR detection. Differential interference contrast

and fluorescence images were captured under the 1006 objective

using the imaging software Cell* for life science microscopy

(Olympus, Tokyo, Japan). The captured photographs were

merged using MacBiophotonics MBF ImageJ software.

Cell surface charge variation of 3238-32 and the flo11
mutant in minimal medium at different pHs

The growth and the cell surface net charge of strains 3238-32

and its isogenic 3238Dflo11 in minimal medium plus 5 mM L-

histidine were measured at different pHs. The cells (104 cells/mL)

were incubated in a series of buffered SC minimal media plus

5 mM L-histidine. The cells were grown in 96 wells microtiter

plates, statically at 30uC for 48 h. Their growth was monitored by

measuring the OD600 in a SPECTROstar nano microplate

spectrophotometer (BMG Labtech, Ortenberg, Germany). Repli-

cates of each experiment were used to measure the cell surface net

charge Z-potential using a Zetasizer Nano (Zetasizer Ver. 6.20

Malvern Instruments, Malvern, UK), after 48 h of incubation. All

of the measurements represent means and standard deviations of

three replicates.

Results

Flor strains differ significantly in catabolism of nitrogen
sources

According to the PM technique, the electron flow that results

from the catabolism of nutritional substrates induces a shift in the

tetrazolium dye to a purple color. When catabolism occurs at a

subnormal rate, this results in a decrease in the electron flow and

L-Histidine Inhibits Biofilm Formation in Flor Yeasts
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decreased intensity of the purple color [31]. On this basis, PM

plates were used to test the ability of the strains to catabolize 380

different nitrogen sources, photographed every 15 min, to

generate a growth curve for each well that primarily reflected

dye reduction [25]. After 96 h of static incubation, PM analysis

showed that the four strains differed greatly in the use of the

nitrogen sources. In particular, while A9 and M23 catabolized 128

and 121 nitrogen sources, respectively, this number dramatically

decreased for V80 and S288c, which used just 14 and 40 nitrogen

sources, respectively (Fig. S1). Differences were observed also for

the catabolism rate of nitrogen sources among strains. On the basis

of cluster analysis of PM results, the four strains were ascribed to

two groups, one consisting of A9 and M23, and the other one

containing V80 and S288c (Fig. 1A). A9 and M23, but not V80

and S288c, grew slightly on different nucleotides, such as cytosine

and adenine. They metabolized single L-amino acids, such as L-

arginine, L-glutamine, L-phenylalanine, L-serine and L-trypto-

phan and showed high metabolic rates when fed with dipeptides

containing alanine, valine, serine and threonine on their N-

terminus. In parallel, all of the strains showed clear inability to

metabolize dipeptides containing proline, asparagine, cysteine and

lysine at their N-terminus. Notably, none of the strains grew in the

L-histidine wells (Fig. S1). At the same time, A9 and M23 clearly

did not grow in the presence of dipeptides containing L-histidine at

their C- and/or N-terminus. On the contrary, strains V80 and

S288c showed high and specific metabolic rates toward these

dipeptides (Fig. 1B).

L-histidine affects growth of S. cerevisiae flor yeasts
To further evaluate the inhibitory effects of L-histidine on S.

cerevisiae, dye-independent growth measurements were carried

out in 20% YPD medium added with up to 80 mM L-histidine.

The OD600 of cell suspensions was measured after 48 h treatment

with increasing concentrations of this amino acid. The L-histidine

minimal inhibitory concentrations (MICs) ranged from 20 mM to

25 mM, and the half maximal inhibitory concentrations (IC50)

were from 10 mM to 15 mM (Fig. 2). The diploid A9, M23 and

V80 strains were slightly more resistant to higher L-histidine

concentrations, with respect to the S288c haploid strain.

Moreover, the four strains differed markedly in their tolerance

to L-histidine. In the presence of 2.5 mM and 5.0 mM L-histidine,

all of them increased the duration of the lag phase (Table 2).

However, at these concentrations of L-histidine, strains V80 and

S288c showed greater tolerance with respect to strains A9 and

M23. Accordingly, the specific growth rate (m) was not affected or

was increased in strains V80 and S288c, while it was dramatically

decreased in strains A9 and M23 (Table 2).

Previous studies have shown that V80 is characterized by low

expression levels of Flo11p [21], while S288C does not express the

FLO11 gene due to a mutation in FLO8 [24]. On the contrary,

A9 and M23 showed high expression levels of the FLO11 gene

[21]. Thus, to evaluate possible correlations between tolerance to

L-histidine and the expression levels of FLO11, the effects of L-

histidine were evaluated also for the 3238-32 and 3238-32Dflo11
strains. 3238-32 is a haploid derivative of A9 that is characterized

by high expression levels of FLO11, while 3238-32Dflo11 lacks

Flo11p [3,16]. Interestingly, these two strains showed dramatically

different specific growth rate inhibition in the presence of L-

histidine, and while 3238-32 behaved as A9 and M23, the

behavior of 3238-32Dflo11 was comparable to that of V80 and

S288C (Table 2).

L-histidine–containing dipeptides also had inhibitory effects on

all of the tested strains, although at higher concentrations with

respect to L-histidine (data not shown).

L-histidine affects FLO11-associated phenotypes
To further investigate possible interactions between L-histidine

and Flo11p, the effects of L-histidine were tested for biofilm

forming ability and adherence to polystyrene for all of the strains

in the flor medium. After 5 days of incubation in the presence of

Figure 1. High throughput and cluster analysis of nitrogen
metabolism of different S. cerevisiae strains. The nitrogen uptake
of the A9, M23, V80 and S288c strains was measured using the
phenotype microarray technique. (A) Cluster analysis (Pearson coeffi-
cient, UPGMA) for similarity regrouping of tested strains on all nitrogen
sources. IN was used as a parameter. Values at the nodes represent
cophenic correlation coefficients. (B) Each square represents the growth
of one strain in the PM wells supplied with the indicated L-histidine
containing dipeptide, as a nitrogen source. The extent of growth was
generated from the tetrazolium dye reduction during 96 h and
represented by the intensity of coloration; white squares mean no
growth and dark black squares mean abundant growth. Dipeptides are
grouped respect to the N-terminus amino acid.
doi:10.1371/journal.pone.0112141.g001

Figure 2. L-histidine affects the growth of different S. cerevisiae
strains in YPD rich medium. Tested strains (104 cells/mL) were
incubated statically in 20% YPD for 48 h at 30uC, without (Ctrl) or with a
serial dilution of L-histidine with concentrations range from 1 to
80 mM,. Dose-response curves show mean OD600 6 SD after 48 h of
inoculation. S. cerevisiae flor strains are A9 (black circles), M23 (black
triangles), V80 (grey down-pointing triangles), 3238-38 (white circles),
3238-32Dflo11 (grey circles) and S288c (black squares).
doi:10.1371/journal.pone.0112141.g002
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10 mM L-histidine, strains A9, M23, V80, and 3238-32 showed

dramatic reductions in air-liquid biofilm formation (Fig. 3A and

3B). This phenomenon was accompanied by minor reductions in

the cell viabilities of these strains (Fig. 3C). S288c and 3238-

32Dflo11 did not form an air–liquid biofilm, due to the lack of

Flo11p, and their viability was not significantly affected by 10 mM

L-histidine, as shown by the CFU recovery (Fig. 3C). Also, the

addition of 10 mM dipeptides resulted in variations in biofilm

formation after 5 days. Strains A9, M23 and 3238-32 did not form

biofilms in the presence of all of the three dipeptides, and showed

only a small reduction in CFU (Fig. 3), which was similar to that

observed in the presence of L-histidine. On the contrary, V80

increased biofilm weight and viability in the presence of the

dipeptides HM, HV and HS (Fig. 3).

Adhesion to polystyrene was evaluated after 48 h incubation in

flor medium without or with 10 mM L-histidine or 10 mM

dipeptides. S288c and 3238-32Dflo11 showed very low adhesion

after 48 h, as expected for strains lacking Flo11p. However, strains

A9, M23, V80, and 3238-32, which were highly adhesive in the

absence of L-histidine, showed drastic reductions in their adhesion

to polystyrene in the presence of L-histidine and the three

dipeptides HV, HM and HS (Fig. 4).

Despite the above noted effect of L-histidine in inhibiting the

FLO11 associated phenotypes, the transcription analysis of

FLO11 in strain A9 (used as representative flor yeast strain)

revealed that the addition of 10 mM L-histidine did not

significantly (P = 0.763) affect FLO11 transcription levels in flor

medium.

L-histidine induces modifications to the cell wall
To further investigate the inhibitory effects of L-histidine on

biofilm formation, the fluorescence of concanavalin A–FITC-

treated cells was analyzed using flow cytometry. This approach

detects the levels of cell-wall protein mannosylation, which is a

crucial factor in the biofilm formation process [32]. All of the

strains showed enhancement in concanavalin A binding upon

treatment with 10 mM L-histidine. The fluorescence intensity

emitted by cells of A9, M23, V80, 3238-32, 3238-32Dflo11 and

S288c varied (measured as arbitrary fluorescent units; afu), as

shown in Figure 5. As the variation in cell fluorescence intensity

directly reflects the variations in the contents of cell-wall glycans,

which are mainly mannose residues, an enhancement of fluores-

cence in L-histidine–treated cells indicates an increase in cell-wall

protein mannosylation.

To determine whether these changes in mannosylation were

accompanied by general cell-wall modifications induced by L-

histidine, variations in the chitin content were also analyzed,

according to Watanabe et al., (2005) [33]. Fluorescence micros-

copy of CFW-stained cells showed remarkable differences in

staining intensity among the strains that depended on the presence

of L-histidine. In the absence of L-histidine, A9, M23, V80, 3238-

32, and S288c showed low chitin content (Fig. 6). However, strains

A9, M23 and 3238-32 increased chitin content upon L-histidine

treatment, while V80, 3238-32Dflo11 and S288c did not show any

significant variations. At the same time, CFW staining of the 3238-

32Dflo11 strain was comparable both in the absence and presence

of L-histidine. This might be due to constitutive over-production

of chitin in cell wall related mutants, which will affect cell-wall

integrity [34–35]

FLO11 - L-histidine interaction model
To determine whether the effect of L-histidine is FLO11-

dependent and/or mediated by physico-chemical interactions,

strains 3238-32 and 3238-32Dflo11 were grown in SC medium
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buffered at pHs from 3.0 to 6.0. The 3238-32 growth performance

changed depending on pH, and the cell density increased

significantly with an increase in pH, reaching a maximum at

pH 6.0. On the contrary, growth of 3238-32Dflo11 remained

stable and independent of pH. At pH 6.0, the 3238-32 and 3238-

32Dflo11 strains showed comparable growth (Fig. 7).

The cell surface net charge of 3238-32 also varied significantly,

whereby at pH 3.0, it was slightly positive (+0.160.062 mV),

while it decreased at increasing pH, to reach 28.560.087 mV at

pH 6.0. In contrast, the cell surface net charge of 3238-32Dflo11
was stable, varying from 23.0460.142 mV at pH 3.0 to 2

4.2260.081 mV at pH 6.0. Interestingly, the increase in the

Figure 3. Biofilm formation of flor strains is inhibited by L-histidine. (A) Biofilm formation at the air-liquid interface in 24-well microtiter
plates for strains A9, M23, V80, 3238-32, 3238-32Dflo11 and S288c after 5 days of static incubation in 1.5 mL flor medium at 30uC in the absence (Ctrl)
and presence of 10 mM of L-histidine (L-his) and L-histidine–containing dipeptides. The biofilm is visualized as opaque floating material at the top of
each well. (B) Dry weight determinations of the biofilms formed by the strains in (A) without (Ctrl) and with treatment with 10 mM L-histidine and the
L-histidine–containing dipeptides (as indicated). Data are means +SD of three replicate treatments. (C) CFU recovery after plating on YPD agar using
serial dilutions of a duplicate of all the strains/L-histidine and strains/dipeptides combinations.
doi:10.1371/journal.pone.0112141.g003
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anionic charge correlated with the increase in growth with the

3238-32 strain (Fig. 7).

Accordingly, TMR-HH stained cells of strains 3238-32 and

3238-32Dflo11 varied with pH. At pH 3.0, strains 3238-32 and

3238-32Dflo11 had low and comparable fluorescence, while at

pH 6.0, the fluorescence intensity was notably enhanced in 3238-

32, but not in 3238-32Dflo11 (Fig. S2).

Discussion

Flor strains of S. cerevisiae yeast have the unique ability to form

biofilms at the air–liquid interface of wine at the end of

fermentation, when the medium is depleted of nutrients and

further growth becomes dependent on oxygen. This multicellular

growth is directly correlated with a series of rearrangements to the

cell wall, in terms of the hydrophobicity and adhesion [21].

Indeed, S. cerevisiae can use either anaerobic or aerobic modes of

substrate metabolism, which can induce specific changes to the cell

at the level of the cell-wall organization, nutrient consumption,

and cellular interactions with the surrounding environment [36–

37].

Nitrogen is a fundamental nutrient in living cells, and its

metabolism is involved in major developmental decisions in S.
cerevisiae [38]. In nitrogen-starvation environment, some signaling

pathways (i.e. TORC1, SPS-sensor and GAAC) that are largely

related to nitrogen and amino-acid sensing and regulation have

been shown to be involved in FLO11 gene expression and

multicellular growth in S. cerevisiae [39].

A previous study reported that clinical and vineyard isolates of

S. cerevisiae can grow on a wide range of nitrogen sources, with

respect to laboratory strains [40]. Accordingly, PM analysis in the

present study showed similar behavior of the A9 and M23 flor

strains, which metabolized more nitrogen sources with respect to

the S288c laboratory strain. This reflects the high adaptation

ability of these strains. However, this was not the case for the V80

strain, which showed a different behavior, similar to the laboratory

strain S288c. Indeed, while V80 and S288c clearly metabolized L-

histidine-containing dipeptides, A9 and M23 were definitely

unable to grow on these dipeptides.

Dose-response analysis in nutrient-rich (dye-independent) me-

dium showed that L-histidine not only does not support cellular

growth as a nitrogen source, but its presence (concentrations $

10 mM) reduces the growth rate, delays the lag-phase, and finally

inhibits the growth of the tested strains. These effects were also

observed in strains treated with higher concentrations of L-

histidine–containing dipeptides. Other authors reported that L-

carnosine, a L-histidine–containing dipeptide with potential

antineoplastic effects [41], is able to slow cell growth rates and

increase death of yeast cells in fermentative metabolism [37].

Interestingly, according to Letzien et al., (2014) [41], L-histidine

mimicks the effect of L-carnosine although showing a stronger

effect, similar to that observed in the present work.

In nutrient-depleted media, S. cerevisiae can trigger a series of

stress-signaling pathways and responses, which include modulation

of the cell wall, expression of the FLO11 gene, and formation of

biofilms [15,18,27]. This phenomenon was also observed in this

study in the control wells of the biofilm-forming strains A9, M23,

V80 and 3238-32, but not in the wells that contained L-histidine.

In fact, the presence of 10 mM L-histidine was sufficient to

completely inhibit biofilm formation and adhesion to polystyrene

for all of the tested strains, and these major inhibitory effects were

accompanied by minor reductions in cell viability. These

inhibitory effects did not correlate with the transcription level of

FLO11, which remained stable in the absence or the presence of

L-histidine. The stability of FLO11 expression levels evidences

that L-histidine cannot be used as a nitrogen source, because if so,

it would have been sensed by the GAAC pathway and/or the SPS

sensor, leading to a repression of FLO11 [4–7].

As stated before, cellular adhesion and binding are likely to be

influenced by nonspecific interactions, such hydrophobic and

electrostatic interactions [12–14]. Among the 20 naturally-

occurring amino acids, L-histidine is a cationic amino acid with

a unique imidazole ring as a side chain. These particular physico-

chemical features make it a good candidate for nonspecific

interactions. These would mainly be stacking and hydrogen-bond

interactions, which would provide L-histidine with high affinity for

cationic metals, aromatic amino acids, and many other com-

pounds [42–43]. These features of L-histidine might induce the

loss of cell adhesion and biofilm formation of the flor strains, by

providing nonspecific physical interactions with the embedded

cell-wall components in general, and with the highly O-

mannosylated cell-wall mannoprotein Flo11p in particular. This

leads to the failure of air–liquid biofilm formation and cell

adhesion.

Figure 4. Loss of adhesion in presence of L-histidine and other
dipeptides. Adhesion is expressed as OD570 and was measured using
crystal violet dye after 48 h incubation of 56106 cell/mL of the S.
cerevisiae strains in flor medium without (Ctrl) and with 10 mM L-
histidine or the L-histidine–containing peptides.
doi:10.1371/journal.pone.0112141.g004

Figure 5. Modulation of cell-wall glycans of S. cerevisiae strains
in the absence and presence of L-histidine. Cell-wall glycan levels
(as arbitrary fluorescent units) without (Ctrl) and with 10 mM L-histidine
treatment for A9, M23, V80, 3238-32, 3238-32Dflo11 and S288c strains
(56106 cell/mL) in flor medium after 2 h. Data are means +SD from
three replicate samples, of the fluorescence intensity of ConA-FITC
bound to cell-wall glycans of 20.000 cells/sample. Multiple comparison
analysis was conducted. Bars with the same letters are no statistically
different (95% confidence).
doi:10.1371/journal.pone.0112141.g005
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Cell-wall glycans and chitin are mainly responsible for cell

permeability, and they are related to the cell-wall integrity

pathways for responses to adverse conditions [10,44]. The

enhancement of fluorescence intensity of these cell-wall com-

pounds in L-histidine–treated cells reveals the antimicrobial effects

of this amino acid and reduces the permeability of the cell, which

favors nonspecific interactions with cell-wall mannoproteins.

The proposed interaction model of 3238-32 and its isogenic

3238-32Dflo11 with L-histidine, showed that the effect of this

amino acid is FLO11-dependent, and related to pH and cell-

surface charge. In more detail, at pH 3.0, the repulsive

interactions between the high cationic charge of L-histidine and

the slightly positive cell-surface charge of the 3238-32 strain

resulted in a reduction of 3238-32 growth. In parallel, at pH 6.0,

the attractive interactions between the low cationic charged and

neutralized imidazole ring of L-histidine (at the side-chain

isoelectric point) and the high anionic cell surface charge of the

3238-32 strain led to the decreasing of the antimicrobial effects of

this amino acid and thus an increasing of 3238-32 growth. These

results highlight the role of FLO11, as 3238-32Dflo11 did not

change its cell-surface charge and its interactions with L-histidine,

and its growth. Similar behavior was seen by microscopic

observations for these strains and TMR-HH: at pH 3.0, the low

fluorescence intensity emitted from 3238-32 cells reflects the low

adsorption of this dipeptide, which then increases at pH 6.0. Here

again, 3238-32Dflo11 showed stable fluorescence intensity, and

thus a stable interaction with the dipeptide.

The molecular mechanisms of this novel role of L-histidine are

still unknown. Many studies have shown similar modes of action of

several small cationic peptide sequences, with antimicrobial effects

toward different fungi species. This is seen for human histatins and

histidine-rich glycoproteins, which are directly involved in the host

response to invasive growth of Candida albicans, with their

binding to the cell-wall glycoprotein Msb2p [45]. A similar anti-

adhesive behavior was reported for filastatin against some Candida
spp. [46]. In contrast, hydrophobic interactions with the high

cationic and hydrophobic hexapeptide PAF26 served as a bridge

between some S. cerevisiae flor strains, to enhance biofilm

formation [47]. To our knowledge, no previous studies have

reported this mode of action of L-histidine. Interestingly, a recent

study described a novel role of some D-amino acids in the

triggering of bacterial biofilm disassembly. These D-amino acids

did not affect the growth rate of bacterial cultures, and their mode

of action is associated to their incorporation into the peptide side

chains of the cell-wall peptidoglycan [48].

In conclusion, the main result in the present study relate to

biofilm formation and adhesion ability. These findings reveal a

novel biological activity of L-histidine that might be of high

biotechnological interest. These data also suggest that glycosylated

mucin-like proteins at the fungal cell wall, such as Flo11p, might

Figure 6. CFW staining of S. cerevisiae strains in the absence and presence of L-histidine. The A9, M23, V80, 3238-32, 3238-32Dflo11 and
S288c strains (56106 cell/mL) were incubated for 2 h in flor medium without or with 10 mM L-histidine. After incubation, the samples were stained
with 25 mM CFW for 5 min and observed by fluorescence microscopy. Bright-field differential interference contrast (DIC) and CFW images of the same
field are shown. All of the images were captured under the same acquisition parameters and therefore reflect actual differences in CFW staining.
doi:10.1371/journal.pone.0112141.g006
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be interacting partners for this unique amino acid. Future work

will aim to explore the significance of these interactions in relation

to the antimicrobial mechanisms of L-histidine with other non-flor

yeast and filamentous fungi, and to determine the importance of

protein glycosylation in this mechanism.

Supporting Information

Figure S1 High throughput analysis of nitrogen metab-
olism of different S. cerevisiae strains. The nitrogen uptake

of the A9, M23, V80 and S288c strains was measured using the

phenotype microarray technique. Growth on nitrogen sources

groups is showed and each square represents the growth of one

strain in the PM wells supplied with a nitrogen source. The extent

of growth was generated from the tetrazolium dye reduction

during 96 h and represented by the intensity of coloration; white

squares mean no growth and dark black squares mean abundant

growth.

(TIF)

Figure S2 Fluorescence microscopy of S. cerevisiae
strains 3238-32 and 3238-32Dflo11 exposed to TMR-
HH. Cells (56106 cells/ml) were incubated in minimal medium

with 1 mM of TMR-HH at 30uC for 2 h and subsequently with

25 mM CFW at 20uC for 5 min. Representative DIC bright-field

as well as CFW, TMR, and CFW/TMR-overlay fluorescence

micrographs of the same field are shown, for the different strains,

as indicated.

(TIF)

Table S1 Oligonucleotide primers used in this study.
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