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Abstract

Background: Different structural and non-structural models have been used to describe human
growth patterns. However, few studies have compared the fitness of these models in an African
transitioning population.
Aim: To find model(s) that best describe the growth pattern from birth to early childhood using
mixed effect modelling.
Subjects and methods: The study compared the fitness of four structural (Berkey-Reed, Count,
Jenss-Bayley and the adapted Jenss-Bayley) and two non-structural (2nd and 3rd order
Polynomial) models. The models were fitted to physical growth data from an urban African
setting from birth to 10 years using a multi-level modelling technique. The goodness-of-fit of
the models was examined using median and maximum absolute residuals, Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC).
Results: There were variations in how the different models fitted to the data at different
measurement occasions. The Jenss-Bayley and the polynomial models did not fit well to growth
measurements in the early years, with very high or very low percentage of positive residuals.
The Berkey-Reed model fitted consistently well over the study period.
Conclusion: The Berkey-Reed model, previously used and fitted well to infancy growth data, has
been shown to also fit well beyond infancy into childhood.
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Introduction

Human growth, like most developmental processes, is com-

plex. Human physical growth in length and weight is

generally characterized by rapid growth in early life, followed

by a general deceleration in childhood and then a marked

increase in late childhood associated with the onset of puberty

(Grimm et al., 2011; Karlberg, 1987; Pan & Goldstein, 1998).

Growth models have been used in various disciplines to

understand and capture general features of growth processes.

They have extensively been used in developmental research to

understand biological as well as psychological processes at

the individual or population level, using data collected

longitudinally (Black & Krishnakumar, 1999; Botton et al.,

2008; Ehrenkranz et al., 1999; Grimm et al., 2011; Nguyen

et al., 2012; Olusanya & Renner, 2011; Skinner et al., 2004).

Modelling of such longitudinal growth data involves fitting

a model that best describes the changes in the growth

measurements of an individual or population over time

(Goldstein et al., 2002; Pan & Goldstein, 1998). The fitted

models can be used to summarize and interpolate the pattern

of growth between measurement occasions and also identify

critical periods in the growth process (Hauspie et al., 2004).

Researchers have, thus, used growth models that can capture

the non-linearity of the growth process.

Researchers have over the years developed and used

several growth models. These can broadly be classified into

two groups, namely structural (or parametric) and non-

structural (non-parametric) models (Hauspie et al., 2004).

Common structural models used include the Jenss-Bayley

model, the Count model, Berkey-Reed 1st and 2nd order

models, the Infant–Childhood–Puberty (ICP) model, the

Preece-Baines model and the Gompertz, while most

common non-structural models are polynomials and splines

(Botton et al., 2008; Gasser & Molinari, 2004; Hauspie et al.,

2004; Olusanya & Renner, 2011; Pan & Goldstein, 1998). The

best model to describe the human growth process, be it at

individual or population level, depends on the dimensions

used (weight, height, skin-fold or circumferences), the

frequency of the measurements (weekly, monthly, yearly)

and the period of growth being investigated (infancy,

childhood or adolescence) (Hauspie et al., 2004; Karlberg,

1987). Growth models that have fitted well to the infancy or

childhood period include the Jenss-Bayley, the Berkey-Reed

and the Count models (Hauspie et al., 2004). All of these
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models have functions that capture the rapid growth and then

subsequent deceleration that takes place during this period of

growth. The ICP model summarizes human growth into three

overlapping components. The infancy component (birth to �3

years) is an extension of the foetal stage, is predominantly

affected by maternal and nutritional factors. The childhood

component is from 1 year to �11 years and is predominantly

controlled by growth hormones. Simondon et al. (1992) used

the first component of the ICP model to describe growth from

birth to 13 months in Congolese infants.

Although non-structural models are easy to fit, they tend to

be unstable at the extremities and do not define any particular

form of the growth curve and, as such, their parameters do not

have any biological interpretation (Hauspie et al., 2004;

Singer & Willett, 2003).

There are several studies that have looked at child growth

in low- and middle-income countries, but few have used

longitudinal data, due to the limited number of longitudinal

studies (Adair et al., 2009; Cameron et al., 1986; Fetuga et al.,

2011; Guedes et al., 2010; Hauspie & Pagezy, 1989; Johnson

et al., 2012b; Kalanda et al., 2005; Maleta et al., 2003b;

Mushtaq et al., 2012; Olusanya & Renner, 2011; Pagezy &

Hauspie, 1985; Simondon et al., 1992; Stein et al., 2010).

A number of studies have used the quadratic curve or some

structural human growth models to model early child growth

data. Table 1 shows a summary of some of these studies and

the models used. Of these studies, only three compared

several models to find one that best described the particular

population. Furthermore, very few studies have used struc-

tural or non-structural models on African longitudinal growth

data (Cameron et al., 1986; Olusanya & Renner, 2011; Pagezy

& Hauspie, 1985; Simondon et al., 1992). Previous studies

done in this setting have also not considered the whole of the

childhood period from birth to age 10 years. Apart from

differences in the period to which the models have been fitted,

these studies fitted models to each individual child separately

(Cameron et al., 1986; Hauspie & Pagezy, 1989; Pagezy &

Hauspie, 1985; Simondon et al., 1992). This study aims to

compare models that have previously been predominately

used to model infant and early childhood growth such as the

quadratic and Berkey-Reed model and those used in the late

childhood period, such as the Jenss-Bayley and the adapted

Jenss-Bayley models. This study aims to fit the models to the

population growth data using mixed effects modelling. The

rationale behind population-based growth modelling is that,

while different individuals are quantitatively different, their

growth over time has a similar shape. Thus, the objective of

fitting a growth curve in this instance is to quantify this

common shape, but at the same time take account of the

between-individual differences in growth. As well as fitting

individual curves, mixed effects modelling allows for fitting

of a general population curve. The fixed part of a mixed

model summarizes the mean structure (general population

curve) and the random component of the model allows for

variations in individual growth of the children. The other

advantage of using mixed effects models is that they allow for

modelling of longitudinal data which have a different number

of measurement occasions or where some individuals have

missing outcome measurements at some points or have

unequal spaced intervals between measurements occasions.

The importance of this flexibility in the analyses of longi-

tudinal studies, where missing data are inevitable and where

measurements on participants are more likely to be taken at

the different times, can therefore not be emphasized. Mixed

effects modelling also allows for inclusion of covariates that

affect growth (Johnson et al., 2012b).

This study aims to compare four structural and two non-

structural models that have been shown to fit well to the infant

and childhood stage in high income country settings, by

applying them to data from a South African (middle-income

country) cohort. The objective of this study is to find a growth

model that best describes physical growth of normal children

from birth to 10 years in this setting using mixed effects

modelling techniques.

Subjects and methods

The study used weight and height measurements from 453

participants of the Bone-Health (BH) study as outcome

variables. The BH Study is a sub-sample of the Birth-

to-Twenty (Bt20) birth cohort set in Soweto-Johannesburg,

South Africa. Of the 453 participants, 43 had a gestational age

of less than 37 weeks (term) and were excluded from the

Table 1. Summary of some studies that have used structural and non-structural models to describe physical growth*.

Reference Study population Model(s) used Period of growth Variable

1 Black and Krishnakumar (1999) US (92% African-American) Quadratic 0–6 years Height, weight
2 Ehrenkranz et al. (1999) US Piece-wise quadratic 0–6 months Weight
3 Martin-Gonzalez et al. (2012) Spanish and Siberian Kouchi Birth–6 years Height
4 Grimm et al. (2011) US Linear; Quadratic; Latent basis

model, Preece-Baines
3–19 years Height

5 Johnson et al. (2012b) Indian Berkey-Reed 1st order; Count;
Quadratic

0–15 months Weight

6 Botton et al. (2008) French Adapted Jenns-Bayley model
(with a quadratic term)

0–12 years Weight, height

7 Simondon et al. (1992) Congolese (African) Berkey-Reed 1st order; Count;
Karlberg; Berkey-Reed 2nd
order; Kouchi

0–13 months Weight

8 Tilling et al. (2011) Belarus Fractional Polynomial 0–6.5 years Weight, height
9 Flexeder et al. (2012) German Berkey-Reed 1st order 0–2 years Weight, height
10 Steele (2008) British 3rd Order Polynomial (cubic) 11–14 years Height

* Publications found using Pubmed and Google-Scholar search.
Search terms used: mathematical growth curve, child growth models, human growth model.

DOI: 10.3109/03014460.2013.839742 A comparison of growth models using mixed effect modelling 169



analysis. The data comprised of anthropometric measure-

ments at birth, 3 months, 6 months, 1 year, 2 years, 4 years,

5 years, 7/8 years, 9 years and at 10 years. All participants

whose weight-for age z-scores (WAZ) or whose height-for-age

were consistently (on at least three occasions) greater than þ2

or less than �2 were excluded from analysis as these were

considered outliers for growth within the context of the BH

cohort population.

Only participants with at least five weight or height

measurements were included in the study since the largest

models have four parameters. Since height/length measure-

ments were only taken from 3 months of age, there were two

separate final ‘analysis data sets’ for modelling weight and

height. The final ‘analysis data set’ for weight as outcome had

365 participants, while the one for height had 350 participants.

Growth curve modelling

Before fitting the growth curve, descriptive statistics such as

means, standard deviations and frequencies were calculated.

T-tests were used to compare mean weights and heights at

each measurement occasion. These comparisons were done

on both the overall data set and the final ‘analysis data set’.

Proportions of males, small for gestation age (SGAs) and

firstborns in the overall data set were also compared to those

in the final ‘analysis data set’ to see whether there were any

differences in characteristics between the two datasets.

Exclusion of children with less than five measurements did

not affect the general population distribution by sex, parity or

mean maternal age. Several growth models were fitted to the

data using a mixed effects modelling approach. The sex of a

participant was entered as a covariate to take into account

known difference in growth between males and females. The

study also explored any interaction between sex and age of a

child. To be able to fit the growth models as linear models,

other functions of the variable ‘age’ such as natural log of age,

ln(age), and exponential of age were calculated.

The general structure of the models fitted is:

y ¼ X� þ Zuþ " ð1Þ

where y is the n� 1 vector of the observed weight/height, X is

a n� p matrix of the fixed effects representing the different

growth models (see Appendix 1), � is a p� 1 vector of the

coefficients and Z is a n� q matrix of the random effects u.

The n� 1 vector of errors is assumed to be multivariate

normal with mean zero and variance of matrix �2
"In.

The following four general model structures were defined

from model (1) to test for the significance of the sex and age–

sex interaction in the fixed effects and also the significance of

different functions of age in the random component for each

growth curve.

yðkÞij ¼ fðkÞðtijÞ þ �1Sexþ "ij ð2Þ

yðkÞij ¼ fðkÞðtijÞ þ �1Sexþ �2Sex�tij þ "ij ð3Þ

yðkÞij ¼ fðkÞðtijÞ þ �1Sexþ hðkÞðtijÞ þ "ij ð4Þ

yðkÞij ¼ fðkÞðtijÞ þ �1Sexþ �2Sex�tij þ hðkÞðtijÞ þ "ij ð5Þ

where tij � 0 and represents the age of child i at measurement

occasion j; yij represents weight or height of child i at

measurement occasion j; "ij are random residuals; fðkÞðtijÞ
represents fixed effects; hðkÞðtijÞ represents random effects;

fðkÞðtijÞ represents growth curve functions such as Berkey-

Reed, Count and polynomial models; and hðkÞðtijÞ is a linear

function with an intercept and slope (see Appendix 1). The

random component allows for variations in the individual

child’s starting measurement (intercept) and rate of growth

(slope). For all of the weight models, the starting measure-

ment is the child’s birth weight, while for models of height the

starting measurement is the height at 3 months.

Models 2 and 3 are fixed effects models and were used to

test the significance of adding the age–sex interaction to the

growth curve function, fðkÞðtijÞ. Models 4 and 5 are mixed

effects models, with both fixed and random components, and

were used to test for the effect of adding random effects into a

model with sex and a model with an age–sex interaction,

respectively. The two models were also used to test the

significance of adding the age–sex interaction in a model with

random effects. For models with random components, model

building for the random components was done systematically

by adding the intercept and slope (age) separately. The

significance of each addition of terms was then tested using

the likelihood ratio tests. The addition of higher order terms

such as age2, ln(age) and age3 led to non-convergence of the

models.

Comparisons of any nested models were done using

likelihood ratio tests based on Maximum Likelihood

Estimation (MLE). Variance components were also estimated

using the MLE method. The unstructured variance–covari-

ance option was used to estimate variance–covariance com-

ponents. This option allows estimates to be distinct, unlike the

independent or identity options that confine the variance–

covariance patterns to particular values or patterns. Since the

variance components describe the variability in the individual

growth of the children, taking into account the initial

birth weight, which also varies, the unstructured variance–

covariance is the most appropriate option to use when

modelling infant and child growth.

The Akaike Information criterion (AIC) and Bayesian

Information Criterion (BIC) were used to compare non-nested

models (Jones, 2011; Singer & Willett, 2003). Models with

lower values of the AIC and BIC are considered better fitting.

The median and maximum values of absolute residuals were

used to determine models that were fitting well to the data

over time (Royston & Altman, 1997). Smaller median and

maximum values of the absolute residuals are also indicative

of a better fitting model. Ranks were used to compare AIC,

BIC, median and maximum values of absolute residuals. The

median and maximum absolute residuals were also ranked at

each measurement occasion, as an indicator of how well the

model is fitting at each point relative to the other models. The

overall ranks for all the goodness of fit statistics were then

compared using the Kruskal–Wallis test. The Kruskal–Wallis

test was also performed on the actual median and maximum

values of the absolute residuals. Residual analysis was used to

check for normality using normal probability plots. Most of

the statistical analyses were done using Stata Version 11,

except for fitting of the Jenss-Bayley and the Adapted
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Jenss-Bayley models, which was done using the Proc nlmixed

procedure in SAS 9.3. All tests were conducted at the 5%

significance level.

Results

Descriptive statistics

Of the 365 participants used in modelling weight, 190 (52%)

were males, 139 (44%) were first born and 25 (6.9%) had

small birth weight for their gestation age (SGA), and the mean

age of the mother was 25.1 years (SD¼ 6.1).

Comparisons of the mean weight and height measurements

by sex or birth weight [SGA vs appropriate for gestation age

(AGA)] were made at each measurement occasion (results not

shown). There were slight differences in average weight and

height from birth to �2 years between AGA and SGA infants,

indicating smaller babies gaining weight and height faster

(0.055p50.10).

In line with biological expectations, there was a significant

difference in average weight and height between males and

females at most of the measurement occasions, especially

during the early years, with boys weighing on average more

than girls and also being taller than girls. There were

significant differences in average weight between boys and

girls from birth to 1 year. Similar trends were observed in

mean height between the two sexes from 3 months to �2

years, with boys being on average taller than girls. There were

no significant differences in mean weight or height between

boys and girls from 2 years to �9 years. At 10 years, the girls

were on average heavier than boys, although the difference

was not significant.

Weight and height profiles for a random sample of boys

and girls have been shown in the first graphs of Figures 1 and

2. The weight profiles show some rapid weight gain in the

first year of life. A similar trend is shown by the height

profiles.

Fitted growth models for weight of children

The parametric growth curve functions used were the Berkey-

Reed 1st and 2nd order model, the Count model, Jenss-Bailey

model and the adapted Jenss-Bayley model. The non-struc-

tural models fitted were the 2nd and 3rd order polynomials.

The Berkey-Reed 2nd order model was highly correlated with

its 1st order model. Thus, the 1st order which has fewer

parameters was used in the modelling, considering that the

number of measurement occasions per child was also small.

There were significance effects of adding the random

intercepts to models with ‘sex–age interactions’ for all

growth functions (all p values50.05). Only age was included

in the random component of all of the models, since the

addition of higher order functions of age led to non-

convergence of the models.

The graphical representations of the fitted curves on the

observed weight are shown in Figure 1. The Berkey-Reed 1st

order model had the best fit at all of the measurement

occasions, with the curves passing almost at the middle of

the observed measurements at each time point (except at

3 months). The Count and the 3rd order Polynomial models

also fitted well at most of the measurement occasions.

All of the models except for the Berkey-Reed 1st order model

do not fit well to the first four measurement occasions

(birth to 1 year). The 3rd order Polynomial picks up the rapid

weight gain from �9 years, while the other four models are

approximately linear and do not allow for this weight gain.

The findings from the graphical representation were also

supported by the percentage of positive raw residuals at each

measurement occasion (Table 2), with close to 50% positive

residuals at each measurement occasion being an indication of

a good fitting model. From Table 2, the quadratic, the adapted

Jenss-Bayley and Jenss-Bayley models had no positive

residuals at birth, implying that all predicted birth weights

were higher than the observed birth weights. Apart from the

Berkey-Reed model, the other models had a poor fit at birth.

At year 1, all six models did not fit well, with more than 80%

of the residuals being positive. In general the Jenss-Bayley

and quadratic models had a poor fit from birth to 2 years but

fitted better in later years, while the 3rd order Polynomial, the

Count and the adapted Jenss-Bayley did not fit well up to �1

year. Although the percentages of positive residuals from

fitting a Berkey-Reed model were consistently close to 50% at

most of the measurement occasions, the model fitted poorly

at 3 months and at 7/8 years. At 3 months, only 6% of

predicted weights were less than the observed weight, while at

7/8 years, 80% of the predicted weights were less than the

observed. This was also shown by the large median and

maximum absolute residuals.

Both the adapted Jenss-Bayley and the 3rd order polyno-

mial also did not fit well from birth to �1 year, but fitted

better in the later years. Based on the overall trend in

percentage of positive residuals, it can be concluded that the

Berkey-Reed model fits better than the other five models.

The random intercept (�2
u0) represents the variation in the

initial value. For models fitted from birth, the initial value

represents the birth weight of a child. The random intercept

allows for estimation of an individual child’s birth weight,

thus the model does not constrain individuals to have the

same birth weight. The random slope (�2
u1) in the models

allows for the estimation of differences in individual growth

trajectories, linear in age. The results in Table 2 show that the

variances (�2
u0) for the random intercept ranged from 0.001–

0.245, with the 3rd order Polynomial model having the largest

variance estimate and the Jenss-Bayley having the largest

standard error of the estimate. However, the confidence

intervals for �2
u0 for all of the models overlapped, indicating

that there were no significant differences in the random

intercepts of the six fitted growth curves. All models had

similar estimates of variance (�2
u1¼ 0.001) of the random

slope and similar standard errors. The estimates for the

covariance (�u0 �u1) of the intercept and slope in all of the six

models were all negative. Although the covariance estimates

for all the models are also negative, most of the confidence

intervals included zero, indicating a non-significant negative

covariance. Only the 3rd order polynomial model had a

significant negative covariance. A significant negative covari-

ance indicates that those with low initial values (low birth

weight) grow faster than those with higher initial values

(normal/large babies).

The estimates for the effects of sex differences on weight

ranged from �0.44 to �0.53, showing that girls were on
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average about half a kilogram lighter than boys. The 95%

confidence limits ranged from �0.75 to �0.26, indicating that

differences in weight between weight of boys and girls range

from �300–800 g. The confidence intervals for the effect of

sex in all of the models overlapped, again indicating that there

is no significant difference in the estimation of the effect by

the six models (Appendix 2). The effect of age and sex

interaction was significant in all six models. The estimate for

this effect for all six models was 0.01, indicating an average

monthly increase of 10 g in girls relative to boys. All terms

which are a function of age of the participant in all the models

were highly significant (p50.001). This shows the import-

ance of applying the different functions of age to appropri-

ately model the shape of a growth curve.

Goodness of fit tests for models on weight

The Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC), median and maximum values of

absolute residuals and the variance (�2
") of residuals were used

to assess the goodness-of-fit of all of the models (Table 2).

For all the goodness-of-fit statistics, the smaller the value of

the statistics, the better the model is fitting to the data.

Figure 1. Graphs of weight profiles and growth models fitted to weight from birth to 10 years.
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Both the Berkey-Reed and the 3rd order Polynomial

models had the smallest AIC and BIC values (10758 and

10811, respectively) and the Berkey-Reed had the smallest

overall median absolute residual of 0.62, with an interquartile

range of 0.28–1.20. It also had consistently the smallest

median of the absolute residuals at most of the 10 measure-

ment occasions. The maximum values for the absolute

residuals for the six models range from 7.16–8.80, with the

3rd order Polynomial model having the smallest maximum

value.

The ranks of the AIC, BIC and the median and maximum

absolute residual values show the Berkey-Reed having the

smallest sum of the ranks, with 17 out of 25 ranks for the

model being less than 3. The Kruskal–Wallis test on the ranks

of the goodness-of-fit statistics showed significant differences

in the ranks (p50.001) and the Berkey-Reed model had the

smallest rank sum, followed by the 3rd order polynomial

model.

Although there were no significant differences in the

values of the median absolute residuals (p¼ 0.59), the

Berkey-Reed model had the smallest sum of the ranks,

indicating that the model had consistently smaller median

absolute residuals at all of the measurement occasions.

Similarly there were no significant differences in the sum of

the ranks of the maximum absolute residual values amongst

the models (p¼ 0.92), but the Berkey-Reed model had the

smallest rank sum, again indicating consistently smaller

values of absolute residuals for this model.

The estimates of the variance (�2
") of residuals after fitting

the models to the data ranged from 1.95–3.06, with the 3rd

order Polynomial model having the smallest value and the

Jenss-Bayley model the largest value.

Fitted growth models for height of children

Figure 2 shows the graphical representation of the six models

for height fitted from 3 months to 10 years, showing the

Count, the adapted Jenss-Bayley and Berkey-Reed 1st order

models fitting well to the data at almost all the measurement

occasions. Table 3 also shows the percentage of positive

residuals from fitting the six models. The percentage of

positive residuals from fitting the adapted Jenss-Bayley or

Berkey-Reed 1st order model is close to 50% at almost all the

measurement occasions. All of the models, except the 3rd

order Polynomial, did not fit well at year 2. They either over-

estimated (small percentage of positive residuals) or under-

estimated (large percentage of positive residuals). The

adapted Jenss-Bayley also did not fit well at year 7/8, while

the Jenss-Bayley model did not fit well at years 1 and 5. The

2nd order polynomial did not fit well at almost all points

except at age 5 and 9 years. The 2nd and 3rd order polynomial

models had very low percentages of positive residuals at

3 months and a high percentage from year 1 to year 4,

indicating over-estimation at 3 months and under-estimation

from year 1 to year 4.

The estimates for variances (�2
u0) of the random intercepts

(variation in height at 3 months) ranged from 6.25–6.82, with

the Count model having the smallest estimate. However, the

confidence intervals for estimates of the random intercept

(�2
u0)for all the models overlapped, indicating that there were

no significant differences in the estimation of random

intercept between the different shapes of curves fitted

across the models. The estimate of the covariance (�u0 �u1)

of the random intercept and slope for all the models were all

positive and not significantly different from each other

(confidence intervals overlapped). All of the confidence

intervals for the covariance estimates included zero, indicat-

ing independence between one’s initial height at 3 months

(random intercept) and their growth rates (random slope).

All of the models had similar estimates of variance (�2
u1) of

the random slope, with overlapping confidence intervals.

The estimates for the effects of sex differences on height

ranged from �1.67 to �1.49, showing that girls were on

average �1.5–2.0 centimetres shorter than boys. The confi-

dence intervals for the effect of sex in all the models

overlapped, indicating that there were no significant differ-

ences in the estimates from the different models. The sex–age

interaction estimate for all the models was 0.02, indicating an

average monthly increase in girls’ height of �0.2 mm relative

to boys. From �4 years to 7/8 years, there were no differences

in the average height between boys and girls. As with weight

models, all terms which are a function of age of the

participant in all the models were highly significant

(all p50.001), indicating the relationship between physical

growth and one’s age.

Goodness-of-fit tests for models on height

The AIC values ranged from 11 510–12 259, with the Berkey-

Reed model having the smallest AIC and BIC values as well

as the smallest estimates for the random residuals (�2
"). The

Count model also had smaller AIC and BIC values compared

to the other four models. The overall median absolute

residuals ranged from 0.90–1.11, with the adapted Jenss-

Bayley having the smallest overall median of absolute

residuals and the quadratic model having the largest value.

All models did not fit well to the data at year 2, producing

very large maximum absolute residuals. This is could be due

to the wide variation in height measurements at this

data collection waves. The height measurements ranged

from 70–95 cm for age that ranged from 22.5–28 months.

The wide variation in the measurements could have been due

to the changes in measurement procedure from sitting to

standing positions. The Kruskal–Wallis test on all the ranks of

the goodness-of-fit statistics showed significant differences in

ranks, with the adapted Jenss-Bayley model having the

smallest rank sum.

At each measurement occasion, the adapted Jenss-Bayley

and the Berkey-Reed models have consistently smaller

maximum and median values of absolute residuals.

However, the Kruskal–Wallis test on the maximum and

median absolute values showed no significant differences

(p values of 0.57 and 0.72, respectively). The adapted Jenss-

Bayley had the smallest sum of ranks followed by the Berkey-

Reed model.

Discussion

The paper has used mixed effects models to compare the

fitness of different infancy and childhood growth models and

has demonstrated the benefits of using mixed effects
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modelling to understand the general patterns of growth in

children. Most previous studies in Low and Middle Income

Countries (LMIC) have used growth centiles to model

growth, with an aim to monitor growth and detect timing of

growth faltering due to malnutrition by comparing child

growth to set growth reference charts (Fetuga et al., 2011;

Johnson et al., 2012b; Maleta et al., 2003a; Mushtaq et al.,

2012; Nguyen et al., 2012; Kalanda et al., 2005; Stein et al.,

2010). Of the studies from LMIC that used growth models,

none modelled growth beyond 2 years of age and none of

them except for the study by Johnson et al. (2012b)

used mixed effects modelling to fit the growth models

(Olusanya & Renner, 2011; Pagezy & Hauspie, 1985;

Simondon et al., 1992). Mixed effects modelling of physical

growth measurements allows for the estimation of general

population growth pattern as well as that of an individual

child and allows for the incorporation of other factors that can

affect child growth in the modelling process (Johnson et al.,

2013). Before the advent of mixed effects models, growth

curves had to be fitted to each individual child separately

(Cameron et al., 1982). Unlike other methods for analysis of

longitudinal data such as generalized estimating equations

(GEE) and multivariate analysis of variance (MANOVA),

mixed effects modelling allows for differences in timings and

Figure 2. Graphs of height profiles and growth models fitted to height from 3 months to 10 years.
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number of data points per individual (Twisk & de Vente,

2002; Twisk, 2004).

Furthermore, covariance estimates in a mixed effects

growth model explain the relationship between starting values

and growth trend. There was evidence in the study of SGA

exhibiting rapid growth in infancy, as shown by the negative

covariance estimates. Negative covariance estimates indicate

that those with low initial values (e.g. low birth weight) grow

faster than those with higher initial values (normal/large

babies), while positive covariance indicates that those with

initial values below the mean are likely to remain below the

mean and those with initial values above the mean maintain

that status (Singer & Willett, 2003; Zimmerman & Nunez-

Anton, 2001). Johnson et al. (2012a, b), using mixed effects

modelling to fit the Berkey-Reed model, also found negative

covariance estimates in both Indian and British populations.

Although this study did not show as strong evidence of catch-

up growth as the earlier studies by Johnson et al., this could be

due to the fact that we are looking at growth from birth to

10 years, whereas the earlier studies focused on the first

2 years of life when it would be expected that the effect of

catch-up growth would be strongest.

In this study, the non-convergence of the models after

addition of higher order term could have been due two factors;

(1) the limited number of measurement occasions, with long

and unequally spaced time intervals, and (2) the lack of

variation that is seen in the deceleration of growth across

individuals in the early childhood period. Steele (2008), also

using mixed effects modelling, showed a significant effect in

adding the quadratic term (age2) to the random component of

a 3rd order polynomial model. However, the data used by

Steele had nine equally spaced measurement occasions,

between the ages of 11–14 years (during puberty when

individual variation in acceleration and deceleration of

growth occurs), while the maximum number of data points

in this study is seven spread over a 10-year period. Since the

addition of the quadratic or ln(age) term in the random

component would allow for variations in the period of

deceleration in growth amongst the children, the few meas-

urement occasions over a wide age range might have led to

computational problems, in that the shape of the growth curve

is different from the one being imposed by the model

(Simondon et al., 1992). The growth velocity curves

(not shown) for the six models showed a similar period of

deceleration in growth. This could be the reason why allowing

for variation in deceleration led to computational problems

with this data set and why the results of this study are

different to earlier studies.

Even though most of the studies in LMIC that have used

the Berkey-Reed 1st order model have applied it to infant

growth data (0–2 years), our study found that it fitted well to

the childhood period, compared to the other five models

(Hauspie & Pagezy, 1989; Johnson et al., 2012b; Pagezy &

Hauspie, 1985; Simondon et al., 1992). In a study of Indian

children, Johnson et al. (2012b) found that the Berkey-Reed

1st order model fitted better to infant weight and height data

compared to other models such as the Count and 2nd order

polynomial (quadratic) models. Studies that have modelled

weight or height beyond 2 years have used models such as the

Jenss-Bayley, Kouchi, adapted Jenss-Bayley and quadratic

models and none of these did a comparative study on the

fitness of the different models (Black & Krishnakumar, 1999;

Botton et al., 2008; Dwyer et al., 1983; Martin-Gonzalez

et al., 2012; van Dommelen et al., 2005). Some studies have

used the quadratic model mainly for its simplicity and not

necessarily because the model fits well to the data

(Ehrenkranz et al., 1999; Grimm et al., 2011). Biologically,

the quadratic model would not be appropriate for the age

period under study, as it would not be able to capture the

possible acceleration in growth that takes place pre-puberty.

Quadratic models have been found to be inappropriate in

capturing growth characteristics over longer time intervals

(Hauspie et al., 2004).

Although our study found that the Jenss-Bayley model did

not fit well in the first year of life, this could be due to the

limited number of measurement occasions, leading to the

failure by the model to capture the asymptotic nature of the

curve in infancy. Further, the limited number of individuals

with weight at 3 and 6 months could also have been attributed

to the failure for the model to fit well at these points.

Although the adapted Jenss-Bayley model in general fitted

better than the Jenss-Bayley, it also did not fit well in the first

year of life. The quadratic term added to the Jenss-Bayley

model by Botton et al. (2008) introduced some deceleration

effect to minimize the effect of the exponential term (rapid

growth) and this possibly helped in capturing the growth in

infancy better than if there is just a linear term. It is worth

noting that the study by Botton et al. (2008) did not compare

the goodness of fit of the adapted Jenss-Bayley model with

any of the models used in this study. They validated their

residual analysis using piece-wise models.

In general, all of the models seemed to fit to height data

better than the weight data, as was evidenced by the non-

significant differences in the median values of the absolute

residuals. One of the challenges in modelling weight as

opposed to height is that individual weight can fluctuate and is

more sensitive to changes in ecological and environmental

factors such as nutrition, while height is monotonic (i.e.

increases with age) (Dwyer et al., 1983). Human growth

models are monotonic functions, primarily derived to model

monotonic biological processes. Thus, ecological and envir-

onmental influences that vary those monotonic functions are

likely to lead to poorer fitting models, depending on the

amount of variation that is driven by biological processes and

the amount driven by ecological and environmental influences.

Despite this, several studies have shown that the models can fit

equally well to weight measurements (Botton et al., 2008;

Dwyer et al., 1983; Johnson et al., 2012a, b; Pagezy & Hauspie,

1985; Simondon et al., 1992; van Dommelen et al., 2005).

Limitations

The main limitations to this study are the limited data,

especially during the first 24 post-natal months due to missing

data on the growth measurement variables and the number of

data collection waves. Having more participants with growth

measurements at 3 months and 6 months or more data

collection waves (monthly collection) may have helped in

improving the fit of the different models to the data and in

picking up the rapid growth in infancy more precisely.
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Another factor that could have affected the fit of the

models is the time period (birth to 10 years), which might

have included the pubertal take-off period, as a study by Jones

et al. (2009) showed that the average age at onset of puberty

in this population is �10 years. However, excluding the

measurements at year 10 would have led to a further reduction

in the sample size.

Although the number of individuals with a minimum of

five weight or height measurements was relatively small due

to missing data, the distribution of weight and height amongst

these individuals with data was not different from that of the

other height and weight measurements taken in the cohort.

Conclusion

Based on AIC and BIC values and also the median and

maximum of absolute residuals, the best growth model when

modelling weight during infancy and childhood (up to

10 years) in this South African context, has been shown to

be the Berkey-Reed 1st order model. The Count and the 3rd

order Polynomial are also good, as they pick up the rapid

growth in infancy, the slowing down in childhood and then the

accelerated growth at the beginning of puberty (�9 years).

The other advantage of the Count model is that it has one

parameter less than the Berkey-Reed or the 3rd order

Polynomial, meaning that fewer data points are required to

fit the model. The Adapted Jenss-Bayley model fitted height

measurements better than the other models. Also found to fit

height data well were the Berkey-Reed 1st order and the

Count models. Overall, the simpler linear Berkey-Reed model

seems to fit well to both height and weight for the period from

birth to pre-puberty. Simondon et al. (1992) found the Berkey-

Reed model fitted best to African infant growth data. This

study extended the findings of Simondon et al. to confirm that

the model continues to fit well into late childhood (up to

10 years), even though it did not fit well to weight at

3 months, possibly due to limited data at this point, and at 7/

8 years due to failure to capture the pre-pubertal growth spurt.

A study with shorter intervals between data collection waves

in the first 24 months of life would also help in improving the

accuracy in fitting the models, since children undergo rapid

growth during this period. This study has also demonstrated

how mixed effects modelling can be used to compare the

fitness of different infancy and childhood growth models.
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