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Neurobiology of Disease

Impaired Action Potential Initiation in GABAergic
Interneurons Causes Hyperexcitable Networks in an
Epileptic Mouse Model Carrying a Human Na, 1.1 Mutation
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Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the
development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCNIA mouse model
carrying the Nay 1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of
interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na *
channels in interneurons and persistent Na * currents were not significantly changed. Instead, the key mechanism of interneuron
dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing.
This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant
mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of
excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased sponta-
neous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing
was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential
recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca>" imaging in hip-
pocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential
initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the
studied mouse model and in patients carrying this mutation.
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Introduction

Voltage-gated ion channels play a pivotal role in initiation and
conduction of action potentials (APs). Four subunits constitute
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the major brain isoforms of voltage-gated Na ™ channels (Nays).
Among these, the most relevant gene affected in neuropsychiatric
disorders is SCNIA, encoding the Na, 1.1 subunit. SCN1A muta-
tions cause a variety of symptoms including febrile seizures and
epilepsy, ataxia, mental decline, and headache (Marini and Man-
tegazza, 2010). Disorders caused by SCNIA mutations include
generalized/genetic epilepsy with febrile seizures plus (GEFS+;
Escaygetal., 2000), Dravet syndrome (DS; Claes et al., 2001), and
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familial hemiplegic migraine (Dichgans et al., 2005). DS is a se-
vere epileptic encephalopathy with pharmacoresistant seizures
and mental decline starting in the first or second year of life,
whereas GEFS+ is characterized by milder febrile and afebrile
seizures, which mostly can be controlled by antiepileptic drugs.
For these two disorders, a genotype—phenotype relationship has
been established: DS is mainly associated with deleterious de novo
mutations that induce haploinsufficiency; whereas, GEFS+ is as-
sociated with missense mutations altering Nay 1.1 protein func-
tion in different ways (Zuberi et al., 2011).

Accordingly, gene-targeted Scnla mouse models expressing
truncated Nay 1.1 proteins have been used as models for DS. In-
deed, many clinical features of DS are mimicked by those models,
such as severe epilepsy, ataxia, and premature death. The first two
studies of such mice (Yu et al., 2006; Ogiwara et al., 2007) re-
vealed evidence for a reduced Na™ channel expression in in-
terneurons as a possible epileptogenic mechanism.

Despite these results, the pathomechanisms underlying in-
creased excitability in human epilepsies caused by point muta-
tions in the SCNIA gene are not understood. It is still unknown
(1) whether Nay 1.1 missense mutations cause a gain-of-function
or loss-of-function with respect to neuronal activity, and in
which neurons this effect is most prevalent; (2) in which neuronal
compartments mutant channels exert their main pathophysio-
logical effects; and (3) what impact such mutations have on com-
plex network dynamics, which has been addressed only in a single
study in Nay 1.1 knock-out mice (Liautard et al., 2013).

We set out to study the consequences of an epileptogenic
SCNIA mutation on a cellular and network level, using acute
brain slices of a knock-in mouse model. To identify the most
important consequences on the neuronal dysfunction, we chose a
mutation with subtle changes of channel function, p.R1648H
(Alekov et al., 2000; Spampanato et al., 2001; Lossin et al., 2002).
This mutation has been previously identified in a large family
with GEFS+ with 13 affected members exhibiting either febrile
or afebrile generalized tonic—clonic or absence seizures (Escayg et
al., 2000). Whereas homozygous (Scnl a™RE) animals exhibit
spontaneous generalized seizures and premature death from
postnatal day 16 (P16) on, heterozygous (Scnla®"™*) animals
present less frequent seizures and no change in life span, compa-
rable to that in patients (Martin et al., 2010).

Our results reveal a widespread disinhibition with reduced
intrinsic excitability of GABAergic inhibitory neurons, which is
presumably due to impaired AP initiation in axon initial seg-
ments (AISs). These defects lead to an increased spontaneous
neuronal network activity and can explain the generation of epi-
leptic seizures.

Materials and Methods

Experimental animals. The mouse strain used in this study, carrying the
R1648H mutation in Na,,1.1 on a C57BL/6 background, has been de-
scribed previously (Martin et al., 2010). Wild-type (WT) littermates were
used as controls. To label inhibitory neurons, we crossed the R1648H
mouse strain with glutamate decarboxylase (GAD67)-GFP knock-in an-
imals (same C57BL/6 background). In GAD67-GFP knock-in animals,
GABAergic inhibitory neurons positive for parvalbumin, calretinin, and
somatostatin are colocalized, with GFP with parvalbumin-positive cells
being the most abundant in the neocortex (Tamamaki et al., 2003). Ex-
periments were approved by the local Animal Care and Use Committee
(Regierungspraesidium Tuebingen, Tuebingen, Germany; and Direction
Départementale de la Protection des Populations Cote d’Azur, Nice,
France).

Preparation and maintenance of slices. Thalamocortical slices from P14
to P20 mice were obtained with a Microm HM 650 V vibratome (Thermo
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Fisher Scientific) using procedures previously described (Agmon and
Connors, 1991). Horizontal hippocampal slices of the same age were
used for recordings in the CA1 region. Animals were anesthetized with
Sevorane (active ingredient Sevofluran, Abbott Laboratories) or isoflu-
rane (Axience) and decapitated. Brains were removed quickly and cut in
ice-cold artificial CSF (ACSF) with the following composition (in mm):
125 NaCl, 25 NaHCO,, 2.5 KCl, 7 MgCl,, 2 CaCl,, 1.25 NaH,PO, 10
glucose, pH 7.4, equilibrated with 95% O,/5% CO,. Slices were stored to
recover at 36°C for 1 h before recordings. For storage and recording, the
following solution was used (in mm): 125 NaCl, 25 NaHCO,, 2.5 KCl, 1
MgCl,, 2 CaCl,, 1.25 NaH,PO, 10 glucose, pH 7.4, equilibrated with
95% 0,/5% CO, (standard ACSF).

Immunohistochemistry. For morphological studies, patched cells were
filled with 0.2% biocytin or Lucifer yellow. Slices were fixed for 1 h with
4% paraformaldehyde and incubated for 1 h in block medium (PBS with
6% normal goat serum and 0.6% Triton X-100) at room temperature.
After washing steps performed with PBS, slices were incubated with a
monoclonal antibody against GAD67 (Millipore Bioscience Research
Reagents; 1:500 dilution) for 1 h at room temperature and at 4°C over-
night. After washing steps performed with PBS, slices were incubated for
1 h at room temperature with secondary Alexa Fluor 488-conjugated
goat anti-mouse antibodies (dilution 1:500; Invitrogen) and cy3-
conjugated streptavidin (Jackson ImmunoResearch; dilution 1:1000)
when neurons were filled with biocytin or with secondary Alexa Fluor
568-conjugated goat anti-mouse antibodies only (dilution 1:500; Invit-
rogen) when cells were filled with Lucifer yellow. Slices were stained with
DAPI (Sigma-Aldrich; dilution 1:10,000) to identify the nuclei. After
washing, slices were air dried and mounted with Mowiol (polyvinyl al-
cohol; Sigma-Aldrich) and visualized on an Axiophot 2 microscope
(Zeiss).

Mutagenesis. Site-directed mutagenesis was performed to engineer the
mutation into the human Nayl.1 channel (GenBank sequence
NM_006920.4 subcloned into the pCDMS8 vector; Cestele et al., 2008)
using QuikChange (Agilent Technologies; primers are available upon
request). The mutant cDNA was fully resequenced before use in experi-
ments to confirm the introduced mutation and exclude any additional
sequence alterations. The human Na ™ channel subunits h3, and hf3, in
the pCLH vector were provided by GlaxoSmithKline. We exchanged the
Hygromycin coding region in the vector with the sequence coding for
either enhanced GFP (EGFP) or CD8 marker genes to obtain pCLH-
hB1-EGFP and pCLH-hB2-CD8 (Liao et al., 2010).

Transfection and expression in tsA201 cells. Human tsA201 cells were
cultured at 37°C, with 5% CO, humidified atmosphere, and were grown
in DMEM (Invitrogen) plus 10% (v/v) fetal bovine serum. Transfections
using Mirus TransIT-LT1 Transfection Reagent were performed for
transient expression of wild-type or mutant Na™ channel a-subunits
together with B;- and B,-subunits in tsA201 cells. For the coexpression,
2.4 pg of total DNA was transfected in a molar ratio of 1:1:1 as described
previously (Liao et al., 2010). Cells positive for CD8 antigen and EGFP
fluorescence were used for electrophysiological recordings.

Primary cell culture. Hippocampal and cortical neurons were isolated
for multielectrode arrays (MEAs) or voltage-clamp recordings from em-
bryonic day 17 (E17) R1648H or R1648H X GAD67 mouse brains, re-
spectively. Pregnant females were killed using CO,, and embryos were
quickly taken out and decapitated. Using microsurgical dissection meth-
ods, the hippocampus or the cerebral cortex was isolated. Tissues were
washed three times with 4°C magnesium- and calcium-free HBSS (PAA
Laboratories GmbH) before treatment for 15 min with 2.5% trypsin.
Subsequently, tissues were rinsed in DMEM with fetal bovine serum
(Biochrom AG), L-glutamine (Invitrogen) and penicillin/streptomycin
(Invitrogen) to block the trypsin reaction. Single neurons were obtained
by mechanical dissociation using a pipette and a cell strainer (Becton
Dickinson). For MEA recordings, 150,000 cells in 110 ul of solution were
plated on the arrays. MEAs were coated with poly-p-lysine solution (5 mg
poly-p-lysine in 100 ml of HBSS, filtered with a 0.45 um filter) and 500 ul
of DMEM with fetal bovine serum (Biochrom AG), L-glutamine (Invit-
rogen) and penicillin/streptomycin (Invitrogen). One hundred ten mi-
croliters of the cells in medium were plated on MEAs and allowed to settle
down for 4 h. After that time, MEAs were flooded with Neurobasal cul-
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ture medium (Invitrogen) supplemented with B27 (Invitrogen), glu-
tamine, and penicillin/streptomycin.

For nucleated patch-clamp experiments, the dissociated neurons were
plated on 13 mm coverslips in 24-well cell culture plates (Greiner Bio-
One). The coverslips were coated with a poly-p-lysine solution (5 mg of
poly-p-lysine in 100 ml of HBSS, filtered by using a 0.45 um filter) and
500 wl of DMEM with fetal bovine serum (Biochrom AG), L-glutamine
(Invitrogen), and penicillin/streptomycin (Invitrogen). After allowing
the neurons to settle down for 5 h in a 37°C incubator with 5% CO,
supply, the solution was replaced with Neurobasal culture medium
(Invitrogen) supplemented with B27 (Invitrogen), glutamine, and
penicillin/streptomycin.

Since homozygous animals with EGFP-labeled interneurons were not
viable, we could use only Senla®™ ™" animals with EGFP-labeled in-
terneurons for our Na ™ current analysis.

Electrophysiological recordings. Whole-cell patch-clamp recordings of
inhibitory and/or excitatory neurons within thalamus, cortex, or hip-
pocampus were performed at 34°C using Axopatch 200B, Multiclamp
700B (Molecular Devices), or BVC 700A (Dagan) amplifiers; a DigiData
1420 digitizer (Molecular Devices); and pClamp 10.3 software (Molecu-
lar Devices). Slices were positioned in a submerged-type recording
chamber (Luigs & Neumann or Warner Instruments), continuously su-
perfused with ACSF, and visualized with an Axioskop 2FS (Zeiss) or an
Eclipse FN1 (Nikon) microscope. Pipettes were pulled from borosilicate
glass (Science Products GmbH) using a Sutter P97 Puller (Sutter Instru-
ments), with resistances of 3-5 M(). For current-clamp experiments,
cells were held at —70 mV, and the patch pipette solution contained the
following (in mm): 5 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3 GTP-Na,
10 HEPES, 125 K-gluconate, 2 MgCl,, 10 EGTA, and 0.2% biocytin or
Lucifer yellow with a final pH of 7.2 and an osmolarity of 290 mOsm/kg.
To record spontaneous and miniature IPSCs or tonic GABA, current,
the AMPA and kainate receptor antagonist DNQX (10 um; Sigma-
Aldrich) and the NMDA receptor antagonist APV (30 um) were added to
the standard ACSF; patch pipettes contained the following (in mm): 105
CsCl, 35 CsOH, 10 HEPES, 10 EGTA, 10 phosphocreatine, 4 ATP-Mg,
0.3 GTP-Na, 14 p-mannitol, 0.2% biocytin, or Lucifer yellow. Membrane
voltage was clamped to —70 mV, and IPSCs were recorded over 5 min
epochs. For current and voltage-clamp experiments, the sampling rate
was 100 kHz and the data were low-pass filtered at 30 kHz. Series resis-
tance (<20 M()) was monitored during the experiment. Cells showing
unstable series resistance or resting membrane potential were discarded.

Nucleated patch recordings were performed using an Axopatch 200B
amplifier (in primary cortical cultures) and a multiclamp 700B amplifier
(in brain slices), a DigiData 1420 digitizer, and pClamp 10 data acquisi-
tion software (Molecular Devices), as has been described previously
(Liao et al., 2010; Lauxmann et al., 2013). For whole-cell patch-clamp
recordings of tsA201 cells, an Axopatch 200B amplifier, a DigiData
1320A digitizer, and pCLAMP 8 data acquisition software were used
(Molecular Devices), and cells were visualized with an inverted micro-
scope (Axio Vert.Al, Zeiss). Leakage and capacitive currents were auto-
matically subtracted using a prepulse protocol (—P4). Currents were
filtered at 5 kHz and digitized at 20 kHz. All recordings were performed
at room temperature of 21-23°C. Borosilicate glass pipettes were fire
polished with a final tip resistance of 1-2 M) when filled with internal
recording solution.

The extracellular solution used for nucleated patches of primary cor-
tical cultures contained the following (in mm): 140 NaCl, 3 KCI, 1 MgCl,,
1 CaCl,, 20 tetraethylammonium (TEA)-Cl, 5 CsCl, 0.1 CdCl,, and 10
HEPES; pH was adjusted to 7.3 with CsOH. Pipettes were filled with an
intracellular solution containing the following (in mm): 140 CsF, 10
NaCl, 1 EGTA, and 10 HEPES, with pH was adjusted to 7.3 with CsOH.
The ACSF for recording Na * currents in nucleated patches in acute slices
contained the following (in mm): 125 NaCl, 25 NaHCO;, 2.5 KCl, 1.25
NaH,PO,, 2 CaCl,, 1 MgCl,, and 25 glucose, bubbled with 95% O, and
5% CO,. TEA (20 mm) was added to block voltage-gated K * channels.
Pipettes were filled with a Cs "-rich internal solution, containing the
following (in mm): 140 CsCl, 10 EGTA, 2 MgCl,, 2 ATP-Na,, and 10
HEPES, with pH adjusted to 7.3 with CsOH.
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For recording the persistent sodium current (Iy,p) in hippocampal
and nucleus reticularis of the thalamus (nRt) inhibitory neurons in acute
slices, the ACSF contained the following (in mm): 50 NaCl, 90 TEA-CI, 10
HEPES-free acid, 2 CaCl,, 2 MgCl,, 3.5 KCl, 3 CsCl, 0.2 CdCl,, 4 4-AP,
and 25 glucose. pH was adjusted to 7.4 using NaOH. The intracellular
solution contained the following (in mm): 110 CsF, 10 HEPES-Na, 11
EGTA, 2 MgCl,, 0.5 GTP-Na, and 2 ATP-Na, pH was adjusted to 7.3
with CsOH. For eliciting persistent sodium currents, voltage ramps from
—80to 20 mV with a velocity of 25 mV/s were used. In each case, currents
were recorded in ACSF and in the presence of TTX to subtract remaining
potassium or calcium currents.

Na* currents of 1-12 nA were recorded from transfected tsA201 cells
atleast 10 min after establishing the whole-cell configuration. The pipette
solution contained the following (in mm): 105 CsF, 35 NaCl, 10 EGTA,
and 10 HEPES, pH 7.4. The bath solution contained the following (in
mwm): 150 NaCl, 2 KCl, 1.5 CaCl,, 1 MgCl,, and 10 HEPES, pH 7.4.

Local extracellular field potentials were recorded using glass electrodes
in slices continuously perfused with ACSF bubbled with 95% O,/5% CO,
and maintained in an interface chamber at 34°C (Campden Instruments)
with Multiclamp 700B or DAGAN EX4-400 amplifiers. Electrical stim-
ulations were applied with bipolar electrodes (FHC Inc.), a STU91A iso-
lator (Cygnus Technologies), pPCLAMP software, and a DigiData 1420
digitizer, as in Liautard et al. (2013). Sampling rate was 10 kHz and data
were low-pass filtered at 4 kHz. Recording electrodes were positioned in
the S1 cortex [layer IV (LIV) and layer V (LV)] and in the thalamus [nRt
and ventrobasal part of the thalamus (VB)]. Paired-pulse stimulations of
the VB, at the intensity eliciting the maximal LIV response, consisted of
the application of two pulse stimuli with increasing interpulse interval
(IPI); analysis was performed on the monosynaptic response (Agmon
and Connors, 1991). For coastline analysis, the coastline index (Korn et
al., 1987) was the length of the line describing the monosynaptic re-
sponses, which was calculated by applying Pythagoras’ theorem to each
pair of data points, computed with Origin version 8.5 software (Origin-
Lab) as follows:

Coastline index = Ei \/(x,- —xis1)* + (yi = yin1)?
with x; and y; being the time (in milliseconds) and amplitude (in milli-
volts), respectively, of each data point (;).

The paired-pulse ratio was calculated by dividing the amplitude, or the
coastline index, of the second monosynaptic response in the pair by the
amplitude, or the coastline index, of the first one. For displaying high-
frequency oscillation (HFO) traces, data were bandpass filtered off-line
at 40-200 and 200—600 Hz with pClamp Bessel eight-pole filters. For
analysis of HFOs, we also subtracted the contribution of the noise to the
filtered traces: for both 40-200 and 200—-600 Hz filters, we computed the
absolute area of the oscillations with Origin version 8.5 software and
subtracted the absolute area of an eventless period of the same duration
immediately preceding the activity under analysis. To take into account
the possible bias in HFO areas induced by the amplitude of the sponta-
neous activity (HFOs may appear larger in slices of Scnla™"" animals
just because amplitudes of spontaneous activities are larger), we also
compared normalized noise-subtracted HFO absolute areas, dividing the
absolute area of the HFO by the absolute area of the corresponding
spontaneous activity (0.1 Hz—1 kHz filtered). For some recordings, re-
sults were confirmed obtaining HFOs by filtering traces (40-200 and
200-600 Hz) with a fast Fourier transform bandpass filter (Origin ver-
sion 8.5 software).

Voltage-clamp protocols and data analysis for transient Na* currents
recorded from neurons and tsA201 cells. For the voltage-clamp protocols
used, recorded currents from nucleated patches were averaged up to 10
times to obtain homogeneous results.

The activation curve (conductance—voltage relationship) was derived
from the current—voltage relationship curves obtained by plotting the
peak current over various step depolarizations [7.5 mV steps from the
holding potential of —90/—140 mV (neurons/tsA-cells)] according to

I
W =v=va
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with gbeing the conductance, I the recorded peak current at test potential
V, and V.., the apparent observed Na * reversal potential.

The voltage dependence of activation was fit with the following Boltz-
mann function:

_ gmax
$V) = ¥ expl(V = Vio)ik ]}

with g .. being the maximal conductance, V,,, the voltage of half-
maximal activation, and k,, a slope factor. Steady-state inactivation was
determined using 300 ms conditioning pulses to various potentials fol-
lowed by the test pulse to —20 mV at which the peak current reflected the
percentage of non-inactivated channels. A standard Boltzmann function
was fit to the inactivation curves:

Imax

{1+ eXP[(V = ViIk I

(v) =
with I, being the maximal current amplitude.

Recovery from fast inactivation was recorded from cells depolarized to
—20 mV for 100 ms to inactivate all Na ™ channels and then repolarized
to —90/—140 mV (neurons/tsA-cells) recovery potential for increasing
duration. A second-order exponential function with an initial delay was
best fit to the time course of recovery from inactivation. The faster time
constant with the much larger relative amplitude, 7., is shown for data
evaluation in Figure 2G.

Entry into and steady-state slow inactivation for tSA cells were char-
acterized using cumulative protocols (Alekov et al., 2000). For steady-
state slow inactivation, 30 s conditioning pulses starting at a holding
potential of —140 mV in 10 mV steps up to 10 mV were used. Each of
these steps was followed by a 20 ms hyperpolarization to —140 mV to let
channels recover from fast inactivation and a test pulse to —20 mV.
Curves were fitted to a standard Boltzmann function as for fast inactiva-
tion. To measure the entry into slow inactivation, cells were held at —140
mV and depolarized to 0 mV for increasing durations, repolarized for
100 ms to —100 mV to let the channels recover from fast inactivation,
and then depolarized again to —10 mV to determine the fraction of slow
inactivated channels. The time course of slow inactivation was best fitted
by a first-order exponential function.

MEAs. MEAs were used to record activity from primary hippocampal
neurons prepared from E17 mice after 3 weeks in culture. MEAs had a
square grid of 60 planar Ti/TiN electrodes of 30 um diameter and 200
pum spacing. Electrodes had an input impedance of 30-50 k() according
to the specifications of the manufacturer (Multi Channel Systems). Sig-
nals from all 60 electrodes were simultaneously sampled at 25 kHz, visu-
alized, and stored using the standard software MC_Rack provided by
Multi Channel Systems. Spike detection was performed off-line by the
SPANNER software suite (RESULT Medical; see also Illes et al., 2009).
Synchronous network activity was analyzed by population burst (PB)
detection using custom-built Matlab software.

Spikes from all electrodes were aggregated in nonoverlapping 5 ms
bins and smoothed by a Gaussian kernel with a 100 ms SD to obtain the
population firing rate (PFR; Schock et al., 2012). PB detection was per-
formed in a three-step procedure. First, PB candidate intervals were iden-
tified whenever the PFR exceeded the slowly varying 1 s firing rate
average. In a second step, the actual PBs from these candidate intervals
were selected, if (1) their peak firing rate exceeded 3 SDs of the recording
PFR, (2) their peak firing rate exceeded 10% of the average of the top five
peaks, and (3) at least three electrodes contributed. Finally, neighboring
PBs were merged if they were <200 ms apart. PB onset and termination
were defined by the actual spike time stamps of the first and last spike in
the resulting time interval. In this way, synchronous network activity on
time scales of tens to several hundreds of milliseconds could reliably be
captured. The peak firing rate (i.e., the maximum PFR within a PB inter-
val, reported in spikes per second) and the number of PBs per minute
were analyzed. For the quantification of firing synchrony across pairs of
electrodes, spikes were collected in 10-ms-wide bins and subsequently
dichotomized to either zero spikes or at least one spike. Consequently,
both electrodes were active during a time bin (“coincident bin”), only
one electrode was active, or both were silent. Cohen’s k statistic then

Trec
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captures the proportion of observed coincident bins exceeding the
chance expected proportion of coincidences (Woolson and Clarke,
2002). Similar to Pearson’s correlation coefficient, k values lie in the
range —1 to +1. The average k value of all electrode pairs with a firing
rate of at least 30 spikes/min was calculated as a measure of the overall
synchrony of a recording.

Ca** dye loading and imaging. An initial 5 mm OGB-1-AM (Oregon-
Green 488 BAPTA —1, cell permeant; Invitrogen) stock solution dis-
solved in 20% Pluronic acid, and DMSO was mixed properly and diluted
with HEPES to obtain the final concentration of 8 mm. The final solution
was filtered and backloaded into a pipette for pressure injection. The
pipette was placed in stratum oriens of the hippocampal CA1 region to
load the slice with the Ca?* dye. To image Ca®" transients, slices were
incubated in ACSF at 36°C for 30 min to ensure dye uptake. A custom-
made selective planar illumination microscope was used for Ca®" imag-
ing (modified after Holekamp et al., 2008).

As an excitation light source, a 488 nm optically pumped semiconduc-
tor laser (Sapphire 488 LP, Coherent) with a maximal output power of 20
mW was used. The laser intensity in the light sheet focus was ~3% of the
intensity emitted by the laser. To image the illuminated tissue a 16X
water-immersion objective (CFI75 LWD, Nikon) was used mounted to a
piezoelectrical objective positioning system (Mipos 500, Piezo Sytems).
To filter the wavelength emitted by the calcium dye, a 536/40 emission
filter (536/40, BrightLine) was used, and the filtered picture was focused
with a 0.5X tube lens (InfiniTube FM-100, Infinity Photo-Optical Com-
pany). Images were recorded using a 1 megapixel electron multiplying
charge-coupled device camera (iXon EM+, Andor).

ROIs were detected using a Gauss-filtering- and contour-filtering-
based cell detection algorithm written in MatLab (Allene et al., 2008).
Ca** traces were recorded as changes in mean pixel intensity in each ROI
over 20 min. Ca*" events were detected using a custom-made detection
algorithm written in MatLab. Background was subtracted and photo
bleaching was removed by dividing a double exponential function. Traces
were high-pass filtered by subtracting the low-pass-filtered signal using a
Butterworth low-pass filter. The signal over threshold was depicted as a
possible event and confirmed if the unfiltered event showed an exponential
decay with a time constant 500 = 200 ms (Grewe et al., 2010). The maximum
of the second derivative of the Ca®" event was chosen as the time point for
the underlying cell activity (Henze et al., 2000). Readout data were processed
using Origin (version 6.1, OriginLab).

Data and statistical analysis. Traces were displayed off-line with the
Clampfit software pClamp version 10.0 (Molecular Devices). Graphics
were generated using Excel (Microsoft) and Origin (version 6.1 or 8.5),
statistics were performed using SigmaStat 3.1 (STATCON). All data were
tested for normal distribution. For statistical evaluation, the following
tests were used as indicated in the respective figure legends or in text: (1)
Mann-Whitney rank-sum test for unpaired datasets of WT and
Senla®Y* animals; (2) Wilcoxon signed-rank nonparametric test for
paired datasets (e.g., before and after the application of drugs); (3)
ANOVA on ranks (Kruskal-Wallis test) with Dunn’s post hoc test for
comparing more than two groups; or (4) t test or one-way ANOVA when
two datasets of unpaired groups were normally distributed. All data are
shown as the means = SEM. Box-and-whisker plots show medians
(lines), means (square), lower and upper quartiles, minimums, and max-
imums. Data are shown as the mean = SEM; n gives the number of cells
or activities. For all statistical tests, significance with respect to the con-
trol is indicated on the figures using the following symbols: *p < 0.05,
“p < 0.01, and ***p < 0.001.

Results

Epileptic phenotypes in patients carrying SCNIA mutations in-
cluding p.R1648H are variable, including febrile, generalized
tonic—clonic and absence seizures. This indicates that the human
mutation functionally impairs different neuronal systems, poten-
tially including neocortical, allocortical, and thalamic structures.
Therefore, we performed a comprehensive electrophysiological
analysis examining the intrinsic firing properties of inhibitory
and excitatory neurons, as well as synaptic and network activity in
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Figure 1.  Firing behavior of neurons within thalamocortical and hippocampal network. 4, Schematic of thalamocortical circuit with reciprocal interconnections between thalamus and cortex.
Thalamocortical relay neurons receive excitatory input and subsequently activate cortical pyramidal neurons and adjacent inhibitory GABAergic neurons. Cortical pyramidal neurons are reciprocally
connected to thalamic relay neurons and excite GABAergic neuronsin the nRt, which in turn inhibit each other as well as relay neurons. Right, Pictures of recorded cells in the different areas filled with
Lucifer yellow or biocytin (red). Scale bars, 100 m. B, Top, Representative whole-cell current-clamp recordings of AP series in GABAergic nRt neurons of WT (+/-+, left) and heterozygous (RH,
right) animals. Original recordings, top, Voltage traces upon injection of —0.05, —0.025, 0, and 0.1 nA; middle: 0.2 nA, bottom: 0.3 nA (current-clamp protocol shown below). Dashed lines show
holding potential of —70 mV. All current steps are given in plots below showing the number of APs plotted vs current injection. Bottom, Number of APs is plotted vs current injection. WT:n = 23
cells from 14 animals; Scn7a®™*: n = 37 cells from 22 animals. €, Top, Whole-cell current-clamp recordings of excitatory relay neurons of WT (left) and Scn7a™"™ (right) animals. Original
recordings are selected as in A. Bottom, Number of APs is plotted vs current injection. WT mice: n = 12 cells from six animals; Scn7a "+ mice: n = 12 cells from seven animals. D, Top, Whole-cell
current-clamp recordings of the postinhibitory rebound in nRt neurons of WT (left) and heterozygous (right) animals during and after —400 pA current injection. Insets show amplifications
highlighted with dashed boxes. Number of APs during the postinhibitory rebound (PIR) plotted vs different preceding hyperpolarizing current injections. E, Number of APs recorded in cortical layer
IV (top) and hippocampal (CA1 region, stratum oriens; bottom) FS inhibitory neurons plotted vs current injections. Cortex: WT mice, n = 7 cells from five animals; Scn7a ™ mice, n = 9 cells from
six animals. Hippocampus: WT mice, n = 7 cells from three animals; Scn7a " * mice, n = 11 cells from six animals; Scn7a "* mice, n = 6 cells from three animals. F, Number of APs recorded in
cortical layer V (top) and hippocampal (CA1 region, stratum pyramidale; bottom) pyramidal cells plotted vs current injections. Cortex: WT mice, n = 17 cells from 11 animals; Scn7a ™+ mice, n =
26 cells from 10 animals. Hippocampus: WT mice, n = 15 cells from six animals; ScnTa R+ mice, n = 14 cells from seven animals; Scn7a """ mice, n = 8 cells from three animals. *p < 0.05;
*¥p <0.01; ***p < 0.001, Mann—Whitney test and ANOVA on ranks (hippocampus). Data are shown as means = SEM.

thalamus, cortex, and hippocampus. We used acute brain slices
of WT and mainly heterozygous mice (Scnla™""), since they
should best mimic the situation in patients. To better understand
Na * channel dysfunction, we also used homozygous Scnla""/*"
mice in some conditions. Since seizures in GEFS+ patients with
SCNIA mutations start in early childhood (Weber and Lerche,
2008), we studied the effects of the mutation in slices of animals
between P14 and P20.

Intrinsic firing properties of inhibitory and excitatory
thalamic neurons

In the thalamocortical network (Fig. 1A), which is involved in the
generation of generalized seizures (Steriade, 2005; Beenhakker
and Huguenard, 2009), we studied the neurons that were mainly
involved: cortical LIV and LV inhibitory and excitatory neurons,
inhibitory neurons within the nRt, as well as thalamocortical
relay neurons in the VB of P14—P20 mice.
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Table 1. Membrane properties of different neurons recorded in brain slices of WT and mutant animals

Animals V, (mV) R, (MQ) AP threshold for eliciting 1 AP (mV) 1 AP width (ms) Rheobase (pA)* Cells (n)
Nucleus reticularis, burster

W1 —68.6 = 3.5 1814 * 149 —50.1 + 4.1 0.65 = 0.03 476 = 45 3

SenTa™* —69.6 = 3.6 156.8 = 13.0 —491%25 0.61 £ 0.02 541+ 43 37

Scn1qRH/RH —69.9 + 0.8 2255+ 179 —520*08 0.64 = 0.02 57.5+58 10
Nucleus reticularis, non-burster

WT —723+17 303.0 = 479 —531£09 1.04 = 0.07 593 74 7

Senta®™+ —723+15 306.2 =+ 69.5 —550+53 1.02 = 0.08 79.3 = 10.9 7
VB, relay neuron

WT —721%10 1045 = 4.1 —573*18 1.03 =+ 0.02 97.7 £ 86 1

Senta®™+ —709+ 138 13475 * 16.2 —553+13 1.01 = 0.03 87.5+ 117 13

Scn1qRH/RH —693+ 14 153.82 = 17.48 —526*+10 1.02 == 0.04 87.5+ 125 6
Cortex, inhibitory neurons

WT —701 + 14 200.1 *+ 16.8 —541+18 0.44 =+ 0.04 92,9+ 13.0 7

Senta®™+ —699 + 15 196.7 = 14.6 —524+13 0.54 = 0.03 105.0 = 16.2 9
Cortex, pyramidal cells

WT —729 + 1.1 140.7 = 1.2 —547+18 1.02 + 0.05 107.8 = 9.9 17

Senla®™+ —741+10 152.0 * 89 —572+15 1.03 = 0.04 101.0 £7.8 26
Hippocampus, Stratum oriens

WT —745 + 5.1 1749 = 114 —544 + 10 0.57 =+ 0.07 50.0 = 9.5 7

Senta®™+ —734+ 48 163.7 = 16.9 —53.1%+19 0.57 = 0.05 79.6 = 16.8 11

ScnTqRH/RH —693 1.1 206.4 *+ 14.2 —528+11 0.58 = 0.03 64277 6
Hippocampus, Stratum pyramidale

WT —748+ 12 2262 *+ 140 —534+12 1.04 = 0.02 50.0 = 5.9 15

SenTa™* —71.0 =12 190.8 = 19.1 —558 16 1.06 = 0.04 556 + 123 14

Scn1qRH/RH —70.7 = 2.1 183.4 = 16.9 —540 % 1.7 1.08 = 0.02 38 *63 8

Data are presented as means == SEM; Mann—Whitney rank-sum test and ANOVA on ranks with Dunn’s post hoc test.
*Current injection of 800 ms. V,,,, resting membrane potential; R;, , input resistance.

In the nRt, we found two types of inhibitory neurons. Most of
them displayed an initial burst discharge of APs as a response to
current injections (Fig. 1B). Others, predominantly in the dorsal
part of the nRt, showed only tonic activity (Contreras et al., 1992;
Lee et al., 2007). Firing was recorded upon different current in-
jections. Both bursting and tonically active nRt neurons of
heterozygous animals showed significantly fewer APs in response
to the same current injections compared with WT littermates
(number of spikes during 250 pA current injection: bursting neu-
rons: WT mice, 47 * 5, n = 23; Scnla™"* mice, 32 + 3, n = 37;
p < 0.001, Mann—Whitney test; Fig. 1B; tonically active neurons:
WT mice, 87 = 13, n = 7; Scnla™™™* mice, 53 = 5,n = 7;p <
0.01, Mann—Whitney test).

A characteristic feature of inhibitory nRt cells is a postin-
hibitory rebound after a hyperpolarization characterized by a
low-threshold calcium spike and a burst of APs (Fig. 1D, top;
Contreras et al., 1992; Llinas and Steriade, 2006). Neurons
from heterozygous animals showed a significantly reduced
number of APs within the rebound burst confirming their
reduced excitability, when compared with WT mice (Fig. 1D).

In contrast, the firing rates of excitatory thalamocortical relay
neurons within the thalamic VB were not significantly different
between heterozygous and WT animals (number of spikes during
250 pA current injection: WT mice, 20.0 = 3.1, n = 11; Scnla®V*
mice, 21.5 = 5.1, n = 13); p = NS, Mann—Whitney test; Fig. 1C).
These findings indicate that the mutation selectively influences firing
of thalamic inhibitory, but not of excitatory neurons.

Intrinsic firing properties of cortical and hippocampal
inhibitory and excitatory neurons

We next recorded from cortical neurons in the S1 region.
GABAergic neurons were labeled by crossing R1648H knock-in
mice with a line expressing EGFP in interneurons (Tamamaki et
al., 2003). Similar to the thalamus, LIV fast-spiking (FS) inhibi-

tory neurons, but not LV pyramidal cells, fired fewer APs in re-
sponse to current injections in Scrla™* mice compared with
WT mice, as shown in Figure 1, E and F, top (number of spikes
during 250 pA current injection: interneurons: WT mice, 93 *
16, n = 7; Senla™™"™" mice, 59 = 11, n = 9; p < 0.05; pyramidal
cells: WT mice, 26 + 5, n = 17; Scnla™* mice, 22 * 3, n = 26;
p = NS, Mann—Whitney test).

For recordings in the hippocampal CA1 region, we used WT,
Scn1a®™Y™*, and also homozygous Scnla®™®" mice, since we
later also used hippocampal neurons for Na ™ current recordings
for which homozygous animals were important (see below). In-
terneurons and pyramidal neurons were identified by morphol-
ogy and localization, and were confirmed by biocytin or Lucifer
yellow labeling. For analysis, we used only FS neurons with ho-
mogenous electrophysiological characteristics (AP width, <0.6
ms; APs are followed by a large afterhyperpolarization) as well as
morphological properties (located in the stratum oriens, close to
the stratum pyramidale with main projections in the pyramidal
celllayer), which were presumed to represent basket cells. We did
not include interneurons showing regular or stuttering spiking.
As GABAergic neurons in thalamus and cortex, FS interneurons
in stratum oriens of the hippocampal CAl region showed re-
duced firing for mutant mice (number of spikes during 250 pA
current injection: WT mice, 96 = 10, n = 7; Senla™™" mice,
48 = 7, n = 11; p < 0.001), which was more pronounced for
homozygous animals (Scnla™" " mice, 20 * 10, n = 6; p <
0.001, ANOVA on ranks; Fig. 1E, bottom). Excitatory pyramidal
cells in CA1 stratum pyramidale did not show significant differ-
ences in firing properties (WT mice, 40 * 5, n = 15; Scnla®+
mice, 43 = 8, n = 14; Scnla™R®" mice, 35 = 5, n = §; p =NS§,
ANOVA on ranks; Fig. 1F, bottom). We also examined the pas-
sive membrane properties in the neuron types discussed above
showing no significant differences between WT and mutant ani-
mals in any type of neuron (Table 1).
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Figure2. TransientNa * currents of hippocampal inhibitory neurons recorded in acute brain slices and of transfected tsA201 cells. 4, Original recordings of Na * currents from nucleated patches
derived from inhibitory neurons in CA1 stratum oriens of WT (left), heterozygous (middle), and homozygous (right) animals. B, Gating parameters of Na ™ currents as recorded in A. Left, Current
density; middle, steady-state activation and fast inactivation curves; right, recovery from fast inactivation. Voltage-clamp protocols and data evaluation procedures are given in the Materials and
Methods section. Data are shown as means == SEM. There were no significant differences among the three genotypes. C, Representative whole-cell patch-clamp recordings of tsA cells transfected
with SCN7A-WT DNA (top) and SCNTA-R1648H DNA (bottom), respectively. D, Current density—voltage plots for hNa,1.1-WT and R1648H. See also Table 2. E, Mean voltage dependence of
steady-state Na * channel activation and fast inactivation with lines revealing Boltzmann functions. F, Voltage dependence of the persistent currents showing a largely increased persistent current
for the R1648H mutation. Current amplitudes were recorded at the end of a 70 ms depolarization to 0 mV and are normalized to the peak amplitude (steady-state current/initial peak
current). G, Time course of recovery from fast inactivation determined at 100 mV revealing acceleration for R1648H mutant channels. Lines represent fits of exponential functions. H,
Mean voltage dependence of steady-state slow inactivation fitted to a standard Boltzman function (lines): V, ,= —71.8 = 0.7mV for WT (n = 7) vs V; , = —85.8 == 0.9 mV for R1648H

(n=5); p <0.05, Student’s t test.

In summary, these results demonstrate a widespread dysfunction
of inhibitory, but not of excitatory neurons with respect to AP firing.
The reduced firing indicated a loss-of-function of mutant Na*
channels expressed in interneurons.

Properties of somatic fast Na* currents in inhibitory neurons
Na ™ currents from native neurons are ideally recorded from nucle-
ated patches, which permit recording from unequivocally identified
neurons, and allow adequate voltage control (Martina and Jonas,
1997). Nucleated patches were obtained from inhibitory neurons of
stratum oriens and primary cortical cultures. Recorded Na ™ cur-
rents had amplitudes of 100—400 pA. There were no significant dif-
ferences between heterozygous and WT animals, both in

interneurons in stratum oriens (Fig. 2A, B; Table 2) and primary
cortical cultures (Table 2), although slight alterations in a direction
similar to that recorded using recombinant human channels could
be observed (see below; reduced current density and decreased slope
of the steady-state fast inactivation curve; Fig. 2).

Thus, we re-examined the properties of the R1648H mutation
in a heterologous expression system. In tsA201 cells, the R1648H
mutation in hNay 1.1 showed results similar to those reported
previously (Fig. 2C—H; Table 2; Alekov et al., 2000; Spampanato
et al., 2001; Lossin et al., 2002). Compared with the WT mice,
mutant channels showed defects in fast inactivation with decreased
slope and slight shift to more hyperpolarized potentials of the fast
steady-state inactivation curve, accelerated recovery from fast inac-
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Table 2. Activation and inactivation of Na * currents in nucleated patches of neurons and whole cell recordings of tsA cells

Steady-state activation

Steady-state inactivation

Current—density (pA/pF)  V,,, (mV) k, n V,,(mv) k, n o T.at—100mV

Nucleated patches of inhibitory neurons in primary cortical neurons

WT —684.6 = 93.2 —296+05 —67*x01 22 —631*08 52*02 22 41*04

Senla™ —757.4 = 142.1 —294+08 —65+02 20 —636+11 5604 2 44+05
Nucleated patches of inhibitory CAT neurons in acute slices

WT —1433 +29.5 —330*+14 —68%+02 10 —68*x11 91*+04 9 39*10

Senla™/+ —116.9 = 12.0 —333+11 —64=04 15 —666+14 96=04 15 51+13

Scnlg MR —106.7 £ 17.5 —344+11 —66*04 9 —710+11 118*15 8 66*16
Whole cell patch-clamp recordings of transfected tsA cells

WT —421.8 £ 546 —351%+22 62+04 9 —73.0Xx13 4601 8 53=*06

R1648H —251.2 £ 53.5% —344+17 7103 11 —736*+08 7105 11 1.8=*02*

Data are presented as means == SEM. n, Number of recorded neurons. T, , time constant of recovery from fast inactivation.
*p < 0.001, WT vs R1648H. Mann-Whitney rank-sum test for cases with two groups compared (WT vs Scn7a ™/ or R1648H mutation) and ANOVA on ranks with Dunn’s post hoc test for comparing WT, Scn 7a "+, and Scn 7a "™ mice.

Analysis of spike initiation

A hippocampal interneurons B CA1 nRt The results so far clearly demonstrate a
WT RH/+ RH/RH 0 1 0 1 deficit in interneuron firing, but did not
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0—51 20 pA = =4 (Palmer and Stuart, 2006; Meeks and
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Figure3. Persistent Na * currents recorded in inhibitory nRt and hippocampal neurons. A, Representative whole-cell patch- (Royeck etal., 2008; Wimmer etal., 2010).

clamp recordings of persistent currents of hippocampal FS neurons elicited by voltage ramps from —80 to 0 mV. B, Box plots of
peak persistent currents recorded in inhibitory hippocampal (left) and nRt neurons (right). The peak /y,, does not significantly

differ between WT and mutant animals. ANOVA on ranks with Dunn'’s post hoc test.

tivation (Table 2), and increased persistent current (Fig. 2F; see be-
low). Additional findings were a reduced current density and a large
hyperpolarizing shift in steady-state slow inactivation (Fig. 2H; Ta-
ble 2).

Properties of persistent Na ™ currents in interneurons

An important functional consequence of the R1648H mutation
in the human Na,, 1.1 channel described in tsA201 cells (Lossin et
al., 2002) was an increased persistent Na™ current, which we
could confirm using a different clone of the human Nay 1.1 chan-
nel (Fig. 2F; Rusconi et al., 2007), but which was not detected in
studies using the human skeletal muscle channel hNay 1.4 in tsA201
cells (Alekov et al., 2000), the rat Nay 1.1 channel in Xenopus oocytes
(Spampanato et al., 2001), or hippocampal neurons dissociated
from transgenic mice expressing R1648H in mouse Na,, 1.1 (Tang et
al., 2009). To assess the persistent current in native neurons in brain
slices, we used voltage ramps in whole-cell recordings of nRt and
hippocampal GABAergic neurons. However, we were not able to
identify significant differences in persistent currents among the three
genotypes in hippocampal (Fig. 3A, B) and thalamic nRt neurons
(Fig. 3B, right). The peak amplitudes as well as the voltage depen-
dence of the persistent sodium currents were similar in WT and
mutant animals (Fig. 3B; hippocampus: WT mice, V,,, = —39.3 =
2.7mV, n = 11; Senla™* mice, V,,, = —38.7 = 1.6 mV, n = 9);
Senla®RH mice, Vip,=-—389%29mV,n=12;p = NS;nRt: WT
mice, V;,, = 41.6 = 6.3 mV, n = 15; Scnla®™* mice, V,,, =
—40.6 = 2.8 mV, n = 24; Scnla™ M mice, V, , = —43.8 + 3.1mV,
n = 11; one-way ANOVA).

We hypothesized that spike initiation is al-
tered in interneurons, due to changes in AIS
Na ™ channels. During AP trains, we calcu-
lated the second derivation of the voltage
trace (d?V/dt%; Fig. 4A, firstand last APsina
train during 200 pA current injections for all
three genotypes). In these traces, two components could be identi-
fied, representing a first phase for the axonal spike component, and a
second phase for the somatic spike, with a delay indicating the time
from the initiation at the AIS and the arrival at the soma (Royeck et
al., 2008; Wimmer et al., 2010).

These two phases were also identified in phase plots in which
the first derivation, dV/dt, is plotted versus voltage (Fig. 4B, as-
terisks). Phase plots of the last APs showed a strong alteration in
the portion of the phase plot with a less abrupt initiation phase
(green asterisk) in heterozygous and homozygous mice com-
pared with phase plots of the first spike (Fig. 4B). This initiation
phase in the AIS can also be quantified as a maximum of the
d®V/dt>. Indeed, when the magnitude of the first peak in the
d?V/dt? was measured for the first and last AP in a train of APs,
there was a significant decrease in membrane potential accelera-
tion for both heterozygous and homozygous mice (WT mice:
first, 1203 = 201; last, 1136 = 299; n = 15; Scnla®™'™" mice: first,
1058 =+ 215; last, 487 * 80; n = 14; Scnla™™"*" mice: first, 628 +
63; last, 375 = 82; n = 8). One-way ANOVA with multiple com-
parisons with the WT group serving as a control (Dunnett’s
method and t test for analysis within the same genotype; Fig. 4C,
left axis). Also, the second peak was smaller in mutant animals,
but there was no significant change from the first to the last AP in
a train (Fig. 4C, right axis). Additionally, the latency was pro-
longed between the first spike (AIS initiation) and the second
peak (somatic invasion) for both heterozygous and homozygous
animals, which could be due to both a slower propagation or a
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shift in the spike initiation site (WT mice:
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these data suggest that the R1648H muta-
tion specifically causes a dysfunction of Figure 4.  Analysis of AP initiation. A, Representative traces of first (top block) and last (bottom block) spikes (top traces) and
the AIS and spike initiation in GABAergic  their corresponding first (middle trace) and second (bottom trace) derivations of hippocampal FS inhibitory neurons of WT,
interneurons. Sen1a™/*, and Scna ™" mice (CA1 stratum oriens). Black dotted lines illustrate the delay between the first (axonal) and the

Recordings of spontaneous synaptic
activity in thalamic and

cortical neurons

We next examined the postsynaptic ef-
fects of the reduced activity of inhibitory

second (somatic) peaks; gray dotted lines illustrate the increased delay between the two peaks for the last spike recorded from
mutated animals. B, Representative phase plots of dV/dt vs V/for first (top) and last (bottom) spikes generated from recordings, as
in A. Asterisks mark the beginning of the two phases of action potential initiation in the axon initial segment (green asterisk) and
inthe soma (black asterisk). C, Left, Amplitudes of the first axonal peaks in the second derivation of the first and last occurring spikes
within AP trains, *p << 0.05. Right, Amplitudes of the second somatic peaks in the second derivation of first and last occurring
spikes within AP trains, *p << 0.05. D, Delay between the first (axonal) and second (somatic) peaks of the first and last APs.
One-way ANOVA with multiple comparisons, with the WT group serving as control (Dunnett’s method) and t test for analysis within

neurons. We recorded spontaneous IPSCs
(sIPSCs) in different neurons of the
thalamocortical circuit receiving inhibi-
tory input, namely, in cortical LV pyramidal cells, in GABAergic
nRt neurons inhibiting themselves reciprocally, and in excitatory
thalamocortical relay neurons (Fig. 1A). For all three subtypes,
we found significantly reduced frequencies of sIPSCs in heterozy-
gous compared with WT animals (cortical pyramidal neurons:
WT mice, 9.7 * 0.3 Hz, n = 5; Scnla™" " mice, 6.7 + 0.5Hz, n =
10; p < 0.05; nRt neurons: WT mice, 2.7 = 0.5 Hz, n = 10;
Scn1a™" mice, 1.6 = 0.3 Hz, n = 10; p < 0.05; relay neurons:
WT mice, 10.5 = 2.3 Hz, n = 12; Senla™™"'" mice, 5.1 = 1.1 Hz,
n = 12; p < 0.05, Mann—Whitney test; Fig. 5A-F ), whereas the
amplitudes were similar (cortical pyramidal neurons: WT mice,
—64.7 £ 7.5pA, n = 5;Scnla™™"" mice, —58.5 = 2.0 pA, n = 10;
nRtneurons: WT mice, —56.9 + 3.6 pA, n = 10; Scnla™™* mice,
—53.0 = 3.6 pA, n = 10; relay neurons: WT mice, 38.8 = 5.6 pA,
n = 12; Scnla®"* mice, 32.6 = 3.6 pA, n = 12; Mann—Whitney
test). When APs were blocked by 1 um tetrodotoxin (TTX) ap-
plication to record miniature IPSCs (mIPSCs), there was no lon-
ger a difference between nRt neurons of WT and Scn1a™™* mice
(nRt neurons: WT mice: frequency, 2.5 = 0.4 Hz; amplitude,
—42.8*52pA,n=2_8; Scnla™V* mice: frequency, 2.6 = 0.5 Hz;
amplitude, —47.7 = 2.2 pA; n = 9; VB neurons: WT mice: fre-
quency, 3.44 *= 0.67 Hz; amplitude, —24.7 £ 4.1 pA; n = 10;
Scnla®™Y™" mice: frequency, 2.7 = 0.5 Hz; amplitude, —17.4 *
0.9 pA; n = 9; Mann—Whitney rank-sum test). This clearly

the same genotype. WT mice, white, n = 15; ScnTa

RH+ mice, gray, n = 14; ScnTa "™ mice, red, n = 8.

indicates a normal number of functional GABAergic synapses
and an intact release machinery, and points toward a firing
deficit of inhibitory neurons with a failure of orthodromic
action potential propagation along the axons as the major
source of reduced GABAergic activity.

Synaptic GABA release activates synaptic as well as extrasyn-
aptic GABA receptors, which gives rise to a tonic GABA-
mediated current. This current is prominent in thalamocortical
VB neurons (Jia et al., 2005) and is enhanced in several animal
models of absence epilepsy (Cope et al., 2009). Both WT and
heterozygous mice showed typical tonic inhibitory currents,
which could be blocked by picrotoxin (Fig. 5G), but the magni-
tude of the tonic GABA current was significantly reduced in
heterozygous mice compared with control mice (WT mice:
0.51 = 0.11 pA/pF, n = 9 neurons in 9 slices; Scn1a®™"* mice:
0.18 = 0.03 pA/pF, n = 7 neurons in 7 slices, p < 0.01; Fig. 5H).

Assessment of spontaneous network activity

To determine how mutant Nay 1.1 channels affect neuronal net-
work activity, we applied three different techniques. As a first
screening experiment, we used primary hippocampal cultures
from WT and heterozygous animals, and plated them on 60-
channel MEAs. Neuronal activities were illustrated using spike
raster plots, in which spikes recorded on each electrode are plot-
ted over time (Fig. 6A). In contrast to cultures derived from WT
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recorded from cortical pyramidal neurons (layer V; A), nRt neurons (), and thalamic relay
neurons (E) in thalamocortical slices from WT (top traces) and Scna ™™ (bottom traces)
animals. Membrane voltage clamped to —70 mV. Right, Superimposed average sIPSCs from
WT (cortex, n = 821 sIPSCS; nRt, n = 219 sIPSCs) and Scna ™' animals (cortex, n = 519
sIPSCs; nRt, n = 173 sIPSCs). B, D, F, The sIPSC frequency as recorded in A, G, and E was reduced
for Scn1a™™ animals in all three neuronal subtypes. Cortical pyramidal neurons (B): WT mice,
n=5;Sn1a™* mice,n = 10;nRtneurons (): WT mice,n = 10; ScnTa™* mice, n = 10; relay
neurons (F): WT mice,n = 12; Scn1a®™+ mice,n =12;*p < 0.05; Mann-Whitney test. G, Whole-
cell patch-clamp recordings of tonic GABA-sensitive current in thalamic relay neurons from a WT (top)
and a heterozygous animal (bottom). Tonic inhibition could be blocked by application of the GABA
receptor blocker picrotoxin (PTX). H, Current density (pA/pF) was significantly decreased in neurons of
Sen1a®™* animals: WT mice, n = 9; Scn1a™* mice,n = 7,**p << 0.01, Student’s ¢ test.

mice, cultures from heterozygous animals showed intermittent
periods of low activity, interspersed with long periods of highly
synchronous activity (Fig. 6A, blue boxes indicating population
bursts). This could be quantified as an increased intraburst spike
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frequency (Fig. 6B, PER of population bursts), a reduced number
of bursts (Fig. 6C) with a longer duration (Fig. 6D), and longer
interburst intervals (Fig. 6E). However, the relative number of
spikes occurring within or outside a population burst was similar
between cultures from WT and heterozygous animals (WT mice:
96.3 * 0.8%; n = 12; Scnla™™™* mice: 97.2 + 1.3%;n = 9;p =
NS), due to the many short population bursts in cultures from
WT animals. These results thus show an altered organization of
discharges in neurons from mutant animals, with increased oc-
currence of high-frequency, long-lasting synchronized activity.

If these differences between WT and heterozygous animals are
due to a deficit in GABAergic synaptic transmission in the latter
group, then pharmacological inhibition of GABA receptors
should exert larger effects in cultures from WT animals. We
therefore applied the GABA, receptor antagonist bicuculline on
MEAs plated with neurons from WT and heterozygous animals.
Bicuculline application on cultures from WT mice led to signifi-
cant changes in bursting behavior, causing a reorganization of
discharge behavior in the form of higher frequency, fewer burst
periods with increased interburst intervals, but not significantly
longer bursts (Fig. 6A—E). In addition, the percentage of spikes
occurring within population bursts increased significantly with
bicuculline in cultures from WT animals (from 96.3 *= 0.8%
before to 99.7 = 0.1% after bicuculline application; n = 12; p <
0.001). In stark contrast, changes in population bursts from cul-
tures of Scnla™"* animals were much smaller, and not statisti-
cally significant in any of these parameters (Fig. 6B-E; 97.2 =
1.3% of spikes within bursts before bicuculline application;
99.5 = 0.5% spikes within bursts after bicuculline application;
n=29).

To quantify the firing synchrony of the plated neuronal net-
works, we evaluated Cohen’s k statistic across all pairs of active
electrodes. The network activity recorded from cultures of WT
animals showed a 1.8-fold increase of k values upon application
ofbicuculline, indicating a higher synchrony (from 0.38 = 0.05 at
baseline to 0.56 = 0.03 in bicuculline; p < 0.01; n = 12). In
cultures of Scn1a®™™" animals, the k statistic was already 0.51 *
0.04 at baseline without a significant increase in bicuculline
(0.53 = 0.04; n = 9). Using the ratio of k values after and before
bicuculline application, we found that the increase in synchrony
was significantly larger in cultures from WT animals compared
with ones from heterozygous animals (Fig. 6F). Altogether, our
findings indicate that cultures from heterozygous animals show
hyperexcitable networks with increased synchrony compared
with the WT. Since blocking GABA, receptors has significant
effects only in neurons from WT mice, but not in those from
heterozygous mice, these results are consistent with the idea that
increased synchrony in Scnla™"* networks is due to a deficit in
GABAergic synaptic transmission.

Second, we tested the impact of the R1648H mutation on
network activity in acute thalamocortical slices. We recorded ex-
tracellular field potentials in LIV and LV of the neocortical S1
region, in the thalamic VB and nRt. The presence of functional
thalamocortical connections was tested by stimulating the VB
and recording the monosynaptic response in LIV (Agmon and
Connors, 1991), showing no significant differences between
heterozygous and WT mice (Fig. 7A). Paired-pulse stimulations
did not disclose statistically significant differences either (Fig.
7A). However, we found spontaneous discharges in 16 of 17 slices
obtained from heterozygous mice (Fig. 7B), which were observed
in only 5 of 12 slices from WT littermates (Fig. 7C; p = 0.003,
Fisher’s exact test). Multielectrode recordings in cortex and thal-
amus showed simultaneous spontaneous activity spreading in
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Figure6. Network activities of primary neuronal cultures recorded on multielectrode arrays. A, Spike raster plots of all 60 recorded electrodes with spikes represented as “ +" over time of primary
cultures of WT (top) and heterozygous animals (bottom), each shown without (left) and after application of bicuculline (Bic.; 25 wm, right). The y-axis represents the electrode number within an MEA
configuration of 8 X 8 electrodes. Area within red dashed box in spike raster plot of primary culture of a WT animal (top left) and a heterozygous animal (bottom left) is shown enlarged to the right.
Blue boxes highlight examples of population bursts within the different spike raster plots. Note that the spike raster plot of the culture from a heterozygous animal shows a high variability in the
duration of the population bursts. B, Box plots of PFR of population bursts before and after Bic. application for WT (white) and heterozygous animals (gray). WT mice, n = 12; Sen1a™* mice,n =
9; *p << 0.05, ANOVA on ranks. C, Box plots of number of population bursts for cultures from heterozygous (gray) and WT (white) animals. WT mice, n = 12; Scnla RH/ mice,n = 9;%p < 0.05,
*%p < 0,01, ANOVA on ranks. D, Box plots of burst duration for cultures from heterozygous (gray) and WT (white) animals. WT mice, n = 12; Scn7a ™™ mice, n = 9; *p << 0.05, Mann—Whitney

test. E, Box plots of interburst interval for cultures from heterozygous (gray) and WT (white) animals. WT mice, n = 12; Scna ™™ mice, n = 9; *p << 0.05, ANOVA on ranks. F, Box plots of  ratio

25 M Bic/baseline for recordings from cultures of heterozygous (gray) and WT (white) animals. WT mice, n = 12; Scn7a™™ mice, n = 9; *p << 0.05, Mann—Whitney test.

different areas of the thalamocortical loop only in slices from
heterozygous mice (9 of the 16 slices showed spontaneous activity
at all four electrodes; Fig. 7B, E; Table 3). Furthermore, sponta-
neous activities were more frequent in slices from heterozygous
mice compared with WT mice (Fig. 7; Table 3). The area in which
discharges were first generated during simultaneous activity was
variable (Fig. 7B, E; Table 3). In slices from heterozygous mice,
simultaneous activities were larger than nonsimultaneous ones,
with the latter having amplitudes similar to those observed in
slices from WT mice. Few activities in slices from WT mice had
amplitudes comparable to those of simultaneous heterozygous
ones, but they did not spread to other areas (Fig. 7C; Table 3).
Analysis of spontaneous cortical sharp waves showed HFOs in
slices of Scnla®™™"* mice in both the physiological (40—200 Hz)
and the pathological (200—600 Hz) range (Fig. 7 B, D; Table 3). In

contrast, HFOs were hardly seen in slices from WT mice, includ-
ing activities with amplitudes comparable to those seen in slices
of mutant mice (Fig. 7C,D; Table 3).

Third, we studied the network activity of neuronal popula-
tions in the hippocampal CA1 region using multineuron Ca**
imaging in hippocampal slices of WT, heterozygous, and ho-
mozygous animals. Following a bulk-loading technique with the
Ca** indicator OGB-1AM (Fig. 8A), we captured spontaneous
network activity in simultaneous recordings of hundreds of neu-
rons (159 =+ 94 cells per slice; Fig. 8 A, B, examples). Ca*" traces
were converted to raster plots to determine the dynamics of neu-
ronal spiking activity. Figure 8, C and D, shows that the average
spontaneous discharge rate of neurons in the population was
increased in heterozygous and homozygous animals compared
with WT animals (WT mice: 0.0020 = 0.0002 Hz; n = 294 cells;
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Figure7. Field potential recordings of network activity in thalamocortical slices. A, Representative voltage traces of cortical layer IV responses to paired-pulse stimulations of thalamus (VB) with
IPIof 100 ms in slices of ScnTa ™ (left) and Sen7a™™ (right) animals; schematic shows electrode position. The thin red arrow highlights the stimulus artifact; the thick blue arrow highlights the
monosynaptic response. Maximum amplitude: 2.7 = 0.6 mV (n = 12) for Scn7a™/* mice; 3.4 = 0.7mV (n = 17) for Scn1a™ " mice. Half-width: 3.1 = 0.5 ms (n = 12) for WT mice; 3.8 = 0.7
ms (n = 17)for Scn1a ™™ mice. Coastline index: 13.68 = 0.52 (n = 12) for Scn1a ™" mice; 14.55 = 0.94 (n = 17) for Scn7a™ ™ mice. Paired-pulse ratio computed using maximum amplitudes:
50ms IPI:0.80 == 0.12 (n = 5) for Scnla™™ mice; 0.91 = 0.09 (n = 5) for Sena™* mice; 100 msIPI: 0.85 = 0.19 (n = 5) for ScnTa ™+ mice; 0.91 = 0.09 (n = 5) for Scn1a™ ™ mice; 150
ms IP1:0.74 = 0.03 (n = 5) for Scna™* mice; 0.77 = 0.16 (n = 5) for Scn1a™* mice; 200 ms IP1:0.71 == 0.05 (n = 5) for ScnTa ™™ mice; 0.78 = 0.15 (n = 5) Scna ™+ mice. Paired-pulse
ratio computed using coastline index: 50 ms IPI: 118 = 0.07 (n = 5) for ScnTa™/* mice; 1.05 = 0.14 (n = 5) for Scn7a™ ™+ mice; 100 ms IPI: 1.48 =+ 0.13 (n = 5) for Scnla™™" mice; 1.49 +
0.18 (n = 5) for Scn 1™ mice; 150 msIPI: 119 = 0.12 (n = 5) for ScnTa™* mice; 1.16 == 0.20 (n = 5) for Scn7a™ ™ mice; 200 ms IPI: 1.62 == 0.18 (n = 5) for ScnTa™ ™ mice; 1.41 £ 031
(n = 5)for Sen1a™* mice. Calibration: 1 mV, 25 ms. B, C, Representative voltage traces of spontaneous extracellular activity in slices of Scn7a™* (B) and Scn7a™/™* (€) animals recorded in
cortical layers IV and V, thalamic VB, and nRt. Placement of the recording electrodes is shown in the schematic on the left (Cl, capsula interna). Middle traces, Time expansions of the trace segments
outlined by the dotted box in the left traces, showing that in this slice (B, Scn7a™ ) simultaneous activities began in cortical layers (vertical dashed line; see E for activities of thalamic origin). Right
traces, Cortical sharp waves outlined by the dotted box in the middle traces and the corresponding 40 —200 and 200 — 600 Hz HFOs, which were hardly observed in WT mice. Calibration: left traces,
900 .V, 1.1s; middle traces, 900 1.V, 500 ms; right traces, 200 1V, 100 ms. D, Absolute areas of HFOs in the 40 —200 and 200 — 600 Hz ranges. HFOs were noise subtracted and normalized to the
area of the corresponding sharp wave (see Materials and Methods). E, Simultaneous recordings in the cortical layer IV (top) and the VB (bottom) of slices from Scn7a™™ animals displaying
spontaneous activities. Left traces, Synchronous activities with thalamic origin; middle traces, activity generated in cortex without spread to thalamus; right traces, activity generated in thalamus without spread
to cortex. Calibration: top left and middle traces, 500 1.V, 250 ms; top right trace, 100 .V, 250 ms; bottom left trace, 150 iV, 250 ms; bottom middle and right traces, 50 .V, 250 ms.
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Table 3. Properties of spontaneous extracellular field potential activities in
thalamocortical slices

RH/+

WT mice n  Snla mice n

17 slices
0.52 = 0.08 min ~™* 139
0.65 = 0.13min ~™* 137

12 slices
0.16 == 0.08 min ~' 21
0.14 =011 min " 11

Spontaneous total activity
Frequency, cortex LIV
Frequency, thalamus VB

Nonsimultaneous activities
(mV)
Amplitude, cortex LIV 0.26 = 0.03 0.28 = 0.04
Amplitude, thalamus VB 0.11 £ 0.01 0.09 = 0.01

Simultaneous corticothalamic
activities 86

Cortical generation (%) 29.1%
Thalamic generation (%) 32.6%
Unclear (%) 39.5%
Amplitude, cortex LIV
(mV) 1.24 = 0.06**¢
Amplitude, thalamus VB
(mV) 0.21 = 0.05%%°
Cortical HFOs 40 -200 Hz 21 100
Absolute area (mV/ms) 1204 30.6 = 1.8**
Normalized absolute area”  0.011 % 0.005 0.058 = 0.003**
Cortical HFOs 200 — 600 Hz 21 100
Absolute area (mV/ms) 0.51 £ 0.17 7.25 £ 0.47%*
Normalized absolute area”  0.003 + 0.002 0.017 = 0.001**

Data are presented as means == SEM. n, Number of analyzed activities.

“In comparison to layer IV non-simultaneous activities (Wilcoxon signed rank test).

®In comparison to thalamic VB non-simultaneous activities (Wilcoxon signed rank test).
“Noise in absolute area subtracted from HFOs absolute area (see Materials and Methods).

“HFO absolute area noise subtracted normalized to the absolute area of the spontaneous activity (0.1 Hz—1 kHz
filtered; see Materials and Methods).

*p < 0.05and **p < 0.001, Mann—Whitney rank-sum test or, when noted, Wilcoxon signed rank test.

Senla™"* mice: 0.0117 % 0.0007 Hz; n = 1502 cells; Scnla """
mice: 0.0139 = 0.0008 Hz; n = 640 cells; p < 0.05, one-way
ANOVA with multiple comparisons, with the WT group serving
as the control (Dunnett’s method; Fig. 8D). Evaluation of firing
frequencies summarized from all recorded cells and plotted in a
double logarithmic histogram revealed frequencies >0.01 Hz in
heterozygous and homozygous mice (Fig. 8C, gray and red lines),
which was not observed in WT mice (Fig. 8C, black line). Alto-
gether, these findings demonstrate that neuronal networks in
different brain areas are spontaneously more active in mutant
mice compared with WT mice.

Discussion

We here performed a comprehensive neurophysiological analysis
of an epilepsy-causing Na, 1.1 mutation in different brain regions
of a gene-targeted mouse model. This model recapitulates the
human GEFS+ phenotype, showing spontaneous generalized
seizures and a reduced threshold to thermally induced seizures
(Martin et al., 2010). Recordings from mutant mice compared
with WT mice at P14—P20 revealed that the mutation reduces
firing in all studied inhibitory interneurons, but did not affect the
examined excitatory neurons. These results show that at this age
Nay 1.1 is a major Na™ channel of interneurons but does not
contribute to AP firing in excitatory neurons. This corresponds
to previous immunohistochemical studies (Ogiwara et al., 2007),
recordings from dissociated neurons (Yu et al., 2006; Mistry etal.,
2014), and preferential inactivation of Nay1.1 in hippocampal
and cortical parvalbumin-positive interneurons causing sponta-
neous seizures, in contrast to Nay,1.1 knockout in pyramidal cells
(Dutton et al., 2012). Even though recent studies suggest a mod-
ifying protective role of Nay 1.1 in glutamatergic neurons (Ogi-
wara et al., 2013) and increased Na™ current density in
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dissociated pyramidal neurons at older ages (Mistry et al., 2014),
our data suggest that interneurons in this model play a crucial
role for epileptogenesis, even though there might be additional
factors sustaining the epileptic state.

Relevant biophysical defect and involved

neuronal compartments

Studies in heterologous expression systems have revealed both
loss-of-function and gain-of-function mechanisms for this mu-
tation (Alekov et al., 2000; Spampanato et al., 2001; Lossin et al.,
2002). Our analysis of the human Na, 1.1 mutation in tsA201
cells reveals the following three loss-of-function defects, which
could explain the observed reduced firing: (1) a small but signif-
icant change in the slope of the fast steady-state inactivation
curve; (2) probably most importantly, an enhanced slow inacti-
vation; and (3) a reduced current density.

However, we did not find significant differences between WT
and mutant animals in channel gating and in the persistent Na *
current in interneurons, in contrast with the differences observed
in tsA201 cells. Although the biophysical properties of Na * chan-
nels in neurons may differ from those in tsA201 cells and between
species (mouse vs human), the observed changes in neuronal
firing are difficult to explain on the basis of our neuronal Na ™
channel recordings. Rather, they suggest that the somatic channel
population in nucleated patches does not fully represent mutated
loss-of-function channels and that other Na™ channels might
carry a major part of the current. For example, Nay1.6 is ex-
pressed in hippocampal interneurons (Van Wart et al., 2007;
Lorincz and Nusser, 2008; Mistry et al., 2014), and Na, 1.3 may be
compensatorily upregulated (Yu et al., 2006). Most of the func-
tionally relevant Nay 1.1 channels may in fact reside in the AIS
and along whole axons where Na™ channels are concentrated
(Rasband, 2010; Hu and Jonas, 2014). Accordingly, our data in-
dicated a mainly axonal dysfunction increasing with prolonged
AP series in GABAergic neurons. This could be explained by
enhanced slow inactivation of mutated Na™ channels (as re-
corded in tsA201 cells), reducing the number of available chan-
nels with prolonged firing. The longer latencies between spike
initiation and somatic invasion could be due to impaired propa-
gation or a shift of the spike initiation site. Our results thus sug-
gest that the inhibitory AIS (or whole axon according to Hu and
Jonas, 2014) is the major site of Nay/ 1.1 channel dysfunction in
our model, and that enhanced slow inactivation represents the
most important gating defect of R1648H mutant channels.

R1648H causes a reduction of inhibitory inputs

GABAergic inhibition controls neuronal excitability and a reduc-
tion in inhibition plays an important pathophysiological role in
genetic and acquired epilepsies (Redecker et al., 2000; Reid et al.,
2009; Ben-Ariand Dudek, 2010). Assessing the impact of reduced
firing of inhibitory neurons on postsynaptic neurons and net-
work dysfunction, our recordings of sIPSCs demonstrate that
reduced AP firing of interneurons indeed translates into reduced
GABAergic synaptic activity by failure of AP propagation from
the AIS to the synaptic terminals in mutant animals compared
with WT animals. The synaptic release machinery, however, was
unaffected, as revealed by normal mIPSCs in the presence of
TTX. Additionally, we found a decreased tonic inhibition medi-
ated by activation of GABA , receptors located outside the synap-
tic cleft, which can be explained by a reduced spontaneous GABA
spillover from presynaptic terminals. Interestingly, tonic inhibi-
tion is increased in several rodent models of absence epilepsy
(Cope et al., 2009), which is consistent with a different mecha-
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Figure 8.

Multineuron Ca2* imaging in the hippocampal CA1 region. 4, Samples of slices loaded with the Ca™ dye 0GB-1-AM of WT (top) and Scn7a™" ™" (bottom) animals. Active cells filled

with 0GB-1-AM are marked in green, inactive cells filled with the dye are marked in white. B, Ca™ transients of 20 representative spontaneously active cells recorded in the slices shownin 4. C,
Double logarithmic histogram showing the binned frequency of Ca* spikes normalized to the overall number of active cells (bin width at 0.001 Hz). Note that for slices from WT animals (black),
spike frequencies of >0.01 Hz were absent, but that higher frequencies were frequently seen for mutant animals (gray and red). Dashed lines represent the maximum frequencies observed in slices
of WT (black), Scn7a™ ™ (gray), and Scn7a™ ™ (red) animals. D, Logarithmic presentation of Ca ™ spike frequency as box plots plotted for all three genotypes (WT mice, 294 cells; Scn7a™* mice,
1502 cells; Scn 7™ mice, 640 cells). Box-and-whisker plots show medians (lines), means (square), lower and upper quartiles, 5% and 95%; percentiles represent the minimum and maximum.

p <<0.05, ANOVA on ranks.

nism of thalamocortical hyperexcitability in Scrnla ™" mice. Al-
though resting membrane potentials in VB neurons were normal,
this tonic disinhibition can destabilize the membrane potential,
thereby contributing to the shift between different firing modes
(tonic vs bursting). Our results thus suggest that a combination
of reduced phasic and tonic inhibition contributes to a loss of
inhibitory control of neuronal networks, triggering seizures in
our mouse model.

Impaired network activity in mutant mice

Our simplified model using cultured neurons on MEAs revealed
that the presynaptic SCNIA defect affecting fast-spiking in-
terneurons alters the firing behavior of the network. Further-
more, the missing effect of blocking GABA 4 receptors in cultures
from mutant mice is consistent with the disinhibition caused by
the mutation. Other types of interneurons not studied here, like
somatostatin-positive neurons regulating the gain of pyramidal
cell input—output transformations (Lovett-Barron et al., 2012),
could also be involved in causing this firing pattern. Further as-
sessment of neuronal network activity in native brains revealed a
widespread spontaneous hyperexcitability. Using multineuron
Ca’* imaging, we found an increased frequency of the spontane-
ous activity of single neurons in the CA1 pyramidal cell layer in
mutant compared with WT mice. Multielectrode recordings re-
vealed frequent spontaneous activity that spreads in the entire
thalamocortical loop and was generated in variable areas, consis-
tent with a generalized hyperexcitability within the loop. More-
over, cortical activity in heterozygous animals was characterized
by the presence of HFOs in both the physiological (40-200 Hz)
and the pathological (200-600 Hz) range not observed in WT
mice. Human and rodent epileptic tissues exhibit pathological
HFOs not found in nonepileptic controls, and HFOs have been
proposed to be a biomarker of epileptic foci (Jefferys et al., 2012).
Hence, the R1648H-induced disinhibition not only generates hy-
perexcitability, but also specific epileptic activity. Notably, partial
block of GABA , receptors can also enhance neocortical and hip-

pocampal pathological HFOs (Jones and Barth, 2002; Behrens et
al.,, 2007) and increase the size of HFO-generating areas (Bragin
et al., 2002).

Proper firing of inhibitory neurons is essential for correct net-
work function. Cortical and hippocampal FS basket cells inner-
vate the perisomatic regions of pyramidal cells, and can phase and
synchronize the activity of large populations of pyramidal cells.
These interneurons thus play an essential role in generating and
maintaining theta- and gamma-frequency oscillations, for which
a rapid system like phasic GABA, receptor activation is essential
to synchronize at high frequencies (Buzséki and Chrobak, 1995;
Cobb et al., 1995). Basket cell maturation is involved in the de-
velopment of synchronous oscillations, and an impairment of
GABAergic interneurons during development can cause neuro-
logical disorders like autism, seizures, or schizophrenia (Le Ma-
gueresse and Monyer, 2013). The R1648H mutation may
therefore also cause developmental alterations, which could con-
tribute to seizure generation, although this effect should be lim-
ited to late developmental phases, since Nay 1.1 expression begins
at approximately P10 (Ogiwara et al., 2007). Additionally, it has
been proposed that dendritic properties of different interneuron
subtypes (low Na™ channel density in FS basket cells and high
Na™ channel density in somatostatin-positive interneurons)
could be involved in setting their differential activity in a neuro-
nal network (Martina et al., 2000; Hu et al., 2010). Alterations in
dendritic Nay 1.1 channels in different interneuron types could
additionally impact the activity and synchronization of neuronal
networks.

In the thalamic nRt, a disturbance of the inhibitory neurons is
involved in spike-and-wave discharges during generalized ab-
sence seizures (Danober et al., 1998). Likewise, a reduction of
GABA, receptor-mediated inhibition in reticular neurons (by
knockout of the GABA, receptor ;-subunit or modification of
benzodiazepine binding to the a;-subunit) leads to pathological
synchronization of thalamocortical oscillations, as seen in ab-
sence seizures (Huntsman et al., 1999; Christian et al., 2013). Our
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observed disinhibition can thus disturb the synchronization and
function of whole networks and can explain the generation of
epileptic seizures.

The variability in seizure types occurring with mutations in
the same gene is particularly high in GEFS+ including febrile and
afebrile generalized tonic—clonic seizures, absences, and even fo-
cal seizures originating from the temporal lobe (Scheffer and
Berkovic, 1997; Weber and Lerche, 2008; Marini and Mante-
gazza, 2010). Specifically, individuals carrying the R1648H mu-
tation exhibited febrile, afebrile generalized tonic—clonic and
absence seizures (Baulac et al., 1999). Many circumstances may
contribute to the phenotypic variability, including genetic mod-
ifiers and environmental factors (Glasscock et al., 2007; Martin et
al., 2007). The widespread functional alterations we observed
here may be a prerequisite for this phenomenon.
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