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Brief Communications

Constrained by Our Connections: White Matter’s Key Role in
Interindividual Variability in Visual Working Memory
Capacity
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Visual working memory (VWM) plays an essential role in many perceptual and higher-order cognitive processes. Despite its reliance on
abroad network of brain regions, VWM has a capacity limited to a few objects. This capacity varies substantially across individuals and
relates closely to measures of overall cognitive function (Luck and Vogel, 2013). The mechanisms underlying these properties are not
completely understood, although the amplitude of neural signal oscillations (Vogel and Machizawa, 2004) and brain activation in specific
cortical regions (Todd and Marois, 2004) have been implicated. Variability in VWM performance may also reflect variability in white
matter structural properties. However, data based primarily on diffusion tensor imaging approaches remain inconclusive. Here, we
investigate the relationship between white matter and VWM capacity in human subjects using an advanced diffusion imaging technique,
diffusion kurtosis imaging. Diffusion kurtosis imaging provides several novel quantitative white mater metrics, among them the axonal
water fraction ( f,,,,), an index of axonal density and caliber. Our results show that 59% of individual variability in VWM capacity may be
explained by variations in f, ., within a widely distributed network of white matter tracts. Increased f,,,,, associates with increased VWM
capacity. An additional 12% in VWM capacity variance may be explained by diffusion properties of the extra-axonal space. These data
demonstrate, for the first time, the key role of white matter in limiting VWM capacity in the healthy adult brain and suggest that white
matter may represent an important therapeutic target in disorders of impaired VWM and cognition.
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Introduction

Visual working memory (VWM; i.e., the short-term storage of
visual information) is supported by a distributed neural system,
which in humans includes occipital, prefrontal, parietal, and
temporal areas (Ungerleider et al., 1998). Functional imaging has
been extensively used to identify the cortical areas involved in
VWM (Ungerleider et al., 1998; Zimmer et al., 2010). The rela-
tionship between VWM and the white matter pathways intercon-
necting the VWM network nodes has also been studied primarily
using diffusion tensor imaging (DTI). DTI measures, such as
fractional anisotropy (FA), quantify water molecules’ micro-
scopic diffusion and reflect a variety of microstructural features,
among them the degree of myelination and fiber density and
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coherence. Most DTI studies examining the relationship between
white matter and working memory (visual or verbal) have fo-
cused on pathological groups, such as patients with schizophre-
nia (Hanlon et al., 2012) or multiple sclerosis (Yu et al., 2012),
pathological processes such as aging (Davis et al., 2009), or on
early brain development (Klingberg, 2006; Vestergaard et al.,
2011; Short et al., 2013; Peters et al., 2014). In healthy adults,
modest relationships have been reported between FA and verbal
working memory (Karlsgodt et al., 2008; Takeuchi et al., 2011).
A potential limitation of these studies was the use of DTI
metrics, which, although highly sensitive to pathological pro-
cesses, may lack specificity (Walker et al., 2012). Thus, we have
used a recently proposed two-compartment model of white mat-
ter (Fieremans et al., 2011), based on diffusion kurtosis imaging
(DKI), which separates the magnetic resonance signal contribu-
tion from intra- and extra-axonal white matter compartments.
Several metrics can be obtained using this approach: (1) the ax-
onal water fraction ( f,,,,), which describes the volume of the
intra-axonal water relative to the total intra- and extra-axonal
volume and relates to axonal density and caliber (Barazany et al.,
2009; De Santis et al., 2012); (2) the intra-axonal diffusivity
(D 4x0n)> Which describes water diffusion within axons, primarily
along the axonal axis, and thus reflects microstructural features,
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such as the size, number, and organization of intra-axonal struc-
tures; and (3) the extra-axonal axial (AD,,,,,) and radial (RD.,,,,)
diffusivities, which reflect the overall microstructural organiza-
tion of the extra-axonal space. Recent work has shown that these
metrics are sensitive to white matter characteristics that are not
described by typical DTI metrics, such as differences in axonal
density and caliber in autism (Lazar et al., 2014) and progression
from mild cognitive impairment to Alzheimer’s disease (Fiere-
mans et al., 2013).

Because kurtosis metrics are more specific to several white
matter features that are only indirectly reflected by typical DTI
parameters, we hypothesized that they may provide better bio-
markers of the relationship between white matter microstructure
and physiological markers, such as VWM capacity. Thus, we used
a white matter-based voxelwise approach, tract-based spatial sta-
tistics (TBSS) (Smith et al., 2006), to investigate correlations be-
tween DKI white matter metrics and VWM capacity in a group of
19 healthy male adult participants. The relationship between
VWM capacity and DTI-based metrics was also examined.

Materials and Methods

Participants. Data were acquired from male right-handed healthy con-
trols 3055 years of age using a protocol approved by our Institutional
Review Board. Our age range was selected to minimize the effects of
development or aging. Participants were recruited by advertising in the
community and through ResearchMatch and Craigslist websites. All par-
ticipants provided informed consent and participated in a series of cog-
nitive assessments, including VWM. None of the participants revealed a
history of brain disorders or head trauma, a history of alcohol or sub-
stance abuse in the past 6 months, or substance-induced psychotic dis-
order or psychotic disorder due to a general medical condition as
determined by DSM-IV criteria. The Structured Clinical Interview for
DSM-IV Non-Patient Edition (First et al., 2002) was used to assess the
potential presence of psychiatric symptoms. Clinical neurological exam-
ination of imaging data, performed as part of the typical workflow in our
department, was used to assess the presence of any gross brain abnormal-
ities. Subjects with abnormal imaging findings or those presenting psy-
chiatric symptoms were excluded from the study.

A total of 25 subjects were recruited. Two subjects were excluded
because of the presence of depression or autism diagnoses. Three addi-
tional subjects were excluded because of brain abnormalities on neuro-
radiological examination, including abnormal presence of white matter
hyperintensities and lesions. One subject participated in the neuropsy-
chological testing but failed to participate in the MRI session. The re-
maining 19 participants were included in analyses.

The age of the included subjects varied between 31 and 55 years (42 *
6 years). Length of education varied between 12 and 19 years (15.7 = 1.8
years). Neither education nor the composite global cognitive score (ob-
tained by averaging the z-scores for cognitive assessments) and none of
the VWM metrics correlated with age (p > 0.80).

VWM assessment. VWM capacity was assessed using the Symbol Span
subtest of the Wechsler Memory Scale-Fourth Edition (WMS-IV). In
Symbol Span, participants are shown a series of abstract symbols on a
page for 5 s and then asked to select these symbols from an array of
symbols, in the same order they were presented on the previous page. The
number of symbols is increased from trial to trial. Each successful trial
receives a 2 point score if symbols are remembered in the correct order
and 1 point if all symbols are retrieved, but not in the correct order. The
test is terminated after three unsuccessful trials. Symbol Span is a mea-
sure of VWM capacity as it reflects the longest list of items that a person
can repeat back immediately after presentation.

Image acquisition. Imaging data were acquired on a 3T Trio MRI (Sie-
mens Medical Solutions). Diffusion-weighted images were acquired us-
ing Echo Planar Imaging (EPI) for a total of 64 uniformly distributed
gradient directions and for two b values (b = 1000 and 2000 s/mm *). Ten
nonweighted diffusion images (b = 0 s/mm?) were also collected. A field
map image coplanar to the diffusion acquisition was acquired using a
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pair of non-EPI gradient echo images at two echo times and used to
correct for image distortions from B0 field inhomogeneities.

Image processing. Postacquisition processing was performed with lo-
cally developed software and the FSL suite (Jenkinson et al., 2012). Data
preprocessing included the following: (1) visual inspection of all images
for quality assessment with elimination of any artifactual images; (2)
coregistration of diffusion images using the FSL Flirt utility; and (3)
correction for B0 field inhomogeneities distortion using the acquired
field map data and FSL.

After data correction, diffusion and kurtosis tensors were estimated
using a constrained linear least square approach (Tabesh et al., 2011).
The encoding gradients’ matrix was adjusted to compensate for the effect
of image rotation from the motion correction step. The diffusion and
kurtosis tensors were used to derive 3D maps of f,,..,.» D axom AD rsre a0d
RD.,,,,,- Diffusion tensor data were used to derive the DTI metrics FA
and axial (AD) and radial (RD) diffusivity at each brain voxel.

TBSS. Voxelwise analyses were conducted using TBSS (Smith et al.,
2006). First, individual FA images of all subjects were aligned to an MNI-
152 template using nonlinear registration. Then, a mean FA image was
created; a threshold of FA > 0.2 generated an FA skeleton that represents
tracts common to all subjects. Individual parametric maps were then
projected onto the mean FA skeleton by looking for maximum local
values perpendicular to the skeleton. Statistical tests were conducted
using the permutation-based nonparametric analysis routine Random-
ize (Jenkinson et al., 2012) with 5000 iterations. Correlations (positive
and negative) were computed to examine the association between each of
the diffusion parameters with the Symbol Span Raw Score. As age may
influence both microstructural properties and Symbol Span, it was used
as a covariate in all analyses to assess relationships between VWM capac-
ity and white matter microstructure independent of potential codepen-
dence on age. Primary analyses focused on f, .., Daxorr ADpxerer and
RD,,,,, metrics. Secondary analyses focused on FA, RD, and AD. Corre-
lations were considered significant when p < 0.05, corrected for multiple
comparisons using Threshold Free Cluster Enhancement (Smith and
Nichols, 2009).

ROI analyses. ROIs were obtained for the whole white matter and for
tract-specific regions. As we were interested in intrinsic tract properties,
we chose to focus on white matter regions of high anisotropy as these
regions are less affected by fiber crossings and partial volume averaging.
Neither DTT nor DKI white matter metrics adequately describes the in-
dividual fiber properties in regions where more than one fiber popula-
tion is present in the same voxel. To account for this limitation, the
following approximations were made: (1) regions of high linear anisot-
ropy primarily contain single-fiber populations and thus better reflect
intrinsic tract microstructure; (2) white matter skeleton regions are less
affected by partial volume averaging with adjacent tracts or gray matter
regions; and (3) high anisotropy white matter skeleton regions are rep-
resentative of the overall intrinsic tract properties. Thus, ROIs were lim-
ited to white matter skeleton areas with linear anisotropy metric, ¢
(Westin et al., 2002) larger than 0.4. Linear anisotropy was selected for
determining the threshold in these analyses as it is larger for prolate
tensors, which are more likely to reflect single-fiber populations. Tract-
specific masks were generated using the Johns Hopkins University tract
atlas overlaid onto the white matter skeleton regions with ¢, > 0.4. A
global white matter mask was also obtained by selecting all skeleton areas
that met the same linear anisotropy criterion. DKI and DTI metrics for
these ROIs were obtained by averaging all skeleton values covered by the
masks.

In a firstapproach, global- and tract-specific white matter associations
with VWM capacity were assessed using two-tailed partial Pearson cor-
relations using age as a covariate. In a second approach, we tested for tract
specific associations using two-stage hierarchical multiple linear regres-
sion that used Symbol Span as the dependent variable, with age and
global white matter value entered as control predictors in the first stage
and tract-specific metrics entered as predictors of interest in the second
stage. This approach was chosen to identify tract-specific contributions
to VWM capacity above global white matter contributions and indepen-
dent of age. As microstructural properties are highly correlated among
various white matter structures (Wahl et al., 2010), only representative
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a, White matter skeleton regions with f,,,, significantly correlated to the Symbol Span Raw Score: the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF),

cingulum bundle (CB), optic radiation (OR), inferior occipitofrontal fasciculus (I0F), anterior (ALIC) and posterior (PLIC) limbs of the internal capsule, the uncinate fasciculus (UF), and the genu (GCC),
body (BCC), and splenium (SCC) of corpus callosum. These areas (orange shades) are overlaid over the white matter skeleton (green) and anatomical T1-weighted brain images. Age was used as a
covariatein these analyses. b— e, Plots depicting the partial correlations between Symbol Span and mean tract £,,.,,, are shown for the right cingulum bundle (), leftinferior occipitofrontal fasciculus
(c), leftinferior longitudinal fasciculus (d), and left superior longitudinal fasciculus (e). To control for age, residuals of Symbol Span and mean tract f,, ., regression with respect to age are plotted.

tracts were included in the regression analysis to minimize overfitting
from highly correlated predictors. Tract selection was performed as fol-
lows. First, hierarchical clustering was used to determine groups of tracts
with similar properties. Second, forward variable selection was used to
identify the best predictors within each group. Hierarchical multiple
regression was performed for each of the examined metrics. As different
metrics reflect at least in part different white matter properties that may
each contribute independently to behavioral performance, a final model
was constructed that included contributions from multiple DKI and DTI
metrics. Forward selection was used to test whether either global- or
tract-specific values of these metrics improved prediction of VWM ca-
pacity beyond single metric contributions. Correlations were considered
significant if p < 0.01 to account for multiple comparisons. Statistical
analyses were conducted using SPSS Statistics for Windows, Version 21.0
(IBM).

Results

TBSS analyses

Voxelwise TBSS results show that VWM capacity positively cor-
relates with £, in a wide array of white matter tracts (Fig. 1a).
These tracts include two prominent pathways of the ventral and
dorsal streams, the inferior and superior longitudinal fasciculi,
and the optic radiations and posterior thalamus, which are
known to play important roles in visual processes. Additionally,
fuxon Of major tracts connecting the prefrontal cortex with the
occipital, parietal, and temporal lobes (inferior occipitofrontal
fasciculi, cingulum bundles, and uncinate fasciculi) was found to
correlate to VWM capacity, which may reflect the key role of the
prefrontal cortex in VWM processes. Corpus callosum, another
structure prominently highlighted in the correlational maps, un-
derlies the integration of visual information across the right and
left visual fields. Aside from f,,,,,, none of the other investigated
metrics, whether DTI or DKI based, correlated significantly with
VWM capacity in any brain region in TBSS analyses after ac-
counting for multiple comparisons.

ROI analyses

ROI analyses were consistent with the TBSS analyses, with f,.,,
the only metric correlated with VMW capacity globally (p < 0.05;
Table 1); however, correlations with global AD,,,,, were also ob-
served at trend level (p = 0.057). VWM capacity correlated sig-
nificantly with f,,,, of right cingulum and left superior and
inferior longitudinal fasciculi, D,,,,, of left inferior longitudinal
fasciculus, and AD.,,,,, of right cingulum. Scatter plots depicting
several tract-specific associations between VWM capacity and
foxon are presented in Figure 1b—e. Individual tract correlations of
the different DTI and DKI diffusion metrics with VWM capacity
are presented in Table 1.

Multiple regression analyses were used to assess the relative
contributions of age and global- and tract-specific f,,,,, values
in predicting VWM capacity. The f,.,,-based hierarchical
clustering of the white matter tracts selected four major clus-
ters, with the first three clusters, including the following: (1)
left inferior occipitofrontal fasciculus, anterior thalamic radi-
ations, and genu of corpus callosum; (2) right inferior occip-
itofrontal fasciculus, right and left inferior longitudinal
fasciculi, and splenium of the corpus callosum; and (3) supe-
rior longitudinal fasciculi and cingulum bundles (superior
segment). A fourth cluster included the corticospinal tracts,
parahippocampal cingulum bundles, and uncinate fasciculi.
The multistep linear regression model identified f,,,,, values of
representative tracts from the first three clusters (the right
cingulum, left inferior longitudinal fasciculus, and left inferior
occipitofrontal fasciculus) as optimal predictors of VWM ca-
pacity controlling for age and global f,,,, (Table 2). Among
these predictors, the individual tracts were the only ones with
significant contributions (p < 0.01), with global value not
contributing significantly to predicting VWM capacity (Table
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Table 1. Global- and tract-specific associations between Symbol Span Raw Score and diffusion metrics obtained using partial correlations that controlled for age”

Tract fovon Dovon RD,ira ADpyira FA RD AD
Global white matter 0.544* (0.019) 0.389 (0.111) 0.242 (0.334) 0.456 (0.057) 0.192 (0.446) —0.155 (0.540) 0.064 (0.801)
Left cingulum 0.542* (0.020) 0.385 (0.115) 0.264 (0.290) 0.555* (0.017) 0.362 (0.139) —0.211(0.400) 0.511* (0.030)
Right cingulum 0.655** (0.003) 0.501* (0.034) 0.198 (0.432) 0.611** (0.007) 0.470* (0.049) —0.299 (0.229) 0.461 (0.054)
Splenium of corpus callosum 0.538* (0.021) 0.478* (0.045) 0.127 (0.615) 0.374(0.126) 0.161(0.522) —0.095 (0.709) 0.141(0.577)
Genu of corpus callosum 0.347 (0.158) 0.368 (0.133) 0.041(0.872) 0.189 (0.453) 0.082 (0.748) —0.125 (0.620) —0.094 (0.710)
Left inferior longitudinal fasciculus 0.613** (0.007) 0.594** (0.009) 0.302 (0.223) 0.474* (0.047) 0.249 (0.319) —0.062 (0.805) 0.293 (0.238)
Left inferior occipitofrontal fasciculus 0.559* (0.018) 0.477* (0.045) 0.326 (0.187) 0.456 (0.057) 0.137 (0.589) —0.013 (0.960) 0.293 (0.239)
Left superior longitudinal fasciculus 0.616** (0.006) 0.471* (0.049) 0.326 (0.187) 0.379(0.121) 0.184 (0.464) —0.173 (0.493) 0.048 (0.850)
Right superior longitudinal fasciculus 0.484* (0.042) 0.224 (0.371) —0.018 (0.944) 0.174 (0.490) 0.225 (0.369) —0.308 (0.214) —0.113 (0.656)
Left uncinate fasciculus 0.412 (0.089) 0.426 (0.078) 0.322 (0.193) 0.339(0.168) 0.136 (0.589) —0.028 (0.911) 0.476* (0.046)
“p values are listed in parentheses.
*p < 0.05; **p < 0.01 (significant correlations).
Table 2. Regression models describing VWM capacity dependence on age, global- Table 3. Regression models describing VWM capacity dependence on age and
and tract-specificf,,,,, and global AD,,,,, global- and tract-specific FA”
Significance Significance Adjusted R? Significance Significance Adjusted R?
Model Predictors (predictors) (full model) (full model) Model Predictors (predictors) (full model) (full model)
1 Age 0.567 0.046 0.234 1 Age 0.562 0.571 —0.049
foxon (global) 0.019 FA (global) 0.446
2 Age 0.061 0.005 0.565 2 Age 0.628 0.174 0.130
fon (global) 0.732 FA (global) 0.449
fvon (Hight cingulum) 0.004 FA (right cingulum) 0.056
fuxon (left inferior longi- 0.042 “No significant relationships were found using either global- or tract-specific FA.
tudinal fasciculus)
foon (leftinferior fronto-  0.008
occipital fasciculus) . .
3 Age 0.004 0.002 0.592 Discussion , 3 ,
£ xon (right cingulum) 0.000 VWM capacity has been modeled in terms of the ability to link
f(left inferior longitudi- 0.001 distinct cell assemblies across multiple cortical areas (Luck and
nal fasciculus) Vogel, 2013). Our results strongly suggest that the communica-
f on (eftinferior fronto- ~ 0.001 tion routes among cortical areas (i.e., white matter pathways) are
occipital fasciculus) a key factor in determining individual VWM capacity. As f,.,,
4 Age 0.004 0.000 0.718 reflects axonal density and caliber, its relationship to VWM ca-
faxon (1ight cingulum) 0.000 pacity suggests that individuals with denser white matter path-
fon (left inferior longi- 0.001

tudinal fasciculus)

f on (left inferior fronto- 0.001
occipital fasciculus)

AD,, (global) 0.018

2) when the individual tracts were included in the model. The
age and global value model explained only 23% of the individ-
ual variability in the VWM capacity. The full model accounted
for 57% of the interindividual variation in performance. Re-
moval of global f, .., a nonsignificant predictor, increased the
adjusted R” of the overall model to 59%.

Hierarchical regression was also used to assess whether ac-
counting for combined tract contributions in addition to
global contributions improves prediction of VWM capacity
for metrics other than f,,,,,. No significant relationships (p >
0.01) were found for any of the metrics, whether for models
including only age and global values as predictors or more
complex models that also included representative tract contri-
butions. Representative results are presented for FA in Table 3.

Evaluation of improvement in the f,,,, model by considering
additional white matter microstructural features described by the
other DTT and DKI metrics showed that global AD,,,,,, further
improved the predictive value of the model (Table 2). The com-
bined f,,,,-AD.,.,,, model explained 72% of the variance in indi-
vidual VWM capacity.

ways or larger axons may be able to maintain a larger amount of
information “online” for use by various network processors.
From this perspective, f,.,,, may index white matter information
processing capacity. The rate of information exchange depends
on axonal firing rate, which appears to be linearly related to ax-
onal caliber (Perge et al., 2012). Thus, larger axons may contrib-
ute to faster information exchange between different network
processors and increase the range of synchronized oscillations
among distinguishable cell assemblies representing distinct ob-
jects stored in memory. Faster axons may also be more proficient
in supporting the recurrent feedback loops that are assumed by
some models to subserve VWM representations (Luck and Vogel,
2013).

The TBSS analyses delineate the extended network involved in
VWM processes. Tract-specific analyses further show that tracts
connecting prefrontal, occipital, parietal, and temporal lobe are
significant predictors of VWM capacity, contributing beyond
global white matter axon properties and independent of age.
Thus, these data suggest that VWM storage and retrieval involve
collaboration among multiple nodes of the VWM network; the
size and density of the axons linking these nodes appear to play an
essential role in determining VWM capacity. An additional, but
more modest, association was found between VWM capacity and
global AD,,,,,.. This finding suggests that organization and micro-
architecture of extra-axonal space, which include glial cells, such
as astrocytes and oligodendrocytes as well as extracellular space,
may play a role in transmission of information by white matter.
Glia and extracellular space have been long thought to contribute
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to information transmission in the brain (Fields and Stevens-
Graham, 2002). The exact nature of the involved biological sub-
strates and associated diffusion mechanisms, however, is yet to be
determined.

Overall, the white matter microstructural features evaluated
in this study appear to explain a substantial proportion of the
individual variability in VWM capacity (72%). The remaining
variance may be explained by features not described by the pa-
rameters we measured, such as contributions from gray matter,
or differences in overall network organization.

One of the most intriguing properties of VWM capacity is its
yet to be explained strong correlation with global cognitive per-
formance (Luck and Vogel, 2013). The extended network of
tracts we found related to VWM capacity performance are most
likely also involved in more complex cognitive functions. Ac-
cordingly, we propose that reliance on a similar white matter
network explains, at least in part, the high correlation between
VWM capacity and measures of overall cognitive function (Luck
and Vogel, 2013). Thus, white matter may represent a promising
therapeutic target in disorders of both impaired VWM and im-
paired general cognitive abilities.

We found no significant correlations between DTI metrics
and VWM capacity in our sample. This is consistent with earlier
work that found no correlations between FA and cognitive met-
rics, including VWM capacity, in adulthood (Tamnes et al., 2011;
Peters et al., 2014), although modest relationships with verbal
working memory have been reported (Takeuchi et al., 2011),
sometimes using only analyses restricted to one or two white
matter tracts (Karlsgodt et al., 2008). Of note here is that FA
correlations with various aspects of working memory (verbal or
spatial) have been more widely reported in pathology, such as
schizophrenia or multiple sclerosis. Such disorders have well-
known impairments in FA; thus, it is expected that working
memory in those cases may have different neural mechanisms
than in typical healthy brain, with impaired features playing a
role in modulating performance.

The DKI-based metrics used in this study are obtained as-
suming a two-compartment model of white matter micro-
structure. However, the kurtosis tensor also allows derivation
of several model-independent parameters, including mean
(MK), radial (RK), and axial kurtosis (AK) (Jensen and Help-
ern, 2010). RK was shown to be highly correlated with f,.,,, (De
Santis et al., 2012). Although we focused our main analyses on
the intra- and extra-axonal diffusion metrics due to their rel-
evance to specific white matter features, additional investiga-
tion of the relationship with RK in our data revealed, as
expected, significant correlations with VWM capacity in the
same regions as f,,,, (data not shown). Thus, the relationships
between VWM capacity and white matter microstructural
properties are model-independent.

In conclusion, we found that white matter represents an im-
portant anatomical substrate of VWM capacity interindividual
variability in the adult healthy brain. The DKI-based metric, f,..,,.,
was found to be a strong noninvasive imaging predictor of indi-
vidual visual memory capacity.
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