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Development of Gonadotropin-Releasing Hormone
Secretion and Pituitary Response

Katarzyna M. Glanowska,' Laura L. Burger,? and Suzanne M. Moenter>>+*
'Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, and Departments of 2Molecular and Integrative Physiology,
3Internal Medicine, and “Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109

Acquisition of a mature pattern of gonadotropin-releasing hormone (GnRH) secretion from the CNS is a hallmark of the pubertal process.
Little is known about GnRH release during sexual maturation, but it is assumed to be minimal before later stages of puberty. We studied
spontaneous GnRH secretion in brain slices from male mice during perinatal and postnatal development using fast-scan cyclic voltam-
metry (FSCV) to detect directly the oxidation of secreted GnRH. There was good correspondence between the frequency of GnRH release
detected by FSCV in the median eminence of slices from adults with previous reports of in vivo luteinizing hormone (LH) pulse frequency.
The frequency of GnRH release in the late embryonic stage was surprisingly high, reaching a maximum in newborns and remaining
elevated in 1-week-old animals despite low LH levels. Early high-frequency GnRH release was similar in wild-type and kisspeptin
knock-out mice indicating that this release is independent of kisspeptin-mediated excitation. In vivo treatment with testosterone or in
vitro treatment with gonadotropin-inhibitory hormone (GnIH) reduced GnRH release frequency in slices from 1-week-old mice. RF9, a
putative GnIH antagonist, restored GnRH release in slices from testosterone-treated mice, suggesting that testosterone inhibition may be
GnIH-dependent. At 2-3 weeks, GnRH release is suppressed before attaining adult patterns. Reduction in early life spontaneous GnRH
release frequency coincides with the onset of the ability of exogenous GnRH to induce pituitary LH secretion. These findings suggest that

lack of pituitary secretory response, not lack of GnRH release, initially blocks downstream activation of the reproductive system.
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Introduction

Puberty leads to full sexual maturation and involves both physi-
ological and behavioral changes. This complex process occurs on
multiple levels including gene expression, epigenetic modifica-
tions, and functional reorganization of neuronal and glial net-
works in the brain regions controlling reproduction (Seminara
and Crowley, 2001; Krewson et al., 2004; Ojeda et al., 2010; Poling
et al., 2012; Lomniczi et al., 2013). From a neuroendocrine per-
spective, in vertebrates the pubertal process is thought to culmi-
nate in the activation of the gonadotropin-releasing hormone
(GnRH) neural network (Foster and Jackson, 2006; Ojeda and
Skinner, 2006); in primates, this network is reactivated at puberty
following a neonatal elevation in pituitary gonadotropin levels
(and presumably GnRH release) that is subsequently suppressed
during the juvenile period (Plant and Witchel, 2006). In other
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species, a similar prolonged increase in gonadotropins during
early postnatal life does not occur. In mice, luteinizing hormone
(LH) in females and testosterone in males is elevated during the
first 4 h after birth (Poling and Kauffman, 2012). The testoster-
one elevation is not dependent upon GnRH and may reflect re-
sidual independent Leydig cell steroidogenesis, which peaks at
embryonic day (E)18 (O’Shaughnessy et al., 1998). LH levels in
male mice remain low until a mild increase ~12-15 d postpar-
tum (Selmanoff et al., 1977; Michael et al., 1980), followed by an
increase to sexual maturity when pulses of LH are detected every
2-3 h (Coquelin and Desjardins, 1982).

In adults, GnRH pulses released from the median eminence
(ME) into pituitary portal blood strongly correlate with LH
pulses in peripheral circulation (Moenter et al., 1992). This
strong correlation in adulthood has lead to the logical assump-
tion that low levels of gonadotropins typically observed during
first days to weeks of life reflect relative inactivity of GnRH re-
lease, although sporadic increases may indicate infrequent GnRH
secretion (Goldman et al.,, 1971; Dohler and Wuttke, 1974;
MacKinnon et al., 1976; Selmanoff et al., 1977; Michael et al.,
1980). The subsequent persistent rise in LH levels during later
development is considered to mark the onset of GnRH pulse
generator activity. Consistent with this postulate, the frequency
of GnRH release from isolated rat retrochiasmatic brain explants
increased from days 12 to 27 (Bourguignon and Franchimont,
1984), as did in vivo GnRH release frequency in late pubertal
monkeys and rats (Watanabe and Terasawa, 1989; Sisk et al.,
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transferred to 100% ACSF and incubated at
room temperature 30—300 min before study.
FSCV recordings. Individual brain slices con-
taining the ME, which is where neuroendo-
crine release of GnRH to control the pituitary
gland occurs, were transferred to a recording
chamber mounted on the stage of an upright
microscope (Olympus BX50WT). The chamber
was perfused with ACSF at a rate of 5-6 ml/
min at 31-32°C. Slices were stabilized in the
chamber for >10 min before recording. GnRH
release was detected using carbon fiber micro-

potential [V]

electrodes (Glanowska et al., 2012). Microelec-
trodes were placed among GnRH fibers in the
I ME and stabilized for 15 min before collecting
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Figure 1.

2001), although it is important to point out that LH was not moni-
tored during these studies, nor were earlier ages examined.

The understanding of development of GnRH release that
emerges from the above studies is hampered by the need to inter-
polate dynamic changes in GnRH release from single samples
measuring downstream gonadotropin levels; these samples are
often terminal and/or pooled among separate subjects. At pres-
ent, there are no direct measurements of the pattern of GnRH
release from the embryonic stage through completion of puberty
in any species. Here we used fast-scan cyclic voltammetry
(FSCV), an electrochemical method that can directly quantify
changes in GnRH release (Glanowska et al., 2012), to examine the
developmental profile of GnRH release in the ME and to study its
regulation.

Materials and Methods

Animals and brain slice preparation. GnRH-eGFP (Suter et al., 2000) or
kisspeptin knock-out (KO; Chan et al., 2009; Lapatto et al., 2007) male
mice were housed under a 14:10 h light/dark photoperiod with Harlan
2916 chow and water available ad libitum. On the day of study, brain
slices were prepared as described previously (Nunemaker et al., 2002;
Chu and Moenter, 2005). All chemicals were obtained from Sigma-
Aldrich unless noted. All buffers were bubbled with 95% O,/5% CO, 15
min before use. Brain slices (300—-350 wm) were cut using a Leica VT
12008 Vibratome 3000 in ice-cold sucrose saline containing the following
(in mm): 250 sucrose, 3.5 KCl, 26 NaHCOj, 10 p-glucose, 1.25 NaH,PO,,
1.2 MgSO, and 3.8 MgCL,. Slices were incubated at room temperature for
30 min in a 1:1 mixture of sucrose saline and artificial CSF (ACSF)
containing the following (in mm): 125 NaCl, 3.5 KCl, 26 NaHCO;, 1.25
NaH,PO,, 2.5 CaCl,, 1.2 MgSO,, and 10 p-glucose, pH 7.4, and then

Pattern of GnRH release detected in the ME of brain slices in adults. A, FSCV waveform;holding potential 0.5 V,
switching potential 1.45 V, scan rate —400 V/s (adapted from (Glanowska et al., 2012). B, Pseudo-color representation of current
changes (color scale) as a function of time (x-axis) and potential ( y-axis) for representative spontaneous GnRH release in the ME of
a brain slice from an adult male mouse. €, Background-subtracted cyclic voltammogram for the spontaneous event shown in B. D,
Two representative examples of the pattern of spontaneous GnRH release in adults. Summary data are shown in Figure 2 for ease
of comparison with other developmental stages. £, Application of dopamine (DA, 10 um, black bar) did not produce a current signal
with the waveform used to detect GnRH. Left, Pseudo-color representation of current changes; right, background-subtracted cyclic
voltammogram. Dotted line indicates voltage value for stereotypical dopamine oxidation peak.

240 data. Potential was continuously scanned from
0.5 to 1.45 V at 400 V/s every 100 ms (Fig. 1A).
Signals arising from spontaneous release were
recorded for 2—4 h in each individual slice. Re-
lease events separated by <1 min were counted
as a single event for analysis, as the pituitary is
unlikely to distinguish such events in vivo. Such
short intervals were observed only at E18, post-
natal day (P)1, and 1 week; the values reported
for these ages are thus a conservative estimate
of release frequency. To test whether dopamine
produced a signal, 5-50 um dopamine was in-
jected near electrodes positioned in cortex.

To test the response to kisspeptin, kisspeptin
10 (10 uM, Phoenix Pharmaceuticals) was lo-
cally injected into the ME 20-30 uMm from the
FSCV microelectrode. Further, spontaneous
GnRH release was recorded from the ME of
kisspeptin KO mice on E18 and P7. To test the
effect of the inhibitory neuromodulator
gonadotropin-inhibitory hormone (GnIH;
aka, RFRP3) on GnRH secretion at 1 week of
age, a 1 h control recording period in ACSF
solution was followed directly by a 1 h recording in ACSF containing 1
uM GnIH. To test the effect of testosterone, 1-week-old mice were in-
jected subcutaneously with 50 mg/kg testosterone or sesame oil vehicle
4 h before brain slice preparation. To test whether GnIH mediated the
effects of testosterone, RF9, which blocks both the putative the GnIH
receptor GPR147, as well as GPR74, was used. Slices from testosterone-
treated mice were incubated in ACSF containing 5 um RF9 for 1-3 h
before and during recordings. RF9 does not cross the blood—brain bar-
rier (Caraty et al., 2012), and this approach circumvented the need for
intracerebroventricular injections in 1-week-old mice. To test whether
RF9 alone could increase GnRH release, slices from 2-week-old mice
were preincubated with RF9 as above, and the release monitored over 90
min.

FSCV analysis. FSCV data were analyzed using Demon software (Wake
Forest University Health Sciences) as described previously (Mundroff
and Wightman, 2002; Glanowska et al., 2012; Gaskins et al., 2013). The
analysis was preceded by data conversion using IgorPro software. Cyclic
voltammograms (CVs) were background-subtracted by averaging 10
background scans. To verify the identity of a spontaneous release peak as
GnRH, 10 control CVs collected after GnRH was injected into a slice were
averaged. Each putative GnRH CV was correlated with this average and
was considered to be GnRH if R* = 0.8. This threshold was set to allow
for some electrode variability. 89% of CVs passed this test. Changes in
GnRH concentration were estimated based on calibration in 5 um
GnRH. Two-tailed parametric or nonparametric statistical tests (Graph-
pad Prism 6) were used where appropriate; p < 0.05 was considered
significant. Data are presented as mean * SEM.

Pituitary challenge to an exogenous GnRH pulse. Male mice ages 7, 14,
and 21 d, and adults (93.4 = 6.5 d) were randomly assigned to two
treatment groups, saline or GnRH. GnRH (Bachem, H4005) was diluted
to 25 ng/ml in 0.9% saline and mice were injected with 150 ng/kg or the
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Table 1. Integrative DNA technologies (IDT) qPCR assays for pituitary gene
expression

Transcript  IDT PrimeTime gPCRassay  Accessionno.  Location (bp) Amplicon size (bp)

Gnrhr Mm.PT0.45.16240237 NM_010323 542-634 93
Lhb Mm.PT.45.5612498 NM_008497 137-227 9
Egr1 Mm.PT.45.13313108 NM_007913 523-637 115
Fshb Mm.PT.45.17694677 NM_008045 1-105 104
Fst Mm.PT.45.6344184 NM_008046 1295-1382 88
Npffr1 Mm.PT.49a.12363343 NM_001177511  342-469 128

equivalent volume of saline intraperitoneally. Mice were decapitated 15
min postinjection, and trunk blood and pituitaries were collected. The
GnRH dose (150 ng/kg) was chosen based on a dose-response curve
(12.5-200 ng/kg GnRH) to result in a physiological LH response in both
adults and day 21 pups. Serum LH and follicle-stimulating hormone
(FSH) were measured in singlicate by the University of Virginia Center
for Research and Reproduction Ligand Assay and Analysis Core using the
Milliplex Rat Pituitary panel customized for LH/FSH (Millipore). The
sensitivity of these two assays, as determined by the Ligand Assay and
Analysis Core, is 0.24 ng/ml for LH and 2.4 ng/ml for FSH. The intra-
assay coefficient of variation was 10.3%. All samples were run in the same
assay to avoid interassay variability.

Pituitary RNA extraction and gene expression. Pituitaries were stored in
RNA Later (Ambion, Life Technologies) at —20°C until RNA extraction.
RNA was extracted (with on-column DNasing) using RNeasy spin col-
umns (Qiagen). Pituitary RNA (10 ng/pul final concentration) and a stan-
dard curve of generic adult mouse pituitary RNA (200, 25, 3.13,0.39, 0.05
ng/ul final concentration) were reverse transcribed as described previ-
ously (Ruka et al., 2013). Because of limited RNA yield in neonatal pitu-
itaries, pituitary cDNA (30 ng total) and the standard curve (1200, 150,
18.75, 2.34, 0.29 ng) were preamplified using TagMan PreAmp Master
Mix (Applied Biosystems). TagMan primer-probes included for pream-
plification were for mRNAs of: Gnrhr, Lhb, Fshb, Egrl1, follistatin (Fst),
Npffrl, Lhb primary transcript (PT), Fshb PT, and housekeeping mRNAs
Gapdh, Ppia, Actin, and Rps29. All Primer-probes were purchased from
Integrative DNA Technologies (Tables 1, 2). Primer-probes were resus-
pended in Tris-EDTA to 20X (5 uMm each primer, 10 uM probe) as rec-
ommended. The components for the preamplification reaction were as
follows: 6 ul cDNA, 0.2X final concentration of each primer-probe, 12
wl of 2X preamplification buffer and water to a final volume of 24 ul.
cDNA was preamplified for 15 cycles using the manufacturer recom-
mended cycling conditions. The preamplified cDNAs were then diluted
1:20 with Tris-EDTA, a further dilution of 1:500, for use with the more
abundant transcripts (LHD, Fshb, Rps29, Gapdh, Ppia, Actin) was also
created. Preamplified cDNAs were stored at —20°C until used for gPCR.

qPCR was performed using preamplified PCR product for each of the
transcripts as described previously (Ruka et al., 2013). In short, 5 ul of
diluted preamplified PCR product were run in duplicate using TagMan
Gene Expression Master Mix (Applied Biosystems) for 40 cycles as indi-
cated by the manufacturer. Linearity and parallelism of the preamplifi-
cation step was confirmed as described previously (Ruka et al., 2013).
Amplicon size was confirmed by agarose gel electrophoresis and se-
quencing for custom primer-probe sets. Relative gene expression was
determined by the A-ACt method (Livak and Schmittgen, 2001). Pitu-
itary actin, Gapdh, and Ppia gene expression were regulated develop-
mentally, thus relative gene expression was normalized to Rps29. To
avoid intra-assay variability all samples were assayed within the same
assay.

Differences in normalized relative gene expression were determined
by two-way ANOVA with age and GnRH treatment as the main effects,
with differences for either GnRH treatment or age were determined post
hoc by Holm-Sidak test (Graphpad Prism 6).

Pituitary protein extraction and gene expression. Protein was extracted,
quantified, and western blots of pituitary protein (20 ug) from adult
male mice injected with either saline or 150 ng/kg GnRH 1i.p., and then
killed 5, 15, or 30 min postinjection (n = 2-3 per group) as reported by
Burger et al. (2009). As a positive control for GnRH-induced ERK acti-
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vation (phosphorylation), gonadotrope-derived aT3 cells were treated
with either saline or 200 nm GnRH for 10 min. Blots were immuno-
stained for dually phosphorylated (phospho) ERK1/2 (Cell Signaling
Technology, Catalog #4370), total ERK1/2 (Cell Signaling Technology,
Catalog #4695), and a-tubulin (Thermo, Catalog #RB-9281-P1).

Results

Frequency of GnRH release detected by FSCV in the ME
resembles that of LH release in vivo

We recently adapted the electrochemical method of FSCV to de-
tect GnRH secretion directly in mouse brain slices (Glanowska et
al., 2012). FSCV directly detects the oxidation of secreted GnRH
on carbon fiber microelectrodes. Because the analysis of FSCV
requires background subtraction, basal levels cannot be assessed
and we thus refer to “changes in GnRH concentration.” We first
determined the frequency of spontaneous GnRH secretion de-
tected by FSCV on electrodes placed in the ME of brain slices
acutely prepared from gonad-intact male mice (Figs. 1B-D, 2D-
G). The ME is the main site of GnRH release for control of the
pituitary gland. In slices from adults, the frequency of spontane-
ous GnRH release detected by FSCV (as GnRH concentration
changes) was 0.3 = 0.1 events/h. This is similar to reports of LH
pulse frequency in vivo in adult mice (Coquelin and Desjardins,
1982; Steyn et al., 2013), demonstrating a good match between
FSCV measures in the ME of brain slices and functioning of the in
vivo hypothalamic-pituitary-gonadal (HPG) axis. As an addi-
tional control, dopamine (5-50 uM) was applied near electrodes
placed in the cortex. No signal was produced with the waveform
used for GnRH detection (Fig. 1E).

Changes in spontaneous GnRH release during development
Developmental changes in the pattern of spontaneous GnRH
secretion were examined using FSCV starting at E18). Release
frequency, peak amplitude and event duration were used to char-
acterize GnRH secretion patterns. A very high-frequency release
was observed in both embryonic (E18) and neonatal (P1) mice
(Fig. 2A,D). At these developmental stages, the frequency of
GnRH secretion was higher (p < 0.0001) than the highest fre-
quency previously reported in adults in vivo in any species under
any experimental condition (Webster et al., 1991). Surprisingly,
this high-frequency GnRH release continued in mice monitored
at 7-9 d of age, well beyond the very brief perinatal LH rise re-
ported in this species (Poling and Kauffman, 2012). This GnRH
release was calcium-dependent, suggesting it is vesicle-mediated
and not leakage from damaged tissue (Fig. 2B,C). In marked
contrast to the high release frequency up to 9 d of age, at 2 and 3
weeks the system was essentially shut down; a total of only two
spontaneous release events were observed in slices from six mice
at each age despite extending the recording duration to 4 h. All of
these preparations released GnRH in response to depolarization
with 20 mM KCI (Table 3). This paucity of spontaneous release
was qualitatively different to that in adults, in which spontaneous
GnRH release was observed in all slices within 4 h. The statistical
dilemma of demonstrating differences between numerically low
values precluded differentiating release frequency in adults from
that at 2 or 3 weeks of age.

With regard to release parameters other than frequency, a
steady increase with age was observed in the magnitude of each
GnRH release and a corresponding increase in duration of events
(Figs. 2E, F, 3), which was shortest at E18 (80% of release events
lasting <20 s), and increased with age to reach durations >1 min
in adults (Figs. 2F, 3). Interestingly, age-related changes in spon-
taneous GnRH release frequency were inversely correlated with
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Table 2. Custom qPCR primers and probes for pituitary gene expression
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Transcript Accession no. Location (bp) Amplicon size (bp) FWD primer REV primer Probe
LhbPT U25145 638—858 1 CAGTCTGCATCACCTTCACC (GGCAGTACTCGGACCTG GTCCTAGCATGGTGAGCGGG
FshbPT NC_000068 107059078 -107058934 145 CAAGCCGAAGACTTGAGAGG GCAAAGCTGGATCAACTTCA TCAGCTGGTCAGTTTTCACAGTGA
Rps29 NM_009093 119-145 127 TGAAGGCAAGATGGGTCAC GCACATGTTCAGCCCGTATT AGTCACCCACGGAAGTTCGG
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Figure2. Developmental changesin spontaneous GnRH release. A, Two representative examples of the pattern of spontaneous GnRH release at each developmental age studied in wild-type mice

and in kisspeptin KO mice (kiss7 —/—) at 1 week. Each vertical bar represents an individual GnRH release event. B, Two representative examples of spontaneous GnRH release in 1-wk-old mice in
low calcium solution; light gray: low calcium (0.5 mu) buffer present in the recording chamber; dark gray: high KCl (20 mm) normal calcium ACSF in the recording chamber to evoke GnRH secretion.
C, Mean == SEM frequency of GnRH release in normal (con) and low calcium ACSF; p << 0.05, paired ¢ test. D—G, Mean == SEM characteristics of spontaneous GnRH release; numbers within/above
bars represent sample size. D, Frequency of GnRH secretion expressed as number of release events per hour; different letters represent statistical significance; p << 0.0001, one-way ANOVA followed
by Tukey’s multiple-comparison test. E, Amplitude of GnRH release; *p << 0.05, one-way ANOVA followed by Tukey’s multiple-comparison test. F, Duration of individual events; different letters
represent statistical significance; p << 0.0001, one-way ANOVA followed by Tukey’s multiple-comparison test. G, Responsiveness to 10 nw kisspeptin; different letters represent statistical

significance; p << 0.01, x> test.

responsiveness to kisspeptin, an important excitatory neuro-
modulator of GnRH release (Irwig et al., 2004; Plant et al., 2006;
Pielecka-Fortuna et al., 2008). Kisspeptin injected locally in the
ME evoked GnRH release in only 2 of 6 of slices from 1-week-old
mice; in contrast, 3-week-old and adult slices were 100% respon-
sive (Fig. 2G).

Early prepubertal regulation of GnRH release

To examine why release frequency was so high in early prepuber-
tal animals, we conducted a series of studies in 1-week-old mice;
this age was chosen as an example of high-frequency release sep-
arated from the stress of recent parturition. Low responsiveness
to kisspeptin in 1-week-old mice (Fig. 2G) combined with the

high secretory activity of GnRH neurons at this age suggested two
possibilities. First, GnRH release may be kisspeptin-independent
at this age; second, response to exogenous kisspeptin may be
occluded by high endogenous kisspeptin release. We thus re-
corded spontaneous GnRH secretion from 6 to 9-d-old male
kisspeptin KO mice (Lapatto et al., 2007; Chan et al., 2009). There
was no difference in the frequency of GnRH release, event ampli-
tude, duration or responsiveness to kisspeptin between kisspep-
tin KO and wild-type animals (Fig. 2). High-frequency GnRH
release in 1-week-old male mice is thus kisspeptin independent.

We next hypothesized that the elevated GnRH secretory activ-
ity is attributable to a lack of sufficient inhibition. First, we tested
whether GnlH, a negative neuromodulator of GnRH neurons
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Table 3. Spontaneous versus evoked GnRH secretion

No. of Animals with spontaneous Animals with KCl-evoked
Age group animals GnRH release GnRH release
E18 6 6 6
P1 5 5 5
1week 6 6 6
1 week kiss KO 5 5 5
2 week 6 2 6
3 week 6 2 6
Adult 7 7 7
A
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Figure3. GnRHrelease eventsappear to consolidate with age, resulting in lower-frequency,

longer duration release. A, Cumulative distribution function of duration of all individual GnRH
events in different age groups. Data for 2- and 3-week-old mice were combined attributable to
paucity of events. B, Duration for all individual GnRH events (gray circles), same groups as in 4;
horizontal lines, data median; vertical lines, data range; different letters represent statistical
significance; p << 0.0001, Kruskal—Wallis test followed by Dunn’s multiple-comparison test.

and the HPG axis (Ducret et al., 2009; Wu et al., 2009; Tsutsui et
al., 2010), is capable of decreasing GnRH release frequency in
1-week-old mice (Fig. 4). GnIH (1 uM) reduced GnRH release
frequency and amplitude, suggesting a lack of endogenous inhib-
itory central input at this age (Fig. 4B, C; p < 0.01). The decrease
in the frequency of GnRH secretion during GnIH treatment is in
contrast to untreated slices from 1-week-old mice. There was no
difference in release frequency between the first and second hour
of recording in the absence of GnIH (Fig. 4B; further analysis of
data from Fig. 2). We next asked whether testosterone inhibited
GnRH release at 1 week. Mice received 50 mg/kg testosterone
subcutaneously 4 h before brain slice preparation (Fig. 4D). In
testosterone-treated mice, GnRH release frequency was reduced
(p < 0.01), whereas release was unaffected in vehicle-injected
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sign for the effect of GnIH on GnRH release in 1-week-old animals; 1 h of control recording (white
block) followed by 1 h of recording in the presence of T um GniH. B, Left, Frequency of spontaneous
GnRH release under control conditions and incubation with 1 wum GnlH. Right, Frequency of sponta-
neous GnRH release during the first versus second hours of recording under conditions (data from Fig.
2); p < 0.05 paired t test. ¢, Amplitude of spontaneous GnRH release under control conditions and
incubation with 1 umGnlH, p << 0.05 paired t test. D, Experimental design for the effect of peripheral
testosterone (T) administration on GnRH release (top); black arrows, timing of T/vehicle (veh) injec-
tion orslice preparation; white bar, timing of recording. Experimental design for the effect of 5 umRF9
on T-induced decrease of GnRH release (bottom); black arrows, timing of T administration or slice
preparation; gray bar, 1-4 h of slice pretreatment with RF9 followed by 2 h of recording in the
presence of RF9. E, Effects of in vivo testosterone injection with and without in vitro RF9 incubation on
frequency (left) and amplitude (right) of spontaneous GnRH secretion, p << 0.01, one-way ANOVA
followed by Tukey’s multiple-comparison test. F, Frequency and amplitude of spontaneous GnRH
release in slices from 2-week-old males incubated in RF9, p << 0.05, t test. Values are mean = SEM;
numbers within/above bars represent sample size, different letters represent statistical significance.

controls (Fig. 4E). To examine a possible relationship between
these two inhibitory cues in regulating GnRH secretion from the
ME, we preincubated brain slices from testosterone-injected
mice with RF9 (5 uM), which inhibits the putative GnIH receptor,
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GPR147/NPFFR1, as well as GPR74/NPFFR2 (Fig. 4D). This
treatment restored GnRH frequency to levels observed in un-
treated mice (Fig. 4E). These observations strongly suggest tes-
tosterone action at 1 week of age is at least in part mediated by
GPR147/GPR74 signaling.

The marked shut down in spontaneous release activity that
occurs between 1 week of age, when GnIH was able to inhibit
spontaneous GnRH release, and 2 weeks of age, when there was
little spontaneous GnRH release suggests either net activation of
inhibitory inputs to GnRH neurons or net suppression of excit-
atory inputs. Because endogenous kisspeptin was not required
for the high-frequency release at 1 week of age and exogenous
kisspeptin was effective only in a minority of experiments, and
because preliminary data indicate fast synaptic inputs via either
GABA or glutamate are very low-frequency through 2 weeks of
age (R.A. DeFazio and S.M. Moenter, unpublished observation),
we postulated that inhibitory inputs were activated. As exoge-
nous GnIH successfully suppressed GnRH release at 1 week of
age, we tested the hypothesis the activation of endogenous GnIH
signaling might be responsible for the shut down in spontaneous
GnRH release. To do this, we used RF9 to block GPR147/GPR74
signaling in 2-week-old mice, which show almost no spontane-
ous GnRH release, and examined GnRH release frequency. Brain
slices were preincubated in RF9 and then spontaneous secretory
activity in the ME monitored for 90 min in RF9. We observed a
significant increase in the frequency, but not amplitude (Fig. 4F)
or event duration (data not shown) compared with untreated
controls. This indicates a possible role for GnIH or some other
endogenous activator of these receptors in inhibiting the GnRH
system at this age. There is an additional caveat beyond RF9
acting at both GPR147 and GPR74 that is important to consider.
It is possible that RF9 has off-target actions as an agonist on a
stimulatory receptor. Similarities in C-terminal structure of
GnlIH with kisspeptin might indicate the kisspeptin receptor as a
possible target. Although the present data cannot rule this, or
another, off-target action out, it is notable that the GnRH release
in response to kisspeptin occurs only in a portion (~50%) of
slices from mice 1 and 2 weeks of age, whereas RF9 had a consis-
tent effect to increase GnRH release in 100% of preparations
tested at 2 weeks of age. Further, when kisspeptin did evoke re-
lease, it was with a very short delay, typically <1 min, whereas
RF9 required preincubation to be effective.

Pituitary responsiveness to GnRH

High-frequency GnRH secretion in 1-week-old males was unex-
pected based on low reported values of LH at that age (Wilson
and Handa, 1997; Zapatero-Caballero et al., 2004; Gill et al.,
2012). Continuous or very high-frequency GnRH infusion leads
to desensitization of pituitary response and thus to decreased LH
synthesis and release from the pituitary (Wildt et al., 1981; Ler-
rant et al., 1995). Although administration of high-frequency
GnRH hasbeen used to probe the relationship between frequency
and pituitary response, the frequencies used in those studies (up
to 5 pulses/h, rhesus monkey; Belchetz et al., 1978) had not pre-
viously been observed for spontaneous GnRH release (highest
frequencies observed ~3 pulses/h, thyroidectomized sheep;
Webster et al., 1991), and thus, whereas a useful tool, were con-
sidered outside the physiologic range. We hypothesized that en-
dogenous production of these high frequencies in 1-week-old
mice would induce a similar pituitary shutdown. We tested
pituitary response to an exogenous GnRH pulse over develop-
ment in male mice. Mice received either saline or 150 ng/kg
GnRH intraperitoneally; serum and pituitaries were collected
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Figure 5. Failure of pituitary secretory response to exogenous GnRH at ages exhibiting
high spontaneous GnRH release frequency. GnRH-induced LH (4) and FSH (B) release in
males. Data are represented as mean = SEM, two-way ANOVA followed by Holms—Sidak
multiple-comparison test (P1 animals were excluded from this analysis as no GnRH chal-
lenge was performed in this group); *p < 0.01. Dashed lines indicate assay sensitivity.
Note the different y-axis scales in A and B.

15 min later. Serum LH, which reflects responsiveness to
GnRH, was below detection levels in both saline- and GnRH-
injected males at 1 week, as well as in noninjected newborns
(Fig. 5A). In contrast, mice at all other ages exhibited an in-
crease in LH following GnRH injection (p < 0.01). There was
no clear response to GnRH in serum FSH levels (Fig. 5B),
likely attributable to the more constitutive nature of its release
(McNeilly et al., 2003).

To gain insight into possible mechanisms underlying the fail-
ure of GnRH to induce LH release, we examined pituitary expres-
sion of selected genes from male pituitaries (Fig. 6). GnRH
receptor (GnRHR) mRNA is abundant in very young animals,
although at lower levels than in adults, but importantly did not
change between 1 and 2 weeks of age, despite the acquisition of
response to exogenous GnRH. To assess the function of the
GnRHR, we tested expression of genes targeted by GnRHR sig-
naling pathway. Age-related increases (p < 0.0001) in expression
of LHB and FSH3 mRNA were observed, however, there were no
differences in response to a single GnRH injection (Fig. 6 D, F).
Similarly, LHB and FSHR primary transcript expression in-
creases with age (p < 0.0001), but a single GnRH injection in-
duced LHP response only in adult mice (p < 0.05) and had no
effect on FSHP at any age tested. Egrl, an immediate early gene
induced by GnRHR signaling, shows similar pattern of expres-
sion changes with age (p < 0.0001), but no response to a single
GnRH injection. Interestingly, expression of both Fst and GnIH
receptor (Npffrl), which are upregulated by high-frequency
GnRH pulses (Kirk et al., 1994; Dalkin et al., 1999; Burger et al.,
2002; Sukhbaatar et al., 2014), was increased in early prepubertal



15066 - ). Neurosci., November 5, 2014 - 34(45):15060 —15069 Glanowska et al.  Development of GnRH Release and Pituitary Response

A Gnrhr C Lhb PT E Fshb PT G _ Npffrl :

g_s g_20 Q_20 g_ 50 m saline

5.8 4 Age, p<0.0001 8BS _|Age p=0.0001 % S _|Age, p<0.0001 52 401 m 150ng/kg GnRH

a2 o4 15 ! ’ | T2 15 ! ' 48 J no treatment

593 oY =2 =2 304 1

o © R

25 g0 gg w0 2% 20 Age, p<0.0001

©To To 5 To 5 ©w

EC1 £ £ A EE L

2%olg s% ol whall BV 5% ] b B0 5] -
P1 1wk 2wk 3wk adult P1 1wk 2wk 3wk adult P1 1wk 2wk 3wk adult P1 1wk 2wk 3wk adult

B D F H

g _s8 Egrl g _25 Lhb v_15 Fshb Y _ 1501 Fst

2 ¢ | Age, p<0.0001 | 82 20]Age, p<0.0001 &2  |Age, p<0.0001 E-% Age, p<0.0001

23 815 29 10 28 1004

T T TS oS

EEN . 2510 5 E%

To, © o Ty O ©o 201 A 1

£S ' EGOS £ES £ES

5% ]m Nl '8 gmo_- g% o] _ l 2% o ]
P1 1wk 2wk 3wk adult P1 1wk 2wk 3wk adult P1 1wk 2wk 3wk adult P1 1wk 2wk 3wk adult

Figure 6.  Effect of GnRH on expression of selected pituitary genes as a function of age. A—H, Normalized relative gene expressions for Gnrhr (4), Egr1 (B), Lhb PT (), Lhb steady-state mRNA (D),
Fshb PT (E), FSHb steady-state mRNA (F ), GnIH receptors/GPR147/GPR74 (Npffr1/Npffr2); G), and Fst (H ). Pituitary gene expression was normalized to ribosomal protein $29 mRNA (Rps29), which
did not change with either age or GnRH treatment. Data are represented as mean == SEM, two-way ANOVA followed by Holms—Sidak multiple-comparison test (P1 animals were excluded from this
analysis).
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Discussion

GnRH release before puberty in most
species is assumed to be relatively low
based on pituitary gonadotropin levels
(Chowdhury and Steinberger, 1976).  Figure7. GnRH-induced intracellularsignalingin mouse pituitaries, in vivo. A, Representative western blots of pituitary protein
Here we used FSCV to directly measure (20 pg/lane) from adult male mice injected with either saline or 150 ng/kg GnRH, intraperitoneally, and then killed 5, 15, or 30 min
GnRH release in brain slices from mice  postinjection (1 = 2-3 per group) or from «T3 cells treated with either saline or 200 nm GnRH for 10 min. Blots were immuno-
and demonstrate that this neuronal stainedfordually phosphorylated (phospho) ERK1/2, total ERK1/2, and ce-tubulin. B, €, Changes in phosphorylated (A) and total
(B) ERK1/2 were quantified by densitometry.

o
L

network secretes GnRH at very high-

frequencies from at least the late embryonic
period through the first week of postnatal modulatory input. Consistent with this hypothesis, early-life

life. GnRH release is kisspeptin-independent, despite recent evidence

The present direct observations of GnRH release revealed sur-  that synaptic connections between GnRH and kisspeptin neu-
prisingly high-frequency release in the late embryonic and early ~ rons are formed as early as E16.5 (Kumar et al., 2014). Further,
postnatal period. High-frequency release persisted for at least a ~ endogenous GnlH signaling appears to be absent, demonstrated
week after the immediate postnatal elevation in hormones (Pol- by the effective suppression of GnRH release by exogenous GnIH.
ing and Kauffman, 2012). This frequent secretion may reflect ~ Ofinterest and somewhat counter to a currently prevailing view that
intrinsic activity of the GnRH system without functional neuro- ~ GnRH release is kisspeptin-dependent, intrinsic activity is a hall-
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mark of cultured embryonic and immortalized GnRH neurons,
which exhibit patterned action potentials, hormone release, and cal-
cium oscillations (Krsmanovi¢ et al., 1992; Terasawa et al., 1999;
Nunemaker et al., 2001).

Although the GnRH neuronal network present in the brain
slices used in these studies can generate high-frequency release,
release at this frequency may not be interpretable by the pituitary
as a stimulatory signal as suggested by the lack of LH secretory
response to GnRH in 1-week-old mice. It is possible the lack of
response to a single injection is attributable to a lack of priming,
but pituitaries of 2-week-old mice respond despite no priming
and little endogenous GnRH. GnRH release in early prepubertal
animals is short duration and low amplitude and thus may not
reach the pituitary. Follistatin mRNA levels are elevated in
1-week-old mice, however, and are upregulated by high-
frequency GnRH. Of note, GnRH release pattern from E18 to 1
week was irregular, in contrast to the typically uniform pattern of
release observed in adults in vivo (Karsch et al., 1987; Moenter et
al., 1992; Sisk et al., 2001). This may be an artifact of having
removed important regulatory regions during the preparation of
brain slices, but may also reflect the immaturity of the afferent net-
work remaining within the slice. Continuous or high-frequency
GnRH administration suppresses pituitary gonadotropin release
(Belchetz et al., 1978; Wildt et al., 1981). The observation that the
high endogenous GnRH release frequency at 1week was associ-
ated with pituitary failure to respond to exogenous GnRH with
gonadotropin release, suggests the pituitary’s requirement for an
appropriately patterned GnRH release has a potential role be-
yond promoting differential gonadotropin release in adults. Spe-
cifically, lack of pituitary gonadotropin release when confronted
with high-frequency GnRH during early postnatal life effectively
blocks activation of the downstream reproductive system, pre-
venting precocious puberty.

Between 1 and 2 weeks postnatal, a marked change in GnRH
release was observed. This coincides with increased GnRH re-
sponse to kisspeptin and with the onset of pituitary LH release in
response to exogenous GnRH. It is possible that during this in-
terval endogenous GnIH signaling has matured and contributes
to the marked suppression of endogenous GnRH release, restor-
ing pituitary sensitivity. At 2 weeks, RF9, which appears to block
a putative GnIH-receptor (NPFFR1) among other possible ac-
tions, increased GnRH release frequency. NPFFR1 receptor KO
mice also exhibit reduced LH response to GnRH (Ledn et al.,
2014). The high-frequency, short duration, irregular GnRH re-
lease observed through 1 week of age, became longer and less
frequent, organizing more into the pattern observed in vivo in
adults, arguing for a more mature network remaining in the slice.
Upstream neuromodulators including kisspeptin and GnIH may
thus play their more important roles in organizing GnRH net-
work activity in the later stages of the pubertal process, rather
than generating GnRH activity per se. In addition to the increas-
ing GnRH response to kisspeptin observed here and by others
(Han et al., 2005), recent studies have pointed to epigenetic
changes in the preoptic area and hypothalamus occurring at a
similar age (Lomniczi et al., 2013) Further, ablation of kisspeptin
neurons before P20 allows compensation of the overall network
so that mice are fertile, whereas adult ablation consistently leads
to infertility (Mayer and Boehm, 2011) suggesting a critical role
for kisspeptin or other transmitters from these neurons (Cravo et
al., 2011) becoming mandatory during the later prepubertal
stages.
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As with any experimental preparation, it is important to con-
sider the caveats of the approach. FSCV can be fined tuned to
detect specific substances; the protocol used in the present study
detects no signal in the ME of hypogonadal mice even when
neurosecretion is evoked by elevated extracellular potassium,
demonstrating it is specific for GnRH (Glanowska et al., 2012).
The signal FSCV detects is attributable to oxidation of GnRH and
is thus a direct measure of hormone release. The size of the car-
bon fiber microelectrode is such that release is likely detected
from several terminals. It is important to point out, however, that
release events distal to the electrode cannot be detected. This
would result in undercounting of release frequency. Because
these measurements were made in a brain slice, the pattern of
release is from a network that is missing elements that are re-
moved by preparation of sagittal sections. Several observations
suggest these measurements are still physiologically relevant.
First, the frequency of release detected in slices from adults is
similar to published reports of LH pulse frequency (Coquelin and
Desjardins, 1982). Second, release is vesicle-mediated, not just
leak from damaged tissue. Third, frequency does not change in a
linear manner with age, which one might suspect if an artifact
were merely changing over time. Fourth, regulation by testoster-
one and GnIH suggests at least some relevant afferent systems are
preserved. Finally, the lack of LH response to GnRH at 1 week of
age and restoration of that response at 2 weeks of age are what
would be predicted if the frequencies observed in vitro were oc-
curring in vivo.

Another limitation to this study is the difficulty in extrapolat-
ing these observations between species and even to female mice.
Studies of very young laboratory animals, particularly in the first
week to 10 d postnatal, are limited. Although there seems to be
general agreement that gonadotropin levels are low, there are not
any studies of GnRH release during this time for comparison. At
slightly older ages, our observations tend to agree with the age-
related increase in frequency that has been observed in vitro
(Bourguignon and Franchimont, 1984) and in vivo (Sisk et al.,
2001). Comparisons with primates may be of limited value given
the relatively unique developmental pattern presented by the
prolonged postnatal activation of the hypothalamo-pituitary axis
in these species (Plant and Witchel, 2006). Of interest, the present
studies suggest a possible greater similarity between mice and
primates at least at the level of GnRH release than was appreciated
solely from measures of LH; that is in mice as well as primates, the
GnRH system is activated, shut down, and then reactivated for
completion of the final pubertal transition. Finally, it is impor-
tant to point out that the developmental stages we examined
cannot be broadly compared by age to most other species given
the different levels of development at birth. Our sampling win-
dow was defined by practical matters; it began at E18 because the
GnRH terminals have reached the ME in appreciable numbers
and because it was possible to make quality brain slices at this age.
For some species, the equivalent ages may occur much earlier in
gestation.

The possible roles of abundant GnRH secretion long before it
can exert downstream reproductive function are of interest to
consider. The GnRH pulse generator, which is responsible for
driving reproduction in adults, consists not only of GnRH neu-
rons, but incorporates other neuronal and glial elements and
integrates a variety of physiological cues, from energy balance to
steroid milieu to circadian information. Such complexity re-
quires proper connectivity among individual elements of the net-
work. Activity-dependent genesis and elimination of synaptic
connections is one of the major processes taking place in the
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developing brain (Toth et al., 2013). We speculate that the pri-
mary role of GnRH secretion from late embryonic through early
postnatal development is neuromodulatory and that it is critical
for establishment of proper wiring of the reproductive brain. In
this regard, recent studies indicate GnRH can be secreted in re-
gions other than the ME (Glanowska et al., 2012). Both func-
tional (Davidson et al., 2004; Xu et al., 2004; Wen et al., 2010) and
anatomical studies (Wen et al., 2011) indicate the presence of
GnRHR in the brain. During their migration from the olfactory
placode to the diencephalon, prenatally and in adults, GnRH has
been proposed to exert neuromodulatory effects on both GnRH
and other types of neurons (Davidson et al., 2004; Xu et al., 2004;
Wen et al., 2010). In this regard, a role of GnRH or GnRH neu-
ronal activity in organizing local circuitry during postnatal sexual
development is postulated.
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