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Abstract

Parkinson’s disease (PD) is caused by the accelerated death of dopamine (DA) producing neurons. 

Numerous studies documenting cognitive deficits of PD patients have revealed impairments in a 

variety of tasks related to memory, learning, visuospatial skills, and attention. While there have 

been several studies documenting cognitive deficits of PD patients, very few computational 

models have been proposed. In this article, we use the COVIS model of category learning to 

simulate DA depletion and show that the model suffers from cognitive symptoms similar to those 

of human participants affected by PD. Specifically, DA depletion in COVIS produced deficits in 

rule-based categorization, non-linear information-integration categorization, probabilistic 

classification, rule maintenance, and rule switching. These were observed by simulating results 

from younger controls, older controls, PD patients, and severe PD patients in five well-known 

tasks. Differential performance among the different age groups and clinical populations was 

modeled simply by changing the amount of DA available in the model. This suggests that COVIS 

may not only be an adequate model of the simulated tasks and phenomena but also more generally 

of the role of DA in these tasks and phenomena.
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1. Introduction

Parkinson’s disease (PD) is caused by the accelerated death of dopamine (DA) producing 

neurons. The pattern of cell loss is opposite from and more severe than in normal aging. 

Within the substantia nigra pars compacta (SNpc), cell loss is predominately found in the 

ventral tier with less (but still extensive) damage in the dorsal tier (Fearnley & Lees, 1991; 

Gibb & Lees, 1991). In contrast, normal aging yields substantially less cell loss and in a 

dorsal-to-ventral pattern. Parkinsonian motor symptoms appear after a loss of 60–70% of 

SNpc cells and 70–80% of DA levels in striatal nuclei (Bernheimer, Birkmayer, 
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Hornykiewicz, Jellinger, & Seitelberger, 1973; Gibb & Lees, 1991). Motor symptoms 

include tremor, rigidity, bradykinesia, and akinesia.

In addition to motor deficits, non-demented PD patients present cognitive symptoms that 

resemble those observed in patients with frontal damage. Numerous studies documenting 

cognitive deficits of PD patients have revealed impairment in a variety of tasks related to 

memory, learning, visuospatial skills, and attention (e.g., ignoring irrelevant and maintaining 

relevant information: Gotham, Brown & Marsden, 1988). While there are a plethora of 

studies documenting cognitive deficits of PD patients (for a review, see Price, Filoteo, & 

Maddox, 2009), very few computational models have been proposed to investigate the 

variegated landscape of deficits observed in those studies. In this article, we use the COVIS 

model of category learning (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Paul, 

& Maddox, 2011) to simulate DA depletion and we show that the depleted model suffers 

from cognitive symptoms similar to those of human participants affected by PD.

2. The COVIS theory of category learning

COVIS (Ashby et al., 1998) is a neurobiologically detailed theory of category learning that 

postulates two systems that compete throughout learning—an explicit, hypothesis-testing 

system that uses logical reasoning and depends on working memory and executive attention, 

and an implicit system that uses procedural learning. The hypothesis-testing system of 

COVIS is thought to mediate rule-based category learning. Rule-based category-learning 

tasks are those in which the category structures can be learned via some explicit reasoning 

process. Frequently, the rule that maximizes accuracy (i.e., the optimal rule) is easy to 

describe verbally. In the most common applications, only one stimulus dimension is 

relevant, and the observer’s task is to discover this relevant dimension and then to map the 

different dimensional values to the relevant categories. The Wisconsin Card Sorting Test 

(WCST; Heaton, Chelune, Talley, Kay, & Curtiss, 1993) is a well-known rule-based task. 

More complex rule-based tasks can require attention to multiple stimulus dimensions. For 

example, any task where the optimal strategy is to apply a logical conjunction or disjunction 

is rule-based. The key requirement is that the optimal strategy can be discovered by logical 

reasoning and is easy for humans to describe verbally.

The procedural system of COVIS is hypothesized to mediate information-integration 

category learning. Information-integration tasks are those in which accuracy is maximized 

only if information from two or more stimulus components (or dimensions) is integrated at 

some pre-decisional stage. Perceptual integration could take many forms—from treating the 

stimulus as a Gestalt to computing a weighted linear combination of the dimensional values. 

Typically, the optimal strategy in information-integration tasks is difficult or impossible to 

describe verbally. Rule-based strategies can be applied in information-integration tasks, but 

they generally lead to sub-optimal levels of accuracy because rule-based strategies make 

separate decisions about each stimulus component, rather than integrating this information.

3. Parkinson’s disease and cognitive impairments

Many experiments have contributed to the identification of PD-related cognitive deficits. 

Although the diverse landscape of impairments may appear disparate, they can largely be 
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attributed to failures in one of the two COVIS learning systems. Impairments in rule-based 

tasks will be considered first followed by impairments in procedural-learning tasks. The 

evidence presented here is by no means exhaustive, but instead has been selected as 

representative of learning failures that are amenable to exposition through model simulation 

without modifying the existing COVIS model architecture (Ashby et al., 1998, 2011). A 

fuller treatment of PD cognitive deficits can be found in Price et al. (2009).

3.1. Rule-based learning

PD patients display many of the same deficits in rule-learning tasks as patients with frontal 

lobe damage (Owen, Roberts, Hodges, & Robbins, 1993). These tasks demand attention, 

working memory, and logical reasoning to maximize performance. This section reviews 

empirical evidence for rule-related deficits in PD patients, with a focus on deficits in rule-

based category learning, rule maintenance, and perseverative response tendencies. This 

focus is warranted considering that COVIS is a model of category learning that uses 

hypothesis-testing as a mechanism for rule learning, and that the goal here is not to design a 

specific computational model of PD deficits, but rather to simulate PD symptoms using an 

existing neurobiologically-detailed model (COVIS) without any modifications or additional 

assumptions. Evidence reviewed in Cools (2006) suggests that these impairments in 

‘executive functions’ are DA related. More specifically, Price et al. (2009) reviewed 

evidence suggesting that rule shifting and rule selection impairments are DA related. Hence, 

rule-related cognitive symptoms will be simulated in COVIS by reducing DA levels (see 

Section 5).

Ashby and his colleagues (2003) tested PD patients, age-matched controls, and younger 

controls in a rule-based categorization task similar to the WCST, except that the stimuli 

varied on four dimensions instead of three. Like the WCST however, a simple one-

dimensional rule could be used to categorize the stimuli perfectly. Each participant was 

classified as a learner if the rule was successfully learned (i.e., 10 consecutively correct 

responses) within 200 trials. Compared to controls, significantly more PD patients failed to 

learn in this task than both the young and age-matched controls.

The above experiment successfully identified a gross impairment in rule learning via simple 

rule-based categorization. More nuanced deficits have also been identified by using different 

kinds of rule-based tasks and performance metrics. For example, PD patients tend to 

demonstrate a failure of rule maintenance. Rule maintenance requires sustained attention to 

the relevant stimulus dimension (as determined by the rule) while ignoring variations in the 

other dimensions. Typically, rule maintenance is measured by set loss errors, which are 

defined as errors following several consecutively correct responses. In the WCST, PD 

patients exhibit significantly more set loss errors than controls (Beatty, Staton, Weir, 

Monson, & Whitaker, 1989). Similarly, Filoteo, Maddox, Ing, and Song (2007) observed 

more set loss errors in a rule-based categorization task when the irrelevant dimensions 

varied randomly than when there was no variability in the irrelevant dimension.

PD patients also appear to exhibit a perseverative tendency—patients often persist with the 

previous response strategy despite feedback suggesting a change in the relevant rule. Using 

a simplified version of the WCST (Nelson, 1976), Gotham et al. (1988) found PD patients to 
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make significantly more perseverative errors than control participants. In addition, Beatty et 

al. (1989) found greater mean perseverative errors and responses than controls in the 

standard WCST. Finally, a meta-analysis of PD patient performances in WCST experiments 

found moderate effect sizes for both perseverative errors and perseverative responses, 

further supporting the hypothesis that PD patients exhibit perseverative tendencies (Zakzanis 

& Freedman, 1999).

3.2. Procedural learning

Using a different class of learning problems, some studies have identified a different pattern 

of learning deficits in PD patients. Procedural learning is important in categorization tasks in 

which optimal responding cannot be obtained via logical reasoning or by using any explicit 

rule-based strategy. Shohamy, Myers, Grossman, Sage, and Gluck (2005) reviewed evidence 

and collected data suggesting that at least some forms of procedural learning are DA-related. 

As such, procedural-learning deficits are simulated in COVIS by reducing DA levels in the 

model (see Section 5).

In a now classic study, Knowlton, Mangels, and Squire (1996) tested several patient groups 

in the Weather Prediction Task (WPT), a probabilistic classification task that requires 

participants to learn gradually to associate a number of stimuli with the correct outcome. 

Knowlton and her colleagues found that PD patients performed significantly worse than 

controls in this task, and PD patients with the most severe symptoms never performed above 

chance. Importantly, amnesic patients performed as well as controls, thus lending strong 

evidence that a failure of memorization was not the cause of the PD impairment and 

indirectly supporting the hypothesis that performance in this task depends on an intact 

mesostriatal dopamine system.

Ashby and his colleagues (2003) tested PD patients with an information-integration 

category-learning task that used the same stimuli as in the rule-based task described in 

Section 3.1. In the information-integration condition, the stimuli were separated into two 

categories in such a way that no easily verbalized rule would yield optimal performance. 

Interestingly, PD patients were unimpaired in this task compared to age-matched controls 

(although both groups were massively impaired relative to young controls). Similarly, PD 

patients showed no deficits in two other information-integration category-learning tasks that 

used two-dimensional continuous-valued stimuli when the categories were linearly 

separable, although they were impaired relative to controls when the categories were non-

linearly separable (Filoteo, Maddox, Salmon, & Song, 2005; Maddox & Filoteo, 2001). 

These results suggest that PD patients are impaired relative to age-matched controls in tasks 

that rely on procedural learning, but only when the task is sufficiently complex.

3.3. A model-based approach to understanding Parkinson’s disease impairments

Despite the tremendous amount of behavioral research in PD, very few computational 

models have been proposed that attempt to account for the cognitive impairments 

concomitant with the disease. In this article, we describe how an implementation of the 

COVIS theory of category learning (Ashby et al., 1998) can be used to simulate DA 

depletions and we show that the resulting model mimics some cognitive symptoms of PD 
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patients (Hélie, Paul, & Ashby, 2012). The neurobiological specificity of COVIS uniquely 

allows this degree of flexibility. Notably, the model requires no substantive modification to 

account for some neuropsychological patient and normal aging data despite the fact that it 

was originally built as a model of human category learning in healthy adults, not as a model 

of PD (Ashby et al., 2011).

While this approach is useful in further testing the COVIS model of categorization, it will, 

by its very nature, result in an incomplete model of PD symptoms. For instance, COVIS 

does not include a model of the ventral striatum (e.g., nucleus accumbens). This region is 

thought to play a major role in reversal learning and feedback processing (e.g., Cools, 

Altamirano, & D’Esposito, 2006) and, as a result, the present model could not account for 

reversal learning data without adding additional assumptions (which is not in line with the 

goal of this work). For this reason, we avoid simulating tasks that include major feedback 

manipulations in this article.

Likewise, a model of the ventral striatum is required in order to adequately model the effect 

of dopaminergic medication on cognitive deficits. First, according to the overdose 

hypothesis (Cools, 2006; Price et al., 2009), the dosage of dopaminergic medication required 

to improve motor symptoms (i.e., restoring DA levels in the dorsal striatum) may result in 

too much DA in the ventral striatum (because DA innervation to the dorsal striatum is more 

affected than DA innervation to the ventral striatum in PD). The overdose hypothesis 

explains some of PD patients’ cognitive deficits as a result of the dopaminergic medication 

‘overdosing’ the ventral striatum (not included in the current version of COVIS). Second, 

some dopaminergic medications predominantly target the ventral striatum (e.g., D3 agonists; 

Foll, Gallo, Strat, Lu, & Gorwood, 2009) whereas others similarly increase DA levels in the 

whole striatum (e.g., levodopa; Cools, 2006). While D3 agonists, such as pramipexole, also 

bind to other receptors in the D2-class within the dorsal striatum, their effect on the ventral 

striatum can hardly be ignored. As such, the effect of dopaminergic medication cannot be 

modeled using the current computational implementation of COVIS.

It should be noted that even if a ventral striatum was added to COVIS, some major 

challenges would still have to be overcome before it would be possible to account for the 

published effects of medication on the cognitive performance of PD patients. In addition to 

the issues discussed above, building such a model is complicated by the fact that a number 

of different medications are used to treat PD, and many patients are prescribed a cocktail 

that includes two or more of these. The specific effects of some of these drugs is still unclear 

(e.g., anticholinergics), and to complicate things even further, a number of drugs have 

complex interactions that are poorly understood. In addition, there are important individual 

differences regarding the locus and extent of basal ganglia dysfunction in PD, and most 

studies do not currently control for these differences. For all these reasons, the simulations 

described in this article focus on PD patients “ON” medication.

The remainder of this article is organized as follows. First, we describe a computational 

implementation of COVIS with a focus on the role played by DA in the model. Second, we 

propose a model of how the DA deficits found in PD patients can be modeled within the 

COVIS framework. Third, we reproduce some of the PD deficits identified above by 
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simulating five well-known tasks (i.e., rule-based categorization, information-integration 

categorization, the WPT, the WCST, and the simplified WCST). Fourth, we conclude with a 

general discussion of alternative models of PD and discuss the implications of 

computational PD modeling for future research.

4. A computational implementation of COVIS

The computational version of COVIS includes three separate components—namely a model 

of the hypothesis-testing system, a model of the procedural-learning system, and an 

algorithm that monitors the output of these two systems and selects a response on each trial. 

Because the goal of this paper is to provide a COVIS-based account of PD, we present a 

verbal description of the COVIS subsystems, and only describe the equations directly related 

to DA levels. Note that none of the processes described in this implementation were added 

to account for PD cognitive deficits; they were all present in the initial formulation of 

COVIS published more than a decade ago (Ashby et al., 1998). The reader interested in a 

more recent full formal description of COVIS is referred to Hélie et al. (2012).

4.1. The hypothesis-testing system

The hypothesis-testing system in COVIS selects and tests explicit rules that determine 

category membership. The simplest rule is one-dimensional. More complex rules are 

constructed from one-dimensional rules via Boolean algebra (e.g., to produce logical 

conjunctions, disjunctions, etc.). The neural structures that have been implicated in this 

process include the prefrontal cortex, anterior cingulate, head of the caudate nucleus, and 

hippocampus (Ashby et al., 1998; Ashby, Ell, Valentin, & Casale, 2005; Hélie, Roeder, & 

Ashby, 2010). The computational implementation of the COVIS hypothesis-testing system 

is a hybrid neural network that includes both symbolic and connectionist components. The 

model’s hybrid character arises from its combination of explicit rule selection and switching 

and its incremental salience-learning component.

On each trial, the hypothesis-testing system computes a response using the following 

algorithm. Suppose rule Ri is used on trial n. A response for stimulus  is selected by 

computing a discriminant value  on the relevant rule dimension(s) and using the 

following decision rule:

(1)

where e is a normally distributed random variable with mean 0 and variance , and  is 

the signed distance between the stimulus and the category boundary (positive on one side 

and negative on the other). The variance  increases with trial-by-trial variability in the 

participant’s perception of the stimulus and memory of the decision criterion (i.e., perceptual 

and criterial noise). As argued in Ashby and Casale (2003),  is inversely related to cortical 

DA levels (for similar arguments, see also Durstewitz & Seamans, 2008; Frank, 2005; 

Moustafa & Gluck, 2010).
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After a response is given and feedback has been received, rule selection proceeds as follows: 

if the response on trial n was correct, then rule Ri is used again on trial n + 1 with probability 

1; if the response on trial n was incorrect, then the probability of selecting each rule in the 

set R for use on trial n + 1 is a function of each rule’s current weight. The weight associated 

with each rule is determined by the participant’s lifetime history with that rule, the reward 

history associated with that rule during the current categorization training session, the 

tendency of the participant to perseverate, and the tendency of the participant to select 

unusual or creative rules. Together, these factors determine rule salience.

On correct trials, the salience of the current rule is increased, but no further action is 

required (because the current rule is used again with probability 1). On incorrect trials, the 

first step is to decrease the salience of the current rule. Next, the salience of each rule is used 

to produce a weight Y, according to the following procedure. For the rule Ri that was active 

on trial n,

(2)

where Zi(n) is the salience of rule Ri on trial n, and the constant γ is a measure of the 

tendency of the participant to perseverate on the active rule, even though feedback indicates 

that this rule is incorrect. If γ is small, then switching will be easy, whereas switching is 

difficult if γ is large. COVIS assumes that switching of executive attention is mediated 

within the head of the caudate nucleus, and that the parameter γ is inversely related to basal 

ganglia DA levels (for a detailed argument, see Ashby et al., 1998).

After the active rule weight has been computed using Eq. (2), a rule is chosen at random 

from the list of all possible rules (including the active rule1). Call this rule Rj. The weight for 

this rule is

(3)

where Zj(n) is the salience of rule Rj on trial n, and X is a random variable that has a Poisson 

distribution with mean λ. Larger values of λ increase the probability that rule Rj will be 

selected for the next trial, so λ is called the selection parameter. COVIS assumes that a 

cortical network including the anterior cingulate and the prefrontal cortex mediates 

selection, and that λ increases with cortical DA levels (for a detailed argument, see Ashby et 

al., 1998). The weight of every other rule is set to its previous salience value (i.e., 

Yk(n)=Zk(n)).

Finally, rule Rk (for all k) is selected for use on trial n+1 with probability

(4)

where a is a parameter that determines how much variability there is in the selection 

process. When a<1, the selection is noisy and the probability differences are diminished 

1Note that if the active rule is selected (i.e., Rj=Ri), then the rule weight is updated by Eq. (3); not the rule salience.

Hélie et al. Page 7

Neuropsychologia. Author manuscript; available in PMC 2014 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(making the selection probabilities more uniform). When a<1, the selection becomes more 

deterministic—the rule with the greatest weight is almost always chosen. Hence, a can be 

interpreted as a gain parameter and, as such, COVIS assumes that a increases with cortical 

DA (Ashby & Casale, 2003; for similar arguments, see Durstewitz & Seamans, 2008; Frank, 

2005; Moustafa & Gluck, 2010).

This model has a number of attractive properties. First, the more salient the rule, the higher 

the probability that it will be selected, even after an incorrect trial. Second, after the first 

trial, feedback is used to adjust the selection probabilities up or down, depending on the 

success of the rule. Third, the model has separate selection and switching parameters, 

reflecting the COVIS assumption that these are separate operations. The random variable X 
models the selection operation. The greater the mean of X (i.e., λ) in Eq. (3), the greater the 

probability that the selected rule (Rj) will become active. In contrast, the parameter γ from 

Eq. (2) models switching, because when γ is large, it is unlikely that the system will switch 

away from to the currently active rule Ri. It is important to note, however, that with both 

parameters (i.e., λ and γ), optimal performance occurs at intermediate numerical values. For 

example, note that if λ is too large, some extremely low salience rules will be selected, and 

if γ is too low then a single incorrect response could cause a participant to switch away from 

an otherwise successful rule.

4.2. The procedural system

The current implementation of the procedural system is called the Striatal Pattern Classifier 

(SPC: Ashby, Ennis, & Spiering, 2007; Ashby & Waldron, 1999). The SPC learns to assign 

responses to regions of perceptual space. In such models, a decision bound could be defined 

as the set of all points that separate regions assigned to different responses, but it is 

important to note that in the SPC, the decision bound has no psychological meaning. As the 

name suggests, the SPC assumes that the key site of learning is at cortical-striatal synapses 

within the striatum.

The SPC architecture is shown in Fig. 1 for an application to a categorization task with two 

contrasting categories. This is a straightforward three-layer feedforward network with up to 

10,000 units in the input layer and two units each in the hidden and output layers. The only 

modifiable synapses are between the input and hidden layers. The more biologically detailed 

version of this model proposed in Ashby et al. (2007) included lateral inhibition between 

striatal units and between cortical units. In the absence of such inhibition, the top motor 

output layer in Fig. 1 represents a conceptual placeholder for the striatum’s projection to 

premotor areas.

The key structure in the model is the striatum (i.e., the putamen), which is a major input 

structure within the basal ganglia (Waldschmidt & Ashby, 2011). In humans and other 

primates, all of extra-striate cortex projects directly to the striatum and these projections are 

characterized by massive convergence, with the dendritic field of each medium spiny cell 

innervated by the axons of approximately 380,000 cortical pyramidal neurons (Kincaid, 

Zheng, & Wilson, 1998). COVIS assumes that, through a procedural-learning process, each 

striatal unit associates an abstract motor program with a large group of sensory cortical cells 

(i.e., all that project strongly to it). The dendrites of striatal medium spiny neurons are 
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covered in protuberances called spines. These play a critical role in the model because 

glutamate projections from sensory cortex and DA projections from the SNpc converge (i.e., 

synapse) on the dendritic spines of the medium spiny neurons. COVIS assumes that these 

synapses are a critical site of procedural learning.

Sensory cortex is modeled as an ordered array of up to 10,000 units, each representing a 

different radial-basis function. The model assumes that each unit responds maximally when 

its preferred stimulus is presented, and that its response decreases as a Gaussian function of 

the distance in stimulus space between the stimulus preferred by that unit and the presented 

stimulus. COVIS assumes that the activation of each striatal unit (within the middle or 

hidden layer) is determined by the weighted sum of activations in all sensory cortical cells 

that project to it. The striatal neuron with maximum activation produces more premotor 

activation and hence determines the model’s response.

The connection weights between sensory cortex and the striatum are modified using a 

reinforcement learning algorithm (Haykin, 2008). The three factors thought to be necessary 

to strengthen cortical-striatal synapses are (1) strong pre-synaptic activation, (2) strong post-

synaptic activation, and (3) DA levels above baseline (e.g., see Arbuthnott, Ingham, & 

Wickens, 2000). According to this model, the synapse between a neuron in sensory 

association cortex and a medium spiny neuron in the striatum is strengthened if the cortical 

neuron responds strongly to the presented stimulus, the striatal neuron is also strongly 

activated (i.e., factors 1 and 2 are present) and the participant is rewarded for responding 

correctly (factor 3). On the other hand, the strength of the synapse will weaken if the 

participant responds incorrectly (factor 3 is missing), or if the synapse is driven by a cell in 

sensory cortex that does not produce much activation in the striatum (i.e., factor 2 is 

missing).

The learning conditions described above require a model that specifies how much DA is 

released on every trial in response to the feedback signal. The key empirical results are 

(Schultz, Dayan, & Montague, 1997): (1) midbrain DA cells fire spontaneously (i.e., 

tonically), (2) DA release increases above baseline following unexpected reward, and the 

more unexpected the reward the greater the release, and (3) DA release decreases below 

baseline following unexpected absence of reward, and the more unexpected the absence, the 

greater the decrease. One common interpretation of these results is that over a wide range, 

DA firing is proportional to the reward prediction error (RPE), which is defined as the value 

of the obtained reward minus the value of the expected reward. In all the simulations 

included herein, we defined the value of obtained reward as +1 if the feedback was positive 

and −1 if the feedback was negative. Following, Ashby and Crossley (2011), expected 

reward was computed using the single-operator learning model (Bush & Mosteller, 1955).

Bayer and Glimcher (2005) reported activity in midbrain DA cells as a function of RPE. A 

simple model that nicely matches their results is
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(5)

where Dmax, Dslope, and Dbase are constants. This model is illustrated in Fig. 2. Note that the 

baseline DA level is Dbase (i.e., when the RPE=0) and that DA levels increase linearly with 

the RPE between 0 and Dmax. In general, higher values of Dmax allow for a larger increase in 

DA following unexpected reward, higher values of Dbase allow for a larger decrease of DA 

following the unexpected absence of reward, and higher values of Dslope increase the effect 

of RPE on DA release. Thus, increasing the value of any of these constants should improve 

learning in the procedural system (up to a point).

4.3. Resolving the competition between the hypothesis-testing and procedural systems

Because on any trial the model can make only one response, the final task is to decide which 

of the two systems will control the observable response. In COVIS, this competition is 

resolved by combining two factors: the confidence each system has in the accuracy of its 

response, and how much each system can be trusted. In the case of the hypothesis-testing 

system, confidence equals the absolute value of the discriminant function (as in Eq. (1)). 

When the value is small, the stimulus is close to the hypothesis-testing system’s decision 

bound, so the model has no confidence in its ability to predict the correct response. When 

the discriminant value is large, the stimulus is far from the bound and confidence is high. In 

the procedural system, confidence is defined as the difference between the maximum striatal 

activation and the mean striatal activation. Here the rationale is similar to that of the 

hypothesis-testing system: when the stimulus is equally activating all of the striatal units, the 

procedural system has no confidence in its ability to predict the correct response, but when 

one unit is activated much more strongly than the others, the evidence strongly favors one 

response over the others.

The amount of trust that is placed in each system is a function of an initial bias toward the 

hypothesis-testing system, and the previous success history of each system. In typical 

applications, COVIS assumes that the initial trust in the hypothesis-testing system is much 

higher than in the procedural system, partly because initially there is no procedural learning 

to use. As the experiment progresses, feedback is used to adjust the two system weights up 

or down depending on the success of the relevant component system. Finally, confidence 

and trust are combined multiplicatively and the system with the highest resulting value 

determines the overall response.

5. Modeling Parkinson’s disease with COVIS

DA cells in the SNpc and the ventral tegmental area (VTA) die in PD, which results in 

decreased DA levels in the prefrontal cortex and the striatum. In COVIS, DA has a 

differential effect on the hypothesis-testing and procedural systems. In the hypothesis-testing 

system, COVIS assumes that selection and switching both depend on brain DA levels. In 

particular, selection should improve as levels of DA rise in frontal cortex (up to some 

optimal level), and switching should improve if levels of DA rise in the head of the caudate 
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nucleus (Ashby et al., 1998). Thus, the selection parameter λ should increase with DA levels 

in frontal cortex, and the switching parameter γ is assumed to decrease with increased DA 

levels in the caudate nucleus. In addition, it has been argued that DA in the prefrontal cortex 

increases signal-to-noise ratio (Ashby & Casale, 2003; Frank, 2005; Durstewitz & Seamans, 

2008; Moustafa & Gluck, 2010). Hence, a in Eq. (4) should increase with DA levels (similar 

to λ), and  should decrease with more DA (similar to γ).

In the procedural system, DA plays a crucial role in learning: it provides the reward signal 

required for reinforcement learning. A decreased DA baseline or range can affect the ability 

of the procedural system to learn stimulus-response associations. Hence, decreasing DA 

levels in the striatum should decrease the values assigned to Dbase, Dslope, and Dmax. Note 

that the hypothesis-testing and procedural systems mostly rely on different nuclei of the 

striatum (head of the caudate nucleus and putamen, respectively). As such, striatal DA levels 

have a different effect on the hypothesis-testing and procedural systems that happen on 

different time scales: rule switching in the head of the caudate nucleus happens within a trial 

(for hypothesis-testing) whereas procedural learning in the putamen requires several trials of 

practice (for dopamine mediated reinforcement learning). This is consistent with lesion 

studies, which show that lesions to the caudate nucleus generally produce more ‘cognitive’ 

deficits while lesions to the putamen generally produce more ‘motor’ deficits (Bhatia & 

Marsden, 1994).

Many factors are known to affect brain DA levels including age, mood, genetic 

predisposition, drug-taking history, and neuropsychological patient status (Ashby, Isen, & 

Turken, 1999). For example, brain DA levels are known to decrease by approximately 7% 

per decade of life due to normal aging, and PD patients are thought to have lost at least 70% 

of their birth DA levels (Gotham et al., 1988; Price et al., 2009). Also, many studies, 

including those simulated in this article, do not systematically control the time since the last 

dose of dopaminergic medication for PD patients “ON” medication. For this reason, it is 

reasonable to assume that, on average, PD patients “ON” medication have less DA than age-

dmatched controls, who in turn have less DA than young control participants. Moreover, the 

more severe the PD symptoms (as measured by, e.g., the Hoehn and Yahr scale), the lower 

the DA level. Hence, in COVIS, we model an ordinal relationship where DA(young adults; 

YC)≥DA(old adults; OC)≥DA(PD)≥DA(severe PD; SPD) (where more DA results in lower 

γ and , and higher λ, a, Dbase, Dslope, and Dmax).

Note that Dbase and Dmax, which represent the range of DA, were calculated to reflect the 

proportion of DA cells remaining as a function of age and diagnosis (Hélie et al., 2012). For 

instance, in the studies considered here, young adults (YC) are usually undergraduate 

students in their late teens or early 20s. Hence, they should have approximately 86% of their 

birth DA levels (assuming they lost 7% of birth DA per decade of life). Typically, these 

participants have been modeled with Dbase=0.20 and Dbase=1.00 (e.g., Ashby & Crossley, 

2011; Ashby et al., 2011). Likewise, age-matched controls (OC) are typically about 70 years 

old and should thus have 50% of their birth DA level. As such, their Dbase was set to 0.15 

and their Dmax was set to 0.60. Finally, on average, PD patients are predicted to have 30% of 

their birth DA remaining. Hence, their Dbase was set to 0.10 and their Dmax was set to 0.35.2 
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Thus, only five DA-related parameters were varied in the simulations (i.e., γ, , λ, a, and 

Dslope).

6. Simulations

In this section, we test the COVIS model of PD patient deficits against data from five well-

known tasks, namely rule-based categorization, information-integration categorization, the 

WPT, the WCST, and the simplified WCST. The values given to the DA-related parameters 

in all simulations are shown in Table 1. Only these parameters were varied to simulate the 

different participant populations. In addition to these DA-related parameters, COVIS also 

requires setting some task-related parameters (which did not vary when modeling the 

different participant populations). These are shown in Table 2. Note that a single set of 

parameters was used to simulate the WCST (Beatty et al., 1989) and the simplified WCST 

(Gotham et al., 1988). However, different parameter values were used in the two perceptual 

categorization tasks because Ashby et al. (2003) used discrete-value stimuli (modeled using 

binary values [0, 1]) whereas Filoteo et al. (2005) used continuous-value stimuli (modeled 

continuously [0,…,100]). The WPT also used a different set of parameter values because of 

rule complexity.

It is important to note that the unit of measurement of almost all parameters in the model is 

arbitrary (as in most computational models). For example, it is straightforward to rescale 

parameters in a way that reduces the DA parameters by any arbitrary factor (e.g., in much 

the same way that a z-transform rescales the variance to a value of 1). This would reduce the 

change in the value of the DA parameters across applications by the same factor. Thus, the 

ordering of DA parameters within an application is important, but differences in the 

magnitude of these values across applications are not.

None of the parameter estimates were optimized; reasonable values were assigned using a 

rough grid search. Specifically, we used the model to fit the control data in each task. Then, 

a number of DA-related parameters were varied to fit the experimental group(s). Overall, 24 

parameter values were used to account for 33 data points, leaving a total of 9 degrees of 

freedom to test the model validity. The robustness of the model to exact parameter values 

was also tested. Specifically, we performed a sensitivity analysis for each DA parameter in 

each simulation (Hélie et al., 2012). For each parameter listed in Table 1, we successively 

changed the parameter estimate from the value used to fit the data by 710%. After each 

change, we simulated the behavior of the model in the same conditions used to simulate the 

task. Next, after each new simulation (and for each condition), we computed the mean root 

squared error (MRSE) between the simulated learning curves (used to fit the data) and the 

learning curve produced by the new version of the model. The MRSE has the advantage of 

being on the same scale as the simulated dependent variable. To identify the most relevant 

parameters in each simulation, we also ran the sensitivity analysis with a change of 795% of 

the parameter values. The results will be discussed in each simulation’s ‘Results and 

discussion’ subsection.

2Because the Hoehn and Yahr scale does not directly measure DA levels, we did not use different values of Dbase and Dmax for PD 
and SPD.
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6.1. Perceptual categorization

The first series of simulations address two key results regarding PD deficits in perceptual 

categorization. First, PD patients exhibit impaired performance in rule-based categorization 

compared to normal age-matched controls, but perform as well as age-matched controls in 

(linear) information-integration categorization (Ashby et al., 2003). Second, follow-up 

studies replicate the finding that PD patients are not impaired in linear information-

integration categorization, but instead observe PD deficits relative to age-matched controls 

in non-linear information-integration categorization (Filoteo et al., 2005).

6.1.1. Rule-based vs. linear information-integration categorization—Ashby and 

his colleagues (2003) compared the performances of 16 PD patients in rule-based and 

information-integration categorization tasks with the performance of 15 aged-matched (OC) 

controls and 109 undergraduate students (YC). The stimuli varied on the four binary-valued 

dimensions of background color, symbol color, symbol shape, and number of symbols. The 

resulting 16 possible stimuli were separated into two categories of equal sizes with a 

different stimulus assignment in each of the categorization conditions. In the rule-based 

condition, a stimulus dimension was selected randomly, and stimuli were assigned to 

different categories based on their value on the selected dimension. In the information-

integration condition, one dimension was randomly selected to be irrelevant. Next, one level 

from each of the remaining dimensions was randomly assigned a numerical value of 1 and 

the other level was assigned a value of 0. One category included all 8 stimuli for which the 

sum of the assigned numerical values across the three relevant dimensions was greater than 

1.5. The 8 stimuli for which this sum was less than 1.5 were assigned to the contrasting 

category. Note that the rule-based categories were easily verbalizable (e.g., blue vs. yellow 

background) whereas no such simple verbalizable rule was available for the information-

integration categories.

If a participant was able to correctly classify 10 consecutive stimuli before reaching the 200-

trial limit, s/he was classified as a ‘learner’. Otherwise, the participant was classified as a 

‘non-learner’. The dependent measure was the proportion of ‘non-learners’ in each 

participant group in each categorization condition. The results show that, compared with 

older controls, PD patients were impaired in learning the rule-based categories but not the 

information-integration categories (see Fig. 3, left panel).

6.1.2. Linear vs. non-linear information-integration categorization—Filoteo et al. 

(2005) further tested the performance of 20 PD patients and 20 aged-matched controls in 

information-integration categorization. The stimuli were lines that continuously varied in 

length and orientation and were separated into two different categories using either a linear 

or a non-linear (quadratic) bound. As in Ashby et al. (2003), no simple verbalizable rule 

could yield optimal performance in either condition.

Each participant was trained for 600 trials on each category structure (in separate sessions). 

The dependent measure was the proportion of correct classifications in each block of 100 

trials. The results showed that, compared with aged-matched controls, PD patients are 
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impaired in non-linear information-integration but not in linear information-integration 

category learning (Fig. 4, left column).

6.1.3. Simulation—For the Ashby et al. (2003) data, 500 simulations were run for each 

participant group in each categorization condition with the COVIS model described in 

Section 4. The procedural system received an object-based representation of the stimuli 

while the hypothesis-testing system received a feature-based representation. The stimuli 

were all perceptually distinct, so for the procedural system each stimulus was represented as 

a 16-dimensional vector. For stimulus i, this vector had a value of 1 in row i and 0 in all 

other rows. In contrast, the stimuli presented to the hypothesis-testing system were 4-

dimensional binary vectors. The entry in row i was set to 1 if feature i had one value and 0 if 

it had the other. Each system received a separate copy of the feedback. The simulation 

results are shown in Fig. 3 (right panel).

For the Filoteo et al. (2005) data, 200 simulations were run for each participant group in 

each condition. The simulation details were the same as for Ashby et al. (2003) except for 

the following. In this simulation, the stimulus-values were continuous (perceptually 

confusable) and generated using the same distributions described in Filoteo et al.3 Hence, 

the procedural system input was modeled using two radial-basis functions (as described in 

Hélie et al., 2012) centered at (line length, line orientation) coordinates (30, 50) and (70, 50) 

(respectively) with a common variance of 125 and no covariance. The stimulus presented to 

the hypothesis-testing system was the (continuous) stimulus value on the dimension 

specified by the selected rule (either the line length or the line orientation coordinate). The 

criterion used for each rule was the mean value of the stimulus set on the dimension of the 

relevant rule. The simulation results are shown in the right column of Fig. 4.

6.1.4. Results and discussion—Figs. 3 and 4 show that COVIS did a good job of 

simulating the performance of the younger controls, older controls, and PD patients for both 

rule-based and information-integration category structures. As in the human data, the PD 

version of the model was impaired compared to the simulated age-matched controls in rule-

based and non-linear information-integration categorization, but not in linear information-

integration categorization. The performance of the simulated younger controls was better 

than the older controls and PD patients in rule-based and informationintegration 

categorization tasks.

The parameter sensitivity analysis shows that changing the DA-related parameters by 

7±10% produced a RMSE of only 2.5% for the Ashby et al. (2003) simulation and 1% for 

the Filoteo et al. (2005) simulation. Further, analyses on individual parameters suggest that 

the same parameters account for the most variance in both simulations, namely  and 

Dslope. These parameters correspond to noise on the decision criterion of the hypothesis-

testing system and the effect of feedback on DA released in the procedural system 

(respectively). Overall, these good fits were achieved by varying only DA-related 

parameters, each of which was theoretically justified and had a clear conceptual meaning.

3For simplicity, the stimulus space was re-scaled between 0 and 100.

Hélie et al. Page 14

Neuropsychologia. Author manuscript; available in PMC 2014 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6.2. Probabilistic classification

This simulation addresses PD deficits in learning probabilistic classification tasks. The main 

results are that, compared to aged-matched controls, PD patients achieve a lower accuracy 

score and that the more severe the disease, the larger the deficit.

6.2.1. The Weather Prediction Task (WPT)—The WPT is one of the most popular 

probabilistic classification tasks (Gluck, Shohamy & Myers, 2002). In the WPT, participants 

are asked to predict whether the outcome of each trial will be “rain” or “sun” as a function 

of four possible cue cards. Each cue card is independently associated with the outcome 

“sun” with probability 0.75, 0.57, 0.43, and 0.25 (respectively). On each trial, the 

participants see one, two, or three cue cards and make predictions about the trial outcome 

(i.e., “rain” or “sun”). Accuracy feedback is then provided. The dependent variable is 

response accuracy.

Knowlton et al. (1996) tested 20 non-demented PD patients and 15 aged-matched controls in 

the WPT. The results for the first 50 trials are shown in Fig. 5 (left panel). As can be seen, 

aged-matched controls quickly learned the task and achieved an accuracy of about 70%. In 

contrast, the PD patients failed to learn the task and only achieved about 55% correct. In 

addition to these results, Knowlton and her colleagues investigated patients with the most 

severe PD symptoms (Hoehn and Yahr scale ≥3; n=10). These patients performed at chance 

throughout the task (SPD in the figure).

6.2.2. Simulation—Three hundred simulations were run for each participant group with 

the COVIS model described in Section 4. The procedural system received an object-based 

representation of the stimuli while the hypothesis-testing system received a feature-based 

representation. The stimuli were all perceptually distinct, so for the procedural system each 

stimulus was represented as a 14-dimensional vector. For stimulus i, this vector had a value 

of 1 in row i and 0 in all other rows. In contrast, the stimuli presented to the hypothesis-

testing system were 4-dimensional binary vectors. The entry in row i was set to 1 if cue card 

i was present and 0 otherwise. On each trial, the hypothesis-testing system selected a rule 

that focused its attention on a subset of the cue cards. All possible combinations of cue cards 

were represented as rules (for a total of 14 rules). In line with COVIS’ assumptions about 

rule complexity (Ashby et al., 1998), the initial saliency of all the rules focusing on only 1 

cue card was set to 0.2 (4 rules), the initial saliency of all rules focusing on 2 cue cards 

simultaneously was set to 0.025 (6 rules), and the saliency of all rules focusing on 3 cue 

cards simultaneously was set to 0.0125 (4 rules). On each trial, the hypothesis-testing system 

chose the most likely outcome by considering only the cue cards specified by the selected 

rule (i.e., using the conditional probability of the outcomes, as computed in Knowlton, 

Squire, & Gluck, 1994). As in the previous simulations, each system received a separate 

copy of the feedback. The simulation results are shown in Fig. 5 (right panel).

6.2.3. Results and discussion—Fig. 5 shows that COVIS did a good job of simulating 

the performance of the aged-matched controls, PD patients, and severe PD patients in the 

WPT. As in the human data, the PD version of the model was impaired compared to the 

simulated age-matched controls, and severe PD performed at chance throughout the 
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experiment. The parameter sensitivity analysis shows that changing the DA-related 

parameters by ±10% produced a RMSE of only 1%. Analyses on individual parameters 

suggest that  and λ accounted for the most variance in the simulation. These parameters 

correspond to noise on the decision criterion of the hypothesis-testing system and rule 

selection. These are both parameters of the explicit system, which suggests that the model is 

largely treating the WPT as an explicit task. Empirical evidence suggests humans also solve 

the WPT using explicit strategies (Gluck et al., 2002), even though the WPT was originally 

designed as an implicit task. Again, the good fits of COVIS were achieved by varying only 

DA-related parameters, each of which was theoretically justified and had a clear conceptual 

meaning.

6.3. Rule maintenance and perseveration

The next two simulations address PD deficits in rule maintenance and perseveration. The 

key results are that compared to age-matched controls, PD patients display a larger number 

of set-loss errors and perseverative responses (Beatty et al., 1989). In addition, their more 

frequent perseverative errors lead to difficulties in achieving a learning criterion (Beatty et 

al., 1989; Gotham et al., 1988). On the other hand, PD patients do not produce more non-

perseverative errors than age-matched controls (Beatty et al., 1989; Gotham et al., 1988). 

Note that only one set of parameter values was used to simulate the WCST and the 

simplified WCST.

6.3.1. The Wisconsin Card Sorting Test (WCST)—The WCST is a popular clinical 

measure of conceptual ability and hypothesis testing. In short, the experimenter has a deck 

of cards with a variety of figures displayed on each card. The cards differ in the shape, 

number, and color of the figures. Each one of these dimensions has four possible values (for 

a total of 43=64 different cards). On each trial, the participant is shown a card and asked to 

categorize it using a rule on one of the dimensions. After 10 consecutive correct 

categorizations, the dimension relevant for categorization is changed (without telling the 

participants). The experiment ends after the participant has reached the categorization 

criterion six times or the deck of cards has been cycled twice (i.e., 128 stimuli).

Beatty et al. (1989) tested 25 PD patients and 13 age-matched control participants. The 

dependent measures were the number of sorts completed, the number of perseverative errors 

(error trials where the previously correct rule is used), the number of non-perseverative 

errors (error trials that are not perseverative errors), the number of set loss errors (when five 

or more consecutive correct responses are followed by an error), and the number of 

perseverative responses. All these measures were calculated as described in Heaton et al. 

(1993). The results are shown in Fig. 6 (left panel). As evidenced in the figure, the PD 

patients completed fewer sorts and committed more set-loss errors than age-matched 

controls. There was also a tendency toward more perseverative errors and responses for the 

PD patients, but these differences did not reach statistical significance.

6.3.2. The simplified WCST—Gotham et al. (1988) compared the performance of 16 PD 

patients with 16 age-matched controls on a battery of psychological tests. One of the tasks 

used was the simplified WCST (Nelson, 1976), which is similar to the ‘regular’ WCST but 
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uses only a subset of 24 cards. The criterion for rule switching is 6 consecutive correct 

responses, and the participants are explicitly told when the rule changes. The experiment 

ends after 6 sorts have been completed or the entire set of cards has been seen twice (i.e., 48 

stimuli). The dependent measures are the number of sorts completed, the number of 

perseverative errors, and the number of non-perseverative errors. The results showed that 

PD patients achieved fewer sorts and made more perseverative errors than age-matched 

controls (see Fig. 7, left panel).

6.3.3. Simulations—For the WCST, 200 simulations were run for each participant group 

with the COVIS model described in Section 4. As in the previous simulations, the 

procedural system received an object-based representation of the stimuli whereas the 

hypothesis-testing system received a feature-based representation. The stimuli presented to 

the procedural system were 64-dimensional binary vectors, with a 1 in row i for stimulus i 

and a 0 in all other rows. The stimuli presented to the hypothesis-testing system were 12-

dimensional binary vectors. Rows 1–4 encoded the value of feature 1, with a separate row 

for each level of the feature. Row i had a value of 1 if feature 1 had value i (i=1,…,4) and 

the other 3 rows had a value of 0. Rows 5–8 encoded the value of feature 2 using this same 

coding scheme, and rows 9–12 encoded the value of feature 3. Each system received a 

separate copy of the feedback. The simulation results are shown in Fig. 6 (right panel).

For the simplified WCST, 200 simulations were run for each participant-group with the 

COVIS model described in Section 4. The simulation methodology and parameter values 

were the same as in the WCST. Note that, while the whole deck of WCST cards was 

represented, only 24 stimuli were used (corresponding to the subset of cards used in the 

simplified WCST). Because the participants were told when the rule changed, the rule 

saliences were reset after each sort (i.e., whenever 6 consecutive correct responses 

occurred). The simulation results are shown in Fig. 7 (right panel).

6.3.4. Results and discussion—For both the WCST and the simplified WCST, the 

COVIS simulations provide a good match to the PD patient and control data on all five 

dependent measures using a single set of parameter values. As in the human data, the PD 

version of the model had a larger number of set-loss errors and perseverative responses, as 

well as a larger number of perseverative errors, which led to difficulties in achieving the 

learning criterion (compared with simulated aged-matched controls). Because the sensitivity 

analysis yields results that are scaled with the simulated dependent variable, a separate 

analysis was run for each measure. The results are shown in Table 3. As can be seen, the 

model performance is highly robust on all dependent variables. In addition, the same 

parameters accounted for the most variance in both tasks, even though the measures are 

calculated differently in the two versions of the WCST. This further supports the stability of 

the model. Analyses on individual parameters suggest that, similar to the WPT,  and λ 

accounted for the most variance overall in both simulations. These parameters correspond to 

noise on the decision criterion of the hypothesis-testing system and rule selection. It is 

critical to note that this good fit was achieved by using only DA-related parameter values, 

without any ad hoc hypotheses or arbitrary parameter changes. This suggests that COVIS is 
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an adequate model of the behavioral deficits observed in PD patient in tasks that evaluate 

hypothesis-testing performance.

7. General discussion

This article proposed a formal account of a variety of cognitive deficits commonly displayed 

by PD patients that is based on the COVIS model of categorization (Ashby et al., 1998). 

Without adding any extra parameters or assumptions to the COVIS model of categorization 

(Ashby et al., 1998, 2011), the model achieved a good fit of the data in perceptual 

categorization, probabilistic classification, the WCST, and the simplified WCST. These 

tasks were used to highlight PD deficits in rule-based categorization (Ashby et al., 2003), 

non-linear information-integration categorization (Filoteo et al., 2005), the WPT (Knowlton 

et al., 1996), and rule maintenance and switching (Beatty et al., 1989; Gotham et al., 1988). 

It is noteworthy that differential performance between younger adults, older adults, PD 

patients, and severe PD patients was achieved simply by changing the amount of DA 

available in the model. This suggests that COVIS may be an adequate model, not only of the 

tasks and phenomena presented herein but also more generally of the role of DA in these 

tasks and phenomena. Changing the amount of DA available to the model reproduces 

behavioral patterns of different human participant populations who correspondingly have 

different numbers of DA producing cells in the SNpc and the VTA as a consequence of 

aging or of disease. Sensitivity analyses further suggested that the most important 

parameters to simulate PD cognitive deficits are , λ, and Dslope. These parameters 

correspond to noise on the decision criterion of the hypothesis-testing system, the tendency 

to select new rules, and the sensitivity (i.e., gain) of the DA system to changes in RPE.

7.1. Other computational models of PD

Very few computational models of PD have been proposed. Monchi, Taylor, and Dagher 

(2000) used a working memory model to simulate PD deficits. Their model include three 

basal ganglia-thalamocortical loops: two with the prefrontal cortex (one for spatial 

information and the other for object information), and one through the anterior cingulate 

gyrus (for strategy selection). PD is simulated in the Monchi et al. model by reducing the 

connection strengths between the cortex and the caudate, and between the caudate and the 

internal segment of the globus pallidus (with reduction of the latter strengths being twice as 

large as the former). The model was used to simulate a delayed response task, a delayed 

match-to-sample task, and the WCST. In all of these tasks, PD deficits are accounted for by 

improper encoding of the stimuli in working memory.

An alternative model was proposed by Frank (2005) to explain cognitive deficits in PD. This 

model includes basal ganglia-thalamocortical loops with an emphasis on a more biologically 

detailed model of the basal ganglia that included both the direct and indirect pathways. In 

Frank’s model, PD is simulated by lesioning SNpc DA cells to reduce the range of DA in 

the basal ganglia. This reduction in DA’s dynamic range reduces activation in the direct 

pathway (through D1 receptors) and amplifies activation in the indirect pathway (through 

D2 receptors). In addition, DA plays the role of the reward signal in synaptic plasticity. This 

model has been used to simulate a probabilistic classification task and a probabilistic 

Hélie et al. Page 18

Neuropsychologia. Author manuscript; available in PMC 2014 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



reversal learning task. In both tasks, PD deficits were explained by abnormal direct/indirect 

pathway interactions.

More recently, Moustafa and Gluck (2010, 2011) proposed a new computational model of 

PD deficits. Their model is a three-layer feed-forward connectionist network where the input 

activates the prefrontal cortex, which in turn activates the striatum to produce a response. 

Similar to Frank (2005), the role of tonic DA is to modulate neural activation and the role of 

phasic DA is to facilitate synaptic plasticity. However, the Moustafa and Gluck model 

allows for differential effects of DA in the prefrontal cortex and striatum by varying the 

slope of the transfer functions and learning rates separately for neurons in these two regions. 

The model has been used to simulate instrumental conditioning, probabilistic classification, 

and probabilistic reversal learning tasks. PD impairments in these tasks were explained by 

noisy activation and learning.

7.2. Theoretical implications

One of the main contributions of the COVIS simulation of PD deficits is that it brings into 

focus the different roles of DA in different brain regions. In the Monchi et al. (2000) and 

Frank (2005) models, the simulated role of DA was restricted to producing abnormal 

dynamics in the basal ganglia. Moustafa and Gluck (2010, 2011) were the first to 

independently simulate the role of DA in the prefrontal cortex and striatum, but the role of 

DA was the same in both regions: activation gain and learning rate. In COVIS, DA can be 

independently manipulated in the prefrontal cortex and basal ganglia, but it also has a 

different role in each region. In the prefrontal cortex, DA facilitates rule selection and 

increases signal gain (reducing noise). In the basal ganglia, DA facilitates rule switching (in 

the hypothesis-testing system) and synaptic plasticity (in the procedural system). This dual 

role is made possible by the COVIS subsystems each relying mostly on different basal 

ganglia structures (the caudate nucleus and putamen for the hypothesis-testing and 

procedural systems, respectively). These differential roles of DA in the prefrontal cortex and 

the basal ganglia not only allowed for the explanation of a wide range of tasks and 

phenomena, but also allowed for a more fine-grained account of the deficits in each task. For 

instance, COVIS predicts that in rule-based categorization tasks the primary behavioral 

effect of DA deficits in the basal ganglia should be to impair rule switching. In information-

integration tasks, however, DA reductions in the basal ganglia should mostly affect synaptic 

plasticity. Previous modeling of PD performance did not allow for this level of specificity.

Another interesting contribution of the present modeling is that it predicts that PD patients 

may often not be using the same response strategies as control participants. According to 

COVIS, humans are initially biased toward using their hypothesis-testing system, and switch 

away to the procedural system only if the hypothesis-testing system does not attain 

satisfactory performance. However, the hypothesis-testing system is heavily impaired in PD 

patients, so one prediction is that PD patients will often switch away from explicit strategies 

even in tasks where a rule-based strategy is optimal. This phenomenon was observed in 

many of our simulations, where most responses from the simulated controls were produced 

by the hypothesis-testing system, but about half of the responses made by the simulated PD 
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patients were produced by the procedural system. This is a qualitative prediction that should 

be tested empirically in the future.

7.3. Limitations and future work

While COVIS is successful at accounting for many behavioral phenomena observed in PD, 

it cannot yet account for at least three PD-related abnormalities. First, differential behavioral 

effects of dopaminergic medication have been observed in PD (e.g., Cools et al., 2006; 

Frank, Seeberger, & O’reilly, 2004; Gotham et al., 1988), and two of the PD models 

reviewed in Section 7.1 have proposed a computational account of PD medication effects 

(Frank, 2005; Moustafa & Gluck, 2010). We have not made a similar attempt with COVIS 

for two different reasons. First, Cools et al. (2006) report that different PD medications may 

have different behavioral effects. For instance, post hoc analyses suggest that only patients 

treated with pramipexole (a D3 agonist) were impaired in reversal learning. Bódi et al. 

(2009) found a similar but non-specific impairment in reversal learning for PD patients 

using a variety of D3 agonists. Most papers where PD patients are tested ON medication 

report which medications appear in their samples, but do not delineate the ON medication 

patients according to drug. Hence, it would be difficult to simulate the exact behavioral 

effects of different PD-related drugs within a particular sample of patients, especially 

considering that the affinity of D3 agonists is highest for D3 receptors (affinity for D2 and 

D4 receptors is lower), and that these receptors are mostly expressed in the ventral striatum 

(Foll et al., 2009). As mentioned earlier, this structure is not part of the COVIS model of 

categorization (Ashby et al., 1998, 2011). The issue of medication is further complicated by 

the observation that dopaminergic treatments have different effects depending on the 

progression of the disease and this interaction very well could be drug dependent. Second, a 

recent review of behavioral PD deficits posits that, because of the gradient of DA loss within 

the striatum, dopaminergic medication required to restore normal-like functionality can 

effectively “overdose” other regions of the striatum that are less afflicted (Price et al., 2009). 

The computational version of COVIS implemented herein has specific DA parameters for 

different regions in the striatum and prefrontal cortex, but the gradient effects of 

dopaminergic medication may exceed the spatial resolution of the COVIS DA parameters. 

However, it should be noted that the effect of the values given to the DA parameters on 

COVIS’ performance follows a U-shape function. As shown in this article, values that are 

too low result in poor performance (e.g., difficulty in rule switching and selection), but 

values that are too high will also yield poor performance (e.g., propensity to switch to or 

select a new rule on every trial). This could allow for a natural explanation for some PD 

deficits that are worsened by dopaminergic (over) medication (for a review, see Price et al., 

2009). Thus, while the variable effects of medication on PD performance were not addressed 

by the current computational model, future work with COVIS could be devoted to adding 

the ventral striatum to the model and attempting to investigate the differential effects of PD 

medications when these become more reliably reported in published articles.

Second, attention has recently been devoted to understanding patterns of abnormal neuronal 

synchrony in a variety of disorders (Uhlhass & Singer, 2006). It is hypothesized that 

aberrant discharge rates evident in PD are related to motor deficits (e.g., tremor) and these 

observations are being considered to update models of normal/abnormal BG function 
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accordingly (Hammond, Bergman, & Brown, 2007; Wichmann & DeLong, 1996). Although 

a COVIS implementation with spiking neurons has been proposed (e.g., Ashby et al., 2007; 

Ashby & Crossley, 2011), firing synchrony has not been explored. Such explorations could 

allow for a deeper investigation of abnormal neural synchrony exhibited in PD and its 

corresponding cognitive effects.

Finally, it has been hypothesized that schizophrenia may also be characterized by DA 

imbalances (e.g., Cohen & Servan-Schreiber, 1992). As such, the Monchi et al. (2000) and 

Moustafa and Gluck (2011) models of PD have also tried to address schizophrenia. In 

Monchi et al., schizophrenia is explained by problems with selecting working memory items 

due to a decrement of mesolimbic DA. In Mustafa and Gluck, schizophrenia is caused by 

damage to the hippocampus, which is used to pre-process the stimuli. COVIS does not 

include a detailed model of the hippocampus. As such, we would adopt an approach similar 

to other models that manipulate DA (e.g., Cohen & Servan-Schreiber, 1992; Monchi et al., 

2000) to reflect the particular imbalance of DA in schizophrenic patients. For example, DA 

in the head of the caudate nucleus and the prefrontal cortex could be manipulated. Future 

work should allow us to determine whether these manipulations to DA parameters in COVIS 

could produce cognitive deficits similar to those observed in schizophrenia.
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Fig. 1. 
A schematic illustrating the architecture of the COVIS procedural system.
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Fig. 2. 
Model used to relate the amount of dopamine (DA) released as a function of the reward 

prediction error (RPE).

Hélie et al. Page 25

Neuropsychologia. Author manuscript; available in PMC 2014 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Human and simulation data for the categorization task of Ashby et al. (2003). RB=rule-

based; II=information-integration.
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Fig. 4. 
Human and simulation data for the information-integration categorization task of Filoteo et 

al. (2005).
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Fig. 5. 
Human and simulation data for the WPT of Knowlton et al. (1996). Each block contains 10 

trials. SPD=severe PD.
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Fig. 6. 
Human and simulation data for the WCST from Beatty et al. (1989).
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Fig. 7. 
Human and simulation data for the simplified WCST from Gotham et al. (1988).
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Table 2

Task-related parameters in COVIS.

Parameters Ashby et al. (2003) Filoteo et al. (2005) Knowlton et al. (1996) WCST/simplified WCST

ΔC 0.0025 0.0400 0.0380 0.4553

ΔE 0.0200 0.0100 0.0180 0.6827

θNMDA 0.0020 0.1500 0.0020 0.0570

θAMPA 0.0010 0.0010 0.0010 0.0001

ΔOC 0.0100 0.0050 0.0100 0.0500

ΔOE 0.0400 0.0400 0.0200 0.0010

Note: The role of these parameters is described in Ashby et al. (2011) and Hélie et al. (2012). WCST/simplified WCST shows a common set of 
parameter values for Gotham et al. (1988) and Beatty et al. (1989).
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Table 3

Sensitivity analyses in the WCST and simplified WCST.

Dependent variables MRSE Highest variance

WCST

 Sorts 0.2

, λ

 Perseverative errors 2.1 λ,a

 Non-perseverative errors 0.8

, λ

 Set-loss errors 0.1

, λ

 Perseverative responses 2.4 λ, γ

Simplified WCST

 Sorts 0.2

, λ

 Perseverative errors 0.5 λ,a

 Non-perseverative errors 0.5

, λ

Note: Each DA-related parameter was varied by ±10% to calculate the MRSE for each dependent measure. Highest variance parameters were 
identified by varying each DA-related parameter by ±95%.
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