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Statistical methods of automated decision making and modeling have been invented (and 

reinvented) in numerous fields for more than a century. Important problems in this arena 

include pattern classification, regression, control, system identification, and prediction. In 

recent years, these ideas have come to be recognized as examples of a unified concept 

known as machine learning, which is concerned with 1) the development of algorithms that 

quantify relationships within existing data and 2) the use of these identified patterns to make 

predictions based on new data. Optical character recognition, in which printed characters are 

identified automatically based on previous examples, is a classic engineering example of 

machine learning. But this article will discuss very different ways of using machine learning 

that may be less familiar, and we will demonstrate through examples the role of these 

concepts in medical imaging.

Machine learning has seen an explosion of interest in modern computing settings such as 

business intelligence, detection of e-mail spam, and fraud and credit scoring. The medical 

imaging field has been slower to adopt modern machine-learning techniques to the degree 

seen in other fields. However, as computer power has grown, so has interest in employing 

advanced algorithms to facilitate our use of medical images and to enhance the information 

we can gain from them.

Although the term machine learning is relatively recent, the ideas of machine learning have 

been applied to medical imaging for decades, perhaps most notably in the areas of computer-

aided diagnosis (CAD) and functional brain mapping. We will not attempt in this brief 

article to survey the rich literature of this field. Instead our goals will be 1) to acquaint the 

reader with some modern techniques that are now staples of the machine-learning field and 

2) to illustrate how these techniques can be employed in various ways in medical imaging 

using the following examples from our own research:

■ CAD

■ content-based image retrieval (CBIR)

■ automated assessment of image quality

■ brain mapping.

INTRODUCTION TO MACHINE LEARNING

In this brief tutorial, we will attempt to introduce a few basic techniques that are widely 

applicable and then show how these can be used in various medical imaging settings using 

examples from our past work in this field. For further information, interested readers should 
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consult well-known introductions to machine learning, such as the excellent treatments in 

[1] and [2].

SUPERVISED LEARNING

In machine learning, one often seeks to predict an output variable y based on a vector x of 

input variables. To accomplish this, it is assumed that the input and output approximately 

obey a functional relationship y=f (x), called the predictive model, as shown in Figure 1. In 

supervised learning, the predictive model is discovered with the benefit of training data 

consisting of examples for which both x and y are known. We will denote these available 

pairs of examples as (xi, yi ), i = 1, …, N, and we will assume that x is composed of n 

variables (called features), so that xi∈ ℝn. In general, the output of the predictive model can 

be a vector (e.g., in multiclass classifiers), but for simplicity we will confine our attention to 

the case of scalar outputs.

Historically, a somewhat artificial distinction has sometimes been made between two 

learning problems: classification and regression. Classification refers to decision among a 

typically small and discrete set of choices (such as identifying a tumor as malignant or 

benign), whereas regression refers to estimation of a possibly continuous-valued output 

variable (such as a diagnostic assessment of disease severity y) . If the choices in a 

classification problem are indicated by discrete numerical values (e.g., y = +1 for the class 

malignant and y = −1 for benign), then it is easy to see that classification and regression are 

represented equivalently by the model in Figure 1.

THE SUPPORT VECTOR MACHINE CLASSIFIER: A MAXIMUM-MARGIN 

APPROACH

Let us consider the simple pattern classification problem depicted in Figure 2, in which the 

goal is to segregate vectors x =(x1,x2) into two classes by using a decision boundary T. Let 

us employ a linear model f(x)=wTx +b, so that T is a line in this two-dimensional example. 

Traditionally, the model’s parameters (w and b in this case) have been determined using 

classical criteria such as least squares or maximum likelihood. Figure 2 illustrates how such 

an approach (in this case, a Fisher discriminant) can easily fail, particularly when the 

method’s distributional assumptions are violated. In Figure 2(a), data point D adversely 

influences the Fisher discriminant boundary, causing misclassification of point B even 

though point D lies very far from Class 1, and perhaps should not be granted this degree of 

influence.

The support vector machine (SVM) [2], discovered by Vapnik, resolves this shortcoming by 

defining the discriminant boundary only in terms of those training examples that lie 

dangerously close to the class to which they do not belong. This idea is understood most 

easily in a situation such as the one shown in Figure 2, in which the two classes are strictly 

separable by a linear decision boundary, as explored by Wernick in [3]. In this case, a 

separating line that maximizes the margin between the two classes can always be found as 

follows:
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1. Draw the convex hull of each class of data points (imagine stretching a rubber band 

around each group of points; call these regions S1 and S2).

2. Find the points C and E at which regions S1 and S2 have their closest approach.

3. Draw the perpendicular bisector of the line segment connecting points C and E to 

obtain the decision boundary T.

Step 2 is accomplished by solving a quadratic programming (constrained optimization) 

problem using standard approaches [3]. In linear classifiers, vector w is called the 

discriminant vector.

In the terminology of the SVM, points A, B, and C in Figure 2 are called support vectors, a 

term derived from an analogy to mechanics. If points A, B, and C in Figure 2 were physical 

supports, they would be sufficient to provide mechanical stability to slab S sandwiched 

between them.

It is evident that the support vectors are the only examples from the training data that 

explicitly define the model. Specifically, for a particular test example x, one can write the 

model in terms of the support vectors as follows:

(1)

in which the summation includes only the training examples xi that are support vectors, and 

αi are coefficients determined as Lagrange multipliers in the optimization procedure.

The benefits of the SVM approach are that the classifier concentrates automatically on 

examples that are difficult to classify (points A, B, and C); and the calculation in (1) scales 

with the number of support vectors rather than the dimension of the space (which in some 

problems is very large). In addition, SVM can be shown to balance training error and model 

complexity, thereby avoiding overfitting, a pitfall in which the model is too finely tuned to 

the training examples and fails to perform well on new data. This approach is called 

structural risk minimization [4].

The formulation described thus far does not allow for the possibility that the two classes 

cannot be entirely separated by a linear boundary. However, this situation is readily 

addressed by introducing slack variables into the quadratic optimization problem, thus 

allowing a minimal number of the training data to be misclassified. In addition, SVM can be 

easily adapted to accomplish regression instead of classification by using a so-called ε-

insensitive cost function [2].

NONLINEAR MODELS: THE KERNEL TRICK

An important breakthrough in machine learning has been the recognition of the so-called 

kernel trick [2], which provides a simple and broadly applicable means to obtain a nonlinear 

model from any linear model based on inner products. Even classical techniques, such as the 

Fisher discriminant or principal component analysis, can be turned easily into flexible 

nonlinear techniques via the kernel trick.
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To understand the kernel trick, consider the following hypothetical series of steps as applied 

to turn the linear SVM into a nonlinear technique. Suppose we were to first apply a 

nonlinear transformation Ф to each input vector xi from the training set and then train a 

linear classifier to distinguish these classes of transformed vectors Ф(xi). Separability will be 

enhanced if the dimension of the transform space is higher than that of the original space, 

and indeed the transformation’s dimension need not be finite.

At first glance, transforming each input vector into a space of high dimension might appear 

impractical. However, the kernel trick recognizes that the desired result can be obtained 

without actually performing the transformation. This can be seen by applying the 

transformation Ф and then applying the SVM model in (1). After transformation, (1) 

becomes

(2)

Note that the transformation Φ appears in (2) only in the form of an inner product K(xi,x) Δ͇ 
ɸ (xi)T ɸ (x), so that (2) can be rewritten as

(3)

Therefore, we can see that it is never actually necessary to compute Φ (or even to define it 

explicitly). Instead it is sufficient simply to define the kernel function K(·,·) , and it can be 

shown that any symmetric positive semidefinite function will suffice. Commonly used 

kernel functions in machine learning include radial basis functions (Gaussians) and 

polynomials. Intuitively, the effect of the kernel is to measure the “similarity” between a test 

vector x and each of the support vectors xi; these similarities are then used in to obtain the 

output result. Vectors belonging to one of the classes are presumably most “similar” to the 

support vectors belonging to that class, hence these similarity values convey the needed 

information. The key point to remember is that these similarity comparisons are made only 

in relation to the support vectors, which are difficult examples that lie near the discriminant 

boundary. We will see visual examples of these support vectors later in the setting of 

mammography.

RELEVANCE VECTOR MACHINES: BAYESIAN LEARNING AND SPARSITY CONSTRAINTS

An important successor of SVM is the so-called relevance vector machine (RVM), 

developed by Tipping [5]. We have found RVM to perform extremely well in several 

medical imaging applications, usually with much lower computational cost than alternative 

methods including SVM. The RVM emphasizes sparsity (i.e., reduced model complexity), 

and thus is closely related to ideas of compressed sensing [6]. Like SVM, RVM uses a 

subset of the training data called relevance vectors, but usually there are far fewer relevance 

vectors than support vectors.

Like SVM, RVM starts with a kernel model
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(4)

however, whereas SVM is based on the maximum-margin principle, RVM instead takes a 

Bayesian approach. RVM assumes a Gaussian prior on the kernel weights wi, which are 

assumed to have zero mean and variance . RVM further assumes a gamma hyperprior on 

. The net effect of these modeling choices is that the overall prior on the kernel weights 

wi is a multivariate t-distribution. Because this distribution is tightly concentrated about the 

axes of the wi space, the prior encourages most values of wi to be nearly zero. Thus, in the 

end, the summation in involves only a few nonzero terms, and the associated training 

examples are called relevance vectors. By this mechanism, overfitting is generally avoided, 

and computation times for RVM are relatively low. Surprisingly, in spite of its advantages, 

RVM has been used relatively infrequently in medical imaging, particularly in comparison 

with the better-known SVM approach.

While RVM and SVM both base their decisions entirely on a subset of the training data (the 

relevance vectors in RVM; the support vectors in SVM), these subsets are usually quite 

different. Support vectors are always examples lying near the decision boundary, while 

relevance vectors are usually spread throughout the distribution. We will see this difference 

later in the context of mammography.

Unfortunately, RVM does not have a simple geometrical interpretation as SVM does, 

therefore we will not show a graphical example in this article; instead we refer the reader to 

[5], which contains several nice illustrations.

MACHINE LEARNING HAS SEEN AN EXPLOSION OF INTEREST IN 

MODERN COMPUTING SETTINGS SUCH AS BUSINESS INTELLIGENCE, 

DETECTION OF E-MAIL SPAM AND FRAUD, AND CREDIT SCORING.

STATISTICAL RESAMPLING FOR ROBUSTNESS AND EVALUATION

Statistical resampling [7] refers to a family of techniques that are used to evaluate 

performance and improve robustness of machine learning models and to estimate statistical 

significance levels. Although resampling receives less attention than predictive models, it is 

at least as important.

Machine learning differs from classical decision and estimation theory principally in its 

emphasis on problems where one’s only knowledge of the data’s underlying distributions 

comes from the data themselves. In this setting, statistical significance testing cannot be 

approached in the traditional way because the null distribution is unknown. Fortunately, an 

empirical estimate of the null distribution can be readily obtained by permutation 

resampling.

To understand permutation resampling, consider a situation in which there are two sets of 

data, ω1 and ω2, and we wish to test some hypothesis, such as that their means are identical. 

Since we do not know in truth whether ω1 and ω2 obey the same distribution (or even the 
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form of their distributions), we cannot directly assess significance. However, we can create 

an empirical null distribution by permuting the labels on the data, i.e., deliberately creating 

two data sets in which the data from ω1 and ω2 are mixed. Note that it is often important that 

just the labels and not the data themselves be permuted (e.g., in time series problems). By 

permuting the data in every possible way (or at least in some reasonably large number of 

random ways), we can obtain example data in which we know that the two groups obey 

identical distributions, thus characterizing the null hypothesis.

Another central role played by resampling is in solving the following problem of model 

validation: If we train our model on all our available data, then there are no data left for 

testing the model or optimizing its parameters. The predominant resampling methods used in 

this regard, which both require independent, identically distributed (i.i.d.) resampling 

objects, are cross validation and bootstrap methods. In k-fold cross validation, the data set is 

divided randomly into k groups; (k – 1) of these groups are used to train the model, and one 

is reserved for testing. This process is performed k times (once for each held out group), 

then the results are combined, often by averaging. In the basic bootstrap, the data are instead 

trained on a set of N data examples obtained by sampling randomly with replacement from 

the entire data set of N. By chance, some examples will not be selected into the training set, 

and these are reserved for testing. As in cross validation, the process is repeated and the 

results combined by averaging.

The basic bootstrap is known to reduce the variance of estimated prediction accuracy at the 

expense of downward bias (i.e., the basic bootstrap provides pessimistic performance 

estimates). This is remedied by the .632 bootstrap, which utilizes a bias correction term, and 

the more modern .632+ bootstrap [8], which additionally attempts to account for bias due to 

overfitting. In problems where an empirical null distribution is obtained using permutations, 

the empirical distribution of the alternative hypothesis can often be obtained using the 

bootstrap.

Statistical resampling is widely used not only to test predictive models, but also to improve 

their performance. Examples of this are bootstrap aggregation (bagging) techniques and the 

nonparametric, prediction, activation, influence, reproducibility, resampling (NPAIRS) 

framework in neuroimaging [9], which is explained later in this article.

CAD FOR MAMMOGRAPHY

CAD has been an active research area for decades, so we will not attempt to provide a 

comprehensive survey of the literature. Interested readers should consult basic reviews of 

CAD for mammography, such as [10] and [11].

Perhaps CAD’s greatest success is in breast imaging. Studies have shown that having two 

radiologists read the same mammogram can lead to significantly higher sensitivity in cancer 

screening, but at the expense of increased workload and cost. CAD software can serve as a 

surrogate “second reader,” with the aim of improving radiologists’ diagnostic accuracy at 

lower cost.
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CAD encompasses computer-aided detection (CADe), in which the computer alerts the 

radiologist to potential lesions; and computer-aided diagnosis (CADx), in which the 

computer predicts the likelihood that a lesion is malignant.

CAD schemes typically consist of the following key steps: 1) apply automated image 

analysis to extract a vector of quantitative features to characterize the relevant image content 

and 2) apply a pattern classifier to determine the category to which the extracted feature 

vector may belong.

Automatically extracted image features can include image contrast, and features based on 

geometry, morphology, and texture. In addition, there may be other forms of available 

information about the patient. Machine-learning methods that have been employed range 

from linear discriminant (LD) analysis, fuzzy logic techniques, neural networks, and 

committee machines, to the more recent kernel-based methods (e.g., SVM and RVM) 

explained earlier in this article.

In the following, we describe two examples of machine learning for CAD in digital 

mammography drawn from our own research: detection (CADe) and classification (CADx) 

of clustered microcalicifications.

CADe: MICROCALCIFICATION DETECTION

Microcalcifications (MCs) are tiny deposits of calcium that appear as bright spots in 

mammograms (see Figure 3). Clustered MCs can be an important indicator of breast cancer, 

appearing in 30–50% of cases. Individual MCs are sometimes difficult to detect due to their 

variation in shape, orientation, brightness and size (typically, 0.05–1 mm), and because of 

the confounding texture of surrounding breast tissue. Microcalcification detection has been 

an intensive target of investigation (e.g., [12]). Modern machine-learning approaches have 

proven very effective in this application, as we explain next.

SVM Detector—In [13], we trained an SVM to decide at each location within a 

mammogram whether an MC was present (“MC present” class) or absent (“MC absent” 

class) based on a small region of interest (ROI) surrounding that point. The SVM was 

trained using “MC present” ROIs identified by expert radiologists (see Figure 4).

The MCs typically occupy only a small fraction of a mammogram, so there are more ROIs 

with “MC absent” than with “MC present.” To take advantage of this, we developed a 

successive enhancement learning (SEL) procedure that improves the predictive power of the 

SVM classifier. In SEL, SVM training is adjusted iteratively by selecting the most 

representative “MC absent” examples from all the available training images while keeping 

the total number of training examples small.

Based on a set of test mammograms, we demonstrated the SEL-SVM method to achieve the 

best performance among several leading methods in the literature as measured by the free-

response receiver operating characteristic (FROC) curve, a plot of detection probability 

versus the average number of false positives (FPs) per image (Figure 5). Figure 3 shows a 

portion of an example image and the corresponding SVM output.
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RVM Detector—Computation time can be a critical issue in mammography, where the 

image can contain as many as 3,000 × 5,000 pixels that must be evaluated. While the SVM 

achieves outstanding detection performance, it can be very time consuming because the 

number of support vectors can be large. To address this issue, in [14] we developed an 

approach based on the RVM (explained earlier), which yields a very sparse decision 

function, leading to significant computational savings, while yielding similar detection 

performance to the SVM.

To further accelerate the algorithm, we explored a two-stage classification approach in 

which we used a computationally inexpensive linear RVM classifier as an initial triage step 

to quickly eliminate non-MC pixels, then a nonlinear RVM classifier to detect MCs among 

the remaining pixels. Our results demonstrated that the RVM approach achieved nearly 

identical detection accuracy to the SVM at 35 times less computational cost.

SVM Versus RVM—As explained earlier, SVM and RVM are both kernel methods, and 

both base the decision on only a subset of the training data—the support vectors in SVM and 

relevance vectors in RVM—that characterize the respective classes. However, SVM and 

RVM tend to select very different vectors to represent the classes. SVM chooses support 

vectors that lie very close to the decision boundary, while RVM tends to choose relevance 

vectors that are more prototypical of the two classes. Examples of support vectors and 

relevance vectors are shown in Figure 4. Note that the “MC present” and “MC absent” 

support vectors are very difficult to distinguish, as they all lie near the decision boundary, 

while the “MC present” and “MC absent” relevance vectors are clear examples of lesion and 

background regions, respectively.

ALTHOUGH RESAMPLING RECEIVES LESS ATTENTION THAN 

PREDICTIVE MODELS, IT IS AT LEAST AS IMPORTANT.

CADx: DIAGNOSIS OF CLUSTERED MICROCALCIFICATIONS

A great deal of research has been directed toward computerized CADx methods designed to 

assist radiologists in the difficult decision of differentiating benign from malignant MCs. In 

[15], a CADx scheme was demonstrated to classify clustered MCs even more accurately 

than radiologists. This method used a feedforward neural network (FFNN), which was 

trained using metrics extracted automatically from the clustered MC images.

Motivated by recent developments in machine learning, we sought in [16] to determine 

whether state-of-the-art machine-learning methods [SVM, kernel Fisher discriminant 

(KFD), RVM, and committee machines (including ensemble averaging and Adaboost, a 

well-known boosting method)] would further improve classification of MC clusters as 

malignant or benign, as compared with prior methods such as FFNN. We used the features 

defined in [15] that are based on both the shape and size of individual MCs as well as their 

overall distribution as a cluster, that are known to correlate qualitatively to features used by 

radiologists.

The evaluation study demonstrated that the kernel methods (SVM, KFD, and RVM) are 

similar in performance to one another (in terms of the area under the receiver-operating 
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characteristic (ROC) curve), but all demonstrated statistically significant improvement over 

FFNN or AdaBoost.

CBIR FOR CADx

Though promising, CADx has met with resistance to adoption in clinical practice, in part 

because radiologists are trained to interpret visual data and rarely deal with quantitative 

mammo-graphic information, such as the likelihood of malignancy. Thus, when presented 

with a numerical value, but without additional supporting evidence, it may be difficult for a 

radiologist optimally to incorporate this number into the diagnostic decision. As such, 

traditional CADx classifiers are often criticized for being a “black box” approach.

To avoid this pitfall, an alternative approach we have advocated is to employ CBIR [17], 

[18], in which an image search engine is used to inform the radiologist’s diagnosis in 

difficult cases by presenting relevant information from past cases. The retrieved example 

lesions allow the radiologist to explicitly compare known cases to the unknown case. A key 

advantage of this approach is that it provides case-based evidence to support case-based 

reasoning by the radiologist, rather than acting as a supplemental decision maker.

For a retrieval system to be useful as a diagnostic aid, the retrieved images must be truly 

relevant to the query image as perceived by the radiologist, who otherwise may simply 

dismiss them. In 2000 [17], we proposed a supervised learning approach for modeling the 

radiologists’ notion of image similarity for use in CBIR. Our rationale is that mathematical 

distance metrics designed for general-purpose image retrieval may not adequately 

characterize clinical notions of image relevance, which are complex assessments made by 

expert observers.

In our approach, the perceptual similarity between two lesion images is modeled by a 

nonlinear regression model applied to the image features. The model is determined by using 

supervised learning from examples collected either in human observer studies or from online 

user feedback (acquired during use of the system). Specifically, we first characterize a lesion 

by vector u containing its key relevant features. Next, feature vector u is compared to the 

corresponding feature vector v of a database entry by way of predictive model f (u, v) to 

produce a similarity coefficient (SC). The images with the highest SC values are retrieved 

from the database and displayed for the user. In our studies, we have modeled f (u, v) using 

a nonlinear regression SVM and a general regression neural network (GRNN). Our learning 

metric has proven to be much more effective than alternative measures [17], [18].

To illustrate perceptual similarity, Figure 6 is a plot created using a multidimensional 

scaling (MDS) algorithm showing 30 microcalcification clusters. MDS is a family of 

techniques that aim to map high-dimensional data into a lower-dimensional representation in 

such as a way as to preserve relative distances (i.e., if two points are close to one another in 

the high-dimensional space, then MDS attempts to place them near one another in the low-

dimensional space).

FOR A RETRIEVAL SYSTEM TO BE USEFUL AS A DIAGNOSTIC AID, THE 

RETRIEVED IMAGES MUST BE TRULY RELEVANT TO THE QUERY 
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IMAGE AS PERCEIVED BY THE RADIOLOGIST, WHO OTHERWISE MAY 

SIMPLY DISMISS THEM.

In Figure 6, each microcalcification cluster is represented by a marker (square or circle) in 

the scatter plot. MDS attempts to place the points so that visually similar microcalcification 

clusters (as judged by human observers) are placed close to one another in the scatter plot. 

Examples of the microcalcfication clusters corresponding to these data points are shown as 

collections of plus (+) signs. Visual inspection of these examples suggests that the vertical 

axis of the plot is associated roughly with density of the microcalcifications, while the 

horizontal axis reflects the shape of the cluster. Note that there is a reasonable, but not 

perfect, separation between malignant and benign lesion classes in this space.

Recently, we proposed to use CBIR to boost the performance of a traditional CADx 

classifier [18]. Specifically, database images similar to the image being evaluated by the 

radiologist are used to improve the SVM classifier, thus improving its accuracy in analyzing 

the present case. We are currently investigating the impact of CBIR on the diagnostic 

performance of radiologists.

AUTOMATED ASSESSMENT OF IMAGE QUALITY BY PREDICTION OF 

DIAGNOSTIC PERFORMANCE

Diagnostic imaging can be thought of as a pipeline consisting of an imaging device, an 

image processor (e.g., image reconstruction algorithm and display), and a human observer 

(e.g., a radiologist). Principled methods are needed to assess the impact of design choices in 

the image acquisition and processing stages on the final interpretation stage.

It has been common traditionally to evaluate imaging devices and image reconstruction 

software using only basic fidelity metrics, such as signal-to-noise ratio (SNR), meansquare 

error, and bias and variance. However, such metrics have limitations when comparing 

images affected by statistically different types of blur, noise, and artifacts [19]. This was 

recognized in the 1970s in the context of radiographic imaging by Lusted [20], who pointed 

out that the image can reproduce the shape and texture of tissues faithfully from a physical 

standpoint, while failing to contain useful diagnostic information. In a highly influential 

article in Science [20], Lusted postulated that, to measure the worth of a diagnostic imaging 

test, one must assess the observer’s performance when using the imaging test. In other 

words, if an image is to be used for lesion detection, then image quality should ideally be 

judged by the ability of an observer to detect lesions. Such an approach has become known 

as task-based assessment of image quality.

Lusted further argued that the ROC curve from classical detection theory is an ideal means 

to characterize diagnostic performance, and thus image quality. This approach has led to the 

wide use of ROC analysis in medical imaging, as implemented, for example, in the ROCKIT 

software distributed by Metz et al. [21].

Figure 7 shows an example of how the human observer’s performance is affected by the 

type of images that are presented. In this case, the observer is shown a perfusion image of 

the myocardium (heart wall), obtained using single-photon emission computed tomography 
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(SPECT). The observer is asked to judge whether there is a dark region indicating deficient 

perfusion, based on images reconstructed in different ways from the very same data set. 

Figure 7 shows 12 different reconstructions obtained by using either one or five iterations of 

the ordered-subset expectation-maximization algorithm (OS-EM), and with Gaussian filters 

having varying full width at half-maximum (FWHM).

Along the top and bottom of Figure 7 are values of an observer’s stated confidence in the 

presence of a lesion at a location indicated by arrows (on a scale of one to six, with six 

indicating high confidence). Note that the observer’s confidence that a lesion is present 

increases, then decreases, as the images are made smoother. Selection of the optimal 

smoothing level is an example of a goal in which a quantitative image-quality metric is 

needed

MACHINE-LEARNING MODEL OF HUMAN OBSERVERS

In diagnostic imaging, the gold standard for measuring image quality is a statistical study 

that measures observers’ (e.g., radiologists’) diagnostic performance when using a given set 

of images. Unfortunately, the expense and complexity of such studies precludes their routine 

use. Therefore, numerical observers—algorithms that emulate human observer performance

—are now widely used as surrogates for human observers.

One particular numerical observer, known as the channelized Hotelling observer (CHO) 

[22], has come to be widely used, particularly in nuclear medicine imaging. The CHO is a 

Fisher LD applied to input features obtained by applying band-pass (channel) filters to the 

image. These channels are inspired by the notion of receptive fields in the human visual 

system. Because of its principled approach to image quality evaluation, the CHO has 

justifiably had a major and positive impact on the field and has enjoyed tremendous 

popularity.

However, the CHO does not perfectly capture human-observer performance; therefore, we 

have proposed a new approach in which the problem of task-based image-quality assessment 

is viewed as a supervised-learning or system-identification problem [23]. That is, the goal is 

to identify the unknown human observer mapping, f (x) , between the image features in x 
and an observer score y that reflects the human observer’s confidence in the presence of an 

abnormality in the image. This relationship is learned from example data obtained from 

human observers; the model is then used to make predictions in new situations where no 

human-observer data are available.

In our work, we have thus far retained the channels used in the CHO, contained in vector x, 

but we feed these as inputs to a SVM f (x) , which we train to predict observer score y based 

on training examples (xi, yi ), i = 1, …, N. The resulting algorithm is called a channelized 

SVM (CSVM).

RESULTS

In [23], we compared the CSVM to the CHO for assessment of image quality in cardiac 

SPECT imaging. In this experiment, two medical physicists evaluated the defect visibility in 

100 noisy images and scored their confidence of a lesion being present on a six-point scale, 
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following a training session involving an additional 60 images. The human observers 

performed this task for six different choices of the smoothing filter and two different choices 

of the number of iterations in the OS-EM reconstruction algorithm (see Figure 7).

To demonstrate the generalization power of this approach, we trained both the CHO and 

CSVM on a broad range of images, then tested both on a different, but equally broad, range 

of images. Specifically, we trained both numerical observers using images for every value of 

the filter FWHM and five iterations of OS-EM and then tested the observers using all the 

images for every value of the filter FWHM with one iteration of OS-EM. The parameters of 

the CHO and CSVM were fully optimized to minimize generalization error measured using 

five-fold cross validation based on the training images only. Therefore, no test images were 

used in any way in the choices of the model parameters for either numerical observer. The 

numerical observers’ predictions of human observers’ area under the ROC curve (AUC) are 

compared in Figure 8 to human observers’ actual performance. In this situation, the CHO 

performed relatively poorly, failing to match either the shape or amplitude of the human-

observer AUC curves, while the CSVM was able to produce reasonably accurate predictions 

of AUC in both cases. Each error bar represents the standard deviation calculated using five-

fold cross validation on the testing data.

This experiment demonstrates the potential benefit of using machine learning to make 

predictions rather than fixed models. Owing to the generality of its approach, machine 

learning can be used to make predictions of human-observer performance in many clinical 

tasks other than lesion detection, while CHO is specifically designed for lesion detection and 

is therefore less amenable to generalization.

MAPPING OF BRAIN FUNCTION

Brain mapping is concerned with the creation of spatial representations (maps) of the brain, 

shedding light on the roles of various brain regions in normal and disease processes. Brain 

mapping is an area of application that differs significantly from those we have discussed 

thus far in the following two principal respects: 1) in many situations, brain mapping is 

concerned less with the prediction outputs y than with the model f (x) itself, from which 

brain maps are obtained; and 2) owing to the relatively small number of data examples 

available in brain mapping, nonlinear models are not always preferred over simpler linear 

methods.

Brain mapping has been a rapidly growing field of imaging for at least 25 years. It is 

impossible to give a balanced survey of this field and its use of machine learning in the 

space available, so we will give only a brief overview.

In the 1980s, brain mapping was dominated by positron emission tomography (PET) and 

SPECT. The first machine-learning approaches to the analysis of functional brain images 

applied artificial neural networks (ANNs) to PET images of glucose metabolism [24]. 

However, following the discovery of the blood oxygenation level dependent (BOLD) signal 

in 1990 that allows regional neuronal activity to be measured indirectly, there has been 

explosive growth in the use of functional magnetic resonance imaging (fMRI) and related 

techniques [25].
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The prevailing experimental and analysis paradigm in brain mapping is still based on 

simple, univariate general linear models (GLM) with inferential statistical tests [26], and in 

some instances their predictive, machine-learning equivalent, Gaussian Naïve Bayes [27]. 

There has been a recent surge of papers and interest in using related multivariate 

classification approaches, dubbed “mind reading” by some in the field. For recent reviews 

including a historical perspective see [28], and for an overview of the often overlooked 

power of simple multivariate approaches, e.g., principal component analysis and LD, 

applied to PET scans of disease groups, see [29], which reflects the results of more than 20 

years of work on measuring covariance structures that reflect brain networks. This network 

theme has gained considerable momentum in the more recent fMRI brain mapping literature 

with a focus on measuring the so-called “default mode” brain network using pair-wise, 

voxel correlations [30], or seed-voxel/behavioral partial least squares (PLS) [31], 

independent component analysis (ICA) [32], [33], and most recently nonlinear dynamics 

[34] and graph theory coupled with structural scans of white-matter networks [35].

Much of our own work has focused on the question of how to evaluate and optimize 

performance, and how to select the best signal detector from the broad repertoire of machine 

learning tools available. We have particularly focused on the impact of smaller sample sizes 

where analytic asymptotic theory for multivariate machine learning models, if it exists, does 

not provide much, if any, guidance. Analysis of brain images is a highly ill-posed problem, 

in which there are typically tens or hundreds of thousands of voxels, but only tens or 

hundreds of brain scans. Therefore, this small sample limit is the most likely to be important 

for medical use in brain mapping.

DISCRIMINANT IMAGES AS BRAIN MAPS

To illustrate the use of machine learning in brain mapping, let us consider one type of study 

in which we wish to produce an image showing the regional effects of a new drug on brain 

function (two of the authors of this article, Wernick and Strother, conduct such analyses 

commercially for the pharmaceutical industry). To accomplish this, one can scan a group of 

N research subjects twice, once after the subject is given the new drug and once after 

administration of placebo. One can then analyze these 2 N images to obtain an image that 

describes the drug’s effect. It is hoped that this finding will describe not only this particular 

group of subjects but will also generalize to some broader population.

The basic idea underlying many machine-learning approaches to this problem is to treat each 

image as a vector in a high-dimensional space, with each component representing the value 

of one voxel in a scan. In this example, our data can be viewed as consisting of two classes 

of images: drug and placebo. To reduce dimensionality to a manageable level, and to 

mitigate noise, it is common to transform the data using singular value decomposition 

(SVD). Next, a classifier is trained to discriminate drug images from placebo images based 

on the dimensionality-reduced data.

In traditional pattern classification applications, the purpose of training the classifier is to 

make decisions about new data. Indeed, there are a growing number of examples of this in 

neuroimaging, for example in lie detection, or in diagnosis of disease in an individual 

patient. However, in many studies, the goal is simply to understand what intrinsically is 
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different about the brain in, say, a drug and a placebo condition. In such instances, the 

desired information is encoded in the predictive model f (x) itself. When a linear model is 

used, then the desired brain map is encoded in the components of discriminant vector w, 

which (after projecting back from SVD space to image space) describes the salience of 

voxels in the brain for discrimination of drug and placebo conditions.

Figure 9 shows an example of such an image (which we will refer to as a spatial activation 

pattern) after it is thresholded and overlaid on a template structural image used to bring 

multiple subjects’ brains into an approximate common space. The value of each colored 

voxel in this image expresses the degree to which that voxel contributes to the 

discrimination of drug versus placebo, and this image thereby depicts the spatial distribution 

of effect.

Note that, in this basic introduction, we have refrained from describing a significant series of 

preprocessing steps that must be applied before the machine learning algorithms can be 

used. These are discussed at length in [36].

COMPARING MODELS, SAMPLE SIZE, AND SNR

Evaluations of data-analysis techniques have clearly illustrated that optimal tool selection 

depends critically on the signal and noise structure of the data at hand, and the sample size 

[37], [38]. For example, Figure 10 (adapted from [38]) illustrates that a simple linear model 

can outperform a flexible nonlinear model (in this case an ANN) until there are enough data 

examples to support estimation of the greater number of parameters inherent in the nonlinear 

model. Nevertheless, these issues are frequently ignored in the current brain mapping 

literature when discussing or comparing different analysis techniques.

We have addressed the question of choosing optimal analysis procedures using simulations 

in [39] based on the simple phantom shown in Figure 11, assuming an experimental design 

similar to the drug-placebo study described earlier. We varied numerous parameters of the 

simulation, including number of examples per condition (from 20 to 100), and the amplitude 

of the activation “blobs” in the phantom (either 3% or 5% above baseline). We added 

spatially colored, temporally white, Gaussian noise with a standard deviation of 5% of the 

mean baseline value. We created three spatially distributed “networks” of blobs, and varied 

the correlation coefficient ρ (rho) between them (ρ = 0.0, 0.5, or 0.9) and the ratio V of their 

amplitude variance to the noise variance. This ratio can be thought of in analogy to dynamic 

range in audio, as the blob variance is a source of signal in this application, which is of 

particular relevance for the field’s recent focus on network detection in brain mapping. In 

[39], we showed that SVD by itself or followed by a LD that adapts the subspace on which it 

is estimated is much more sensitive to network interactions than thresholding of pair-wise 

correlation coefficients [40].

We have repeated and extended the earlier work of Lukic et al. using the same phantom 

(results shown in Figure 12). Simulations included 3% Gaussian amplitudes, with 30 

baseline and 30 activation scans. The models tested include 1) single-voxel t-tests using both 

local (GLM-S) and spatially pooled (GLM-P) variance estimates, and classification 

techniques including a 2) two-class Fisher LD, 3) normalized LD (NLD), and 4) quadratic 
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discriminant (QD). All multivariate techniques were estimated on an SVD subspace with 

dimension determined using optimization of Bayes’ evidence [41], as estimated in the 

software package MELODIC [42]. For LD and QD, the SVD basis components had length 

equal to their eigenvalues, and for NLD they were normalized to unit length.

Using the area under the ROC curve for false positives between [0.0, 0.1], signal detection 

was measured across the 16 voxels at the peaks of the Gaussian blobs. Even when the t-test 

with local variance estimates (GLM-S) was the “correct” model (i.e., V = 0.1) better 

detection performance was obtained using a t-test with a pooled variance estimate or 

adaptive, multivariate covariance-based detectors. In addition, GLM-S showed a significant 

drop in performance as the equal variance assumption was violated with increasing V. 

Variance estimation by spatially pooling (GLM-P) significantly improved signal detection 

and largely removed this source of model violation.

The multivariate equivalent of the GLM-S model violation is shown by the LD results where 

the assumption of equal within-class covariances (i.e., a common network structure for 

baseline and activation scans) is violated with increasing V ; only the activation scans have 

an off-diagonal, within-class covariance structure that increases with V . However, LD still 

outperforms GLM-S for all but the strongest violations of the equal covariance assumption 

for large rho and V [Figure 12(c)]. In the NLD method, the standard machine-learning trick 

of normalizing input feature variances (i.e., unit SVD basis vectors) significantly improves 

signal detection performance to always better than GLM-P, and largely removes the LD 

drop with increasing V. Finally, using the correct multivariate model that assumes different 

within-class covariances, a QD, further significantly improves performance to close to 

perfect (partial ROC area approaches 0.1). QD, as used here, represents an alternative to 

SVM as a solution to the problem of unequal class distributions shown in Figure 2.

The relative performance of LDs and SVM remains controversial in brain mapping with 

some papers claiming SVM is superior [43] and others that they are approximately equal 

[44], but that they respond to different input SNR structures differently as suggested by the 

analysis of Figure 2. Moreover, our most recent simulation results show that signal detection 

performance is a very strong function of the SVD basis set size and performance may be 

improved even further than shown in Figure 11 by using a resampled estimate of the optimal 

SVD subspace based on the reproducibility metric outlined below.

Our final simulation results relate to a comparison of Bayesian kernel methods with a 

generalized likelihood ratio test for estimating local activation in functional neuroimages. In 

[45], we compared spatial signal detection using the superposition of spatial Gaussian 

kernels with their parameters estimated from the data using a maximum a posteriori (MAP) 

technique based on a reversible-jump Markov-chain Monte Carlo (RJMCMC) algorithm and 

a RVM. RVM and RJMCMC were better signal detectors than all of the other techniques 

tried in [39] and achieved values of 0.80 and 0.82 for the partial area under the ROC curve. 

These performance values cannot be directly compared to Figure 11 as the simulation 

parameters were quite different. However, the RJMCMC took tens of hours to compute, 

even in our simple phantom, while the RVM was computed in only minutes. The relative 
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utility of SVM, RVM, and other kernel techniques in brain mapping (e.g., kernel PCA, [28]; 

kernel canonical correlation analysis [46]) remains to be established

DATA-DRIVEN PERFORMANCE METRICS

In brain mapping, as in general machine-learning applications, it is very important to 

optimize and evaluate predictive models and to select their most salient features. These tasks 

must be guided by a quantitative metric of performance. Prediction accuracy often plays this 

role, for example to guide a greedy search procedure to select the most salient subset of 

voxels [26]. Some tradeoffs of such purely prediction-driven analysis approaches are 

discussed in [4] and [27].

Although prediction accuracy alone can be an effective metric for general machine-learning 

problems, neuroimaging also demands that the spatial pattern (encoded by the predictive 

model) be reproducibile between different groups of subjects or different scans of the same 

subject. Together with prediction accuracy, reproducibility turns out to be an important 

metric that is a very effective data-driven substitute for ROC analysis.

Strother et al. [9] proposed a novel split-half resampling framework dubbed NPAIRS, which 

simultaneously assesses prediction accuracy and reproducibility. The tradeoff between 

achievable prediction accuracy and reproducibility of the model is related to the classic 

tradeoff of bias and variance in estimation theory. In this application, prediction accuracy is 

generally gained at the expense of decreased reproducibility of the spatial patterns, and vice 

versa. By plotting prediction accuracy versus reproducibility as a function of some 

parameter (such as number of SVD basis vectors), we are able to assess the gamut of this 

tradeoff, in close analogy to the ROC curve, the precision-recall curve from the information 

retrieval field, or the bias-variance curve from statistics. We call this type of plot produced 

by the NPAIRS analysis a ( p, r) curve.

To compute a (p, r) curve using NPAIRS, the independent observations of the data set are 

split into two independent halves (e.g., across subjects): training and test sets. Prediction 

accuracy is obtained by applying the spatial patterns estimated in one split-half set (i.e., 

training) to estimate scan class labels in the other split-half set (i.e., test). The roles of the 

two split-half sets are then reversed so that the each set has been used once as a training set 

(to produce a spatial activation pattern) and once as a test set. From these results, two 

prediction accuracy estimates (p) are computed and averaged to obtain the overall prediction 

accuracy. Next, the reproducibility of the two independent spatial activation patterns is 

computed as the correlation (r) between all pairs of spatially aligned voxels in the two 

patterns. This correlation value r is directly related to the available SNR in each extracted 

pair of split-half patterns. If one forms a scatter plot consisting of the voxel values in one 

spatial pattern versus corresponding values in the other, one obtains a distribution in which 

the principal, or signal, axis has associated eigenvalue (1 + r) , and the uncorrelated minor, 

or noise, axis has eigenvalue (1 − r) . Therefore, one can define a global data set SNR metric 

gSNR as
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In NPAIRS, many split-half resamplings are performed and the average, or median, of the 

resulting p and r distributions are recorded. This resampling approach has the benefits of 

smooth robust metrics obtained with the 0.632+ bootstrap [8]. Finally, a robust consensus 

technique is used to combine the many split-half spatial patterns into a single pattern 

described on a Z-score (standard normal) scale, providing a robust Z-scoring mechanism for 

any prediction model that produces voxel-based parameter estimates.

In [29], NPAIRS was applied to PET, and it has been also been applied to fMRI [47]–[49]. 

While NPAIRS may be applied to any analysis model, we have particularly focused on LDs, 

and more recently QDs, both built on an SVD basis. This allows us to 1) regularize the 

model by choosing soft (e.g., ridge) or hard thresholds on an SVD or other basis set [50], 2) 

maintain the link to covariance decomposition that has proven so useful in PET for 

elucidating network structures, and 3) produce whole-brain activation maps that enhance the 

likelihood of discovering new features of brain function and disease.

Figure 13 shows an example of how NPAIRS can be used to study the influence of the key 

parameters of an image analysis procedure, and thus permit one to make an optimal 

selection of these parameters. In this example, two parameters of an fMRI image analysis 

procedure are examined, the number of SVD basis vectors (defining model complexity) and 

the number of half cosines used for detrending [36]. (We will not elaborate here on details of 

the SVD and detrending techniques; we show this example only to illustrate how NPAIRS 

can in general be used to select optimal model parameters.)

In a ( p, r ) plot, ideal performance is achieved by reaching the upper right corner of the 

space, where prediction accuracy (described as posterior probability in Figure 13) reaches 

1.0 and reproducibility also achieves 1.0. Thus, one approach to defining the optimal choice 

of parameters is to determine the point at which the ( p, r) curve attains the least Euclidean 

distance (M̅) to the point (1,1). In this example, we see that performance [distance to (1,1)] 

improves, then worsens, as the number of SVD components increases. The effect of the 

cosine detrending parameter is weaker, but indicates that one and a half cycles is a 

somewhat better choice than two cycles. In this graph, the hook-shaped portion between five 

and ten SVD components represents reproducible artifacts that are commonplace in fMRI.

The NPAIRS analysis framework provides a very useful way to understand and optimize 

model performance in the challenging problem of brain mapping, and perhaps in other 

applications in which one is interested not only in making accurate predictions but also in 

producing reliable information on the factors driving these predictions.
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FIG 1. 
In supervised learning the predictive model represents the assumed relationship between 

input variables in x and output variabley.
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FIG 2. 
Fisher linear discriminant (LD) and the SVM. In this example, (a) the Fisher LD fails to 

separate two classes because training example D adversely influences decision boundary T. 

(b) The SVM defines the decision boundary using only points A, B, and C, called support 

vectors, and is not influenced at all by point D.
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FIG 3. 
(a) Example mammogram containing microcalcifications. (b) Output y of SVM detector. (c) 

Detected MC positions obtained by thresholding y.
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FIG 4. 
(a) Comparison of support vectors from SVM and (b) relevance vectors from RVM for 

detection of MCs. SVM automatically chooses the support vectors to be examples lying near 

the decision boundary (hence the “MC absent” and “MC present” support vectors look very 

similar), while the relevance vectors chosen by RVM tend to be more prototypical of the 

two classes (hence the two groups of relevance vectors look very different).
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FIG 5. 
Detection performance of various methods of detecting MCs in mammograms. The best 

performance was obtained by a successive learning SVM classifier, which achieves around 

94% detection rate (TP fraction) at a cost of one FP cluster per image, where a classical 

technique (DoG) achieves a detection rate of only about 68%.
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FIG 6. 
Statistical tool for visualizing relationships among abnormalities seen in various 

mammograms, in which distances reflect the relative similarities of abnormalities, as judged 

by human experts. MC clusters are represented in this two-dimensional diagram by using 

multidimensional scaling, a statistical technique that seeks to represent high-dimensional 

data in a lower-dimensional plot that can be readily visualized, while aiming to maintain the 

relative distances (similarities) among the data points. Each group of red plus signs (+) 

depicts the actual MC cluster associated with a given point in the scatter plot. This shows 

that the vertical axis of the plot is roughly associated with the density of each cluster, while 

the horizontal axis is related to its shape.
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FIG 7. 
A human observer’s judgment as to the presence of an abnormality (in this case a cardiac 

perfusion defect) depends on the parameters of the reconstruction algorithm used to create 

the image (here, the parameters are number of iterations and width (FWHM) of the post-

reconstruction smoothing kernel). All of the images above have a defect at the location 

indicated by the arrow, but persons asked to judge whether there is a defect varied in their 

opinions from a value of three, meaning “defect is possibly not present,” to a value of six, 

meaning “defect is definitely present.” Our algorithm’s ability to predict this behavior 

permits us to optimize a given algorithm for this specific diagnostic task.

Wernick et al. Page 28

IEEE Signal Process Mag. Author manuscript; available in PMC 2014 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIG 8. 
Predictions of human-observer performance (AUC) by machine learning approach (CSVM) 

compared with conventional numerical observer (CHO). The CHO does not recognize the 

degree to which diagnostic performance declines at low and high levels of smoothing, an 

effect seen in scores along the top and bottom of Figure 7
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FIG 9. 
Spatial activation pattern in the brain, showing effect of the anxiolytic/antidespressant drug 

buspirone (Buspar) obtained using Fisher LD and NPAIRS split-half resampling applied to 

FDG-PET images for 12 subjects (data courtesy of Abiant, Inc.; analysis by Predictek, Inc.). 

The results show striatal activation (upper orange regions), likely due to the drug’s behavior 

as a dopamine D2 receptor antagonist.
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FIG 10. 
These crossed learning curves (plots of classifier performance versus training set size) show 

that a nonlinear classifier (a neural network in this example) can be beaten by a simpler 

multivariate linear classifier (here, a Fisher discriminant) when the number of training 

examples is small. This is not unexpected, as small data sets cannot generally support 

complex models, however this result emphasizes the importance of resisting the temptation 

for researchers to use high-complexity models in every circumstance.
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FIG 11. 
Simulated phantom used for testing signal detection.
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FIG 12. 
In (a)–(c), performance in detection of brain activation for five models, as a function of 

signal-to-noise variance ratio (V) and correlations (rho) among network of activated brain 

regions, are shown. The QD and NLD perform best, improving with strength of network 

(increasing V and rho), while the performance of univariate methods lags behind, and 

actually deteriorates as the signal strength increases.
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FIG 13. 
In the NPAIRS framework, a prediction-reproducibility (p,r) curve shows the tradeoff 

between prediction accuracy (vertical axis) and reproducibility of the resulting brain map 

(horizontal axis). Optimal performance is achieved when the curve comes closest to the 

ideal point (1,1), achieving the smallest distance M̅. This provides a basis for optimizing 

image analysis procedures, in this example specifying the best parameters in a particular 

fMRI data analysis problem (number of SVD components and number of cycles in a 

particular cosine detrending step).
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