Figure 4.
Phylogenetic tree of ATP sulfurylase. All protein sequences, except those of Tetraselmis suecica, Amphidinium klebsii, Amphidinium carterae, Heterocapsa triquetra, and Chromera velia were obtained from either the NCBI protein database (http://www.ncbi.nlm.nih.gov/protein/), using the BLASTp (protein—Basic Local Alignment Search Tool) algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome), or the JGI (Joint Genome Institute) Genome Portal (http://genome.jgi.doe.gov/); H. triquetra, A. carterae, and C. velia ATPS sequences were kindly provided, respectively, by Stanislav Kopriva (University of Cologne), Charles F. Delwiche (University of Maryland) and Miroslav Obornik (Institute of Microbiology, Czech Academy of Sciences). T. suecica and A. klebsii sequences were determined by the authors (M.G.) in collaboration with Charles F. Delwiche. The sequences were then aligned using the software MUSCLE (MUltiple Sequence Comparison by Log-Expectation, http://www.ebi.ac.uk/Tools/msa/muscle/). The phylogenetic tree was finally constructed using the software SeaView (version 4, http://pbil.univ-lyon1.fr/software/seaview3.html). The aligned sequences were first modified using the Gblocks function to eliminate all the gaps and N- and C-termini in order to make the sequences comparable. A 10 bootstraps maximum-likelihood phylogenetic tree was then created using the PhyML program. The tree was finally edited with the software FigTree 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).