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Abstract

This work extends our earlier two-domain formulation of a differential geometry based multiscale
paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate
multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel
cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and
large macromolecular complexes. The essential idea is to make use of the differential geometry
theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent
from the microscopic domain of solute, and dynamically couple continuum and discrete
descriptions. Our main strategy is to construct energy functionals to put on an equal footing of
multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential,
quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic
dynamics. The variational principle is applied to the energy functionals to derive desirable
governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular
morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for
electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged
solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized
Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of
motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-
differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we
have explicitly constructed three models, a multidomain solvation model, a multidomain charge
transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is
equipped with distinct surface tension, pressure, dielectric function, and charge density
distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-
solute interactions are considered in the present modeling. We demonstrate the consistency
between the non-equilibrium charge transport model and the equilibrium solvation model by
showing the systematical reduction of the former to the latter at equilibrium. This paper also offers
a brief review of the field.
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| Introduction

An important trend in contemporary life sciences is that with the availability of modern
biotechnologies, traditional disciplines, such as physiology, plant biology, neuroscience etc,
are undergoing a fundamental transition from macroscopic phenomenological ones into
molecular based biosciences. In parallel with this development, a major feature of life
sciences in the 21st Century is their transformation from phenomenological and descriptive
disciplines to quantitative and predictive ones. Ample opportunities have emerged for
mathematically driven advances in biological research. Experimental exploration of self-
organizing molecular biological systems, such as HIV viruses, molecular motors, ribosomes,
RNA polymerase and proteins in Alzheimer's disease, are examples of dominating driving
forces in scientific discovery and innovation in the past few decades. However, the
emergence of excessive complexity in self-organizing biological systems poses fundamental
challenges to their quantitative description, because of their excessively high dimensionality
and the complexity of processes involved. Mathematical approaches that are able to
efficiently reduce the number of degrees of freedom, and model complex biological systems,
are becoming increasingly popular in molecular biosciences. Multiscale modeling, intrinsic
manifold extraction, dimensionality reduction and machine learning techniques are
introduced to reduce the complexity of biomolecular systems while maintaining an essential
and adequate description of the biomolecular observables of interest.

Recently, multiscale and multiphysics modeling and computation have become some of the
most powerful approaches in chemistry, physics, biology, nanoscience and
engineering.129.56.95,146,148,162,164,166,180 \ost of these approaches are aimed at the
understanding of complex systems, such as complex fluids, turbulent flows, micro-
fluidics, 29180 soft material, solids, interface problems, structure and fluid interactions, wave
propagation in random media, stochastic processes, deoxyribonucleic acid (DNA)
nanowires, molecular junctions, solar cells, fuel cells, battery cells, molecular switches,
nanotubes, field effect transistors, nanofibers, thin films, ion channels, ATPases, neuron
synapses, and self-similar problems. A main purpose of developing multiscale models is to
maintain efficient descriptions of key physical measurements in multiphysical problems
while avoid detailed descriptions of some physical components that do not significantly
contribute to the behavior of physical observations of interest, so that the resulting
computations are feasible with the current computer capability. In the past two decades, a
large variety of multiscale models and algorithms has been proposed. Among them, many
multiscale models, such as Boltzmann theory kinetic theory,141-143.158 describe
multiphysics with multiple governing equations, such as microscopic laws for atoms and
molecules at microscopic settings, and transport equations for the conservation of mass,
momentum, and energy at macroscopic settings. Multiscale approaches that bridge macro-
micro scales and couple macro-micro domains are commonly used.148 An interesting class
of multiscale models has their origin from earlier wavelet multiresolution analysis. Yet the
other class of multiscale approaches is heterogeneous multiscale models.>® Multiscale
coarse-grained methods92 and quantum mechanical/molecular mechanical (QM/MM)
approaches?#6:65.77.78 gre developed for bimolecular systems. Multigrid methods which
extract and utilize information at different time or spatial scales governed by one or a few
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equations can also be regarded as multiscale approaches. An elegant example is the
homogenization method.

A new class of multiscale models, differential geometry based multiscale approaches, has
been introduced by the present author'64 for large chemical, physical and biological systems
and nano devices, such as fuel cells, solar cells, nanofluidics, ion channels, molecular
motors, subcellular organelles, and virus complexes. A common feature in these systems is
that they have aqueous environment. We seek multiscale models which provide microscopic
descriptions of chemical and biological subjects of interest, while maintain macroscopic
descriptions of the aqueous environment, so as to significantly reduce the number of degrees
of freedom of the original complex system. To this end, we make use of the differential
geometry theory of surfaces and the geometric measure theory as a natural means to separate
macroscopic and microscopic domains.8-10.163.165 A vaariational strategy developed in our
earlier work for the minimal molecular surfaces®19 is generalized to cast our multiscale
modeling of multiphysics in a self-consistent manner. Our differential geometry based
multiscale paradigm provides variational formulations to a number of physical phenomena,
including polar and nonpolar solvations, molecular dynamics, fluid dynamics,
electrokinetics, electrohydrodynamics, electrophoresis, and elastic dynamics. By using the
Euler-Lagrange variation, coupled Laplace-Beltrami equation and Poisson-Boltzmann
equation are obtained for solvation. For non-equilibrium systems, additional generalized
Poisson-Nernst-Planck equations and/or Navier-Stokes equations are derived for the charged
species. Multiscale Newton's equations are obtained to allow the molecular mechanics
(MM) description of biomolecular systems. Finally, for excessively large chemical and
biological systems, the linear elastic dynamics is employed to replace expensive MD
simulations and further reduce the dimensionality.

Differential geometry based multiscale models have been intensively validated in the past
three years.21:23.31-34.166 The first series of efforts was given to the multiscale solvation
analysis.31-34.79.149,179 e jmplement differential geometry based solvation models in both
the Eulerian formulation3! and the Lagrangian formulation32 for real-world problems. We
analyze the equivalence of these formulations for both small and large molecules. An
immediate consequence of this development is a significant reduction in the number of free
parameters that users must “fit” or adjust in applications to real-world systems. The surfaces
generated by our methods are free of geometric singularities, which commonly occur in
conventional molecular surfaces and cause computational instabilities.#3:132 Very good
consistency between our theoretical predictions and experimental solvation energies has
been found for tens of compounds.31:32 The robustness of the approach was
confirmed.149.176 Qur differential geometry based nonpolar model gives rise to some of the
best predictions of nonpolar solvation energies.3* To further improve the accuracy of our
multiscale models, we have introduced the quantum density functional theory (DFT)
description of solute molecules,33 which significantly improves the predictive power of our
earlier solvation models. In a series of parallel efforts, we have developed differential
geometry based multi-scale quantum models for proton transport.21:23 Proton transport
underpins the molecular mechanism in biological energy transduction, sensory systems and
reproduction of influenza A viruses.2’” Due to significant quantum effects, proton
permeation across membrane proteins needs to be treated by quantum mechanical
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means.116125 |n our multiscale and multiphysics model, we have constructed a new density
functional theory based on the Boltzmann statistics, rather than the Fermi-Dirac statistics, to
describe proton dynamics quantum mechanically, while implicitly treat numerous solvent
molecules as a dielectric continuum. The membrane proteins are described in the atomistic
detail to enable the gating effect. An interesting aspect is that the densities of all the other
ions in the solvent are treated with the Boltzmann distributions following an approach
introduced in our earlier work,178 which was independently confirmed by using Monte
Carlo simulations.%* We have explored non-electrostatic van der Waals interactions among
all the ions, and between ions and proteins, including size (steric) effects.23 Our method
provides excellent predictions of experimental current-voltage curves. Most recently, we
have developed differential geometry based multiscale models for heterogeneous chemical
and biological systems that are far from equilibrium.166 In this new theory, the consistency
between the equilibrium model and the non-equilibrium is established at equilibrium as
demonstrated both theoretically and numerically. Our main focus in such a development lies
in the understanding of ion channel gating mechanism in membrane proteins. With our
variational multiscale framework, we consider both nonpolar and polar (electrostatic)
solvation effects, chemical potential and the associated free energy, continuous modeling of
solvent species and discrete representation of membrane proteins. Once again, we found
very good agreements between our model predictions and experimental measurements.166

The objective of the present work is to extend our earlier differential geometry based
multiscale and multiphysics models into multiscale, multiphysics and multidomain models.
Indeed, in our previous formulations, only one solute domain is considered, although it can
be described either by using a set of discrete point charges, molecular dynamics, quantum
mechanics or with elastic dynamics. In this work, we consider arbitrarily many solute
domains so as to allow simultaneously multiphysical descriptions for different
macromolecular domains and complex nano-bio devices. For example, in solvation analysis,
our multidomain models assign different part of macromolecular complexes with different
dielectric functions.28:127 This approach is potentially useful to the theoretical analysis of
metalloproteins, which are crucial to many cellular different functions in cells, such as signal
transduction, oxygen carrier (hemoglobin), and electron transfer (cytochrome).
Approximately half of all proteins are metalloproteins. Another example is that in ion
channel analysis, we can model the ion channel protein by molecular mechanics while
describe the bending and vibration of membrane bilayers with elastic dynamics. Figure 1
illustrates a membrane protein complex, in which the transmembrane protein can be
described by molecular mechanics or quantum mechanics, while the solvent can be treated
by fluid mechanics. The lipid bilayer can be represented by elastic theory. In fact,
hydrophilic head groups in the lipid bilayer can have dielectric functions different from
those of hydrophobic tails. Other distinct chemistry or biology in the complex can be
described by necessary means as well. Finally, for multidomain or multi-subunit proteins,
different domains or subunits can be treated with different approaches, depending on
physical observables and practical needs.

The rest of this paper is organized as follows. Section Il is devoted to the theory and
formulation of our new models. We first describe the notation and scope of the present
work. The interaction potentials for different physical laws, including global Coulombic
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interactions, solvent-solute interactions and interactions between different solvent species,
are considered. Based on this preparation, we introduce three new multiscale, multiphysics
and multidomain models. Our first model is for solvation analysis. We introduce a
multidomain representation of macromolecular complexes, in which each domain has its
own surface tension, pressure, dielectric function, and charge density distribution. The
energy variation leads to a set of Laplace-Beltrami equations, each for one solute domain. A
generalized Poisson-Boltzmann equation is also derived from the present formulation. We
expect this model to provide an efficient description for ion microstructures near the
interface. Our second model is for charge transport in chemical, physical and biological
systems. This model is a natural extension of the multiscale, multiphysics and multidomain
solvation model. The chemical energy functional is employed to allow the description of
non-equilibrium charge transport. The standard gradient flow procedure is employed to
construct the generalized Nernst-Planck equation. A set of coupled Laplace-Beltrami,
Poisson-Nernst-Planck equations are obtained from the variational analysis. This model is
relevant to ion channel, nanofluidic and fuel cell systems. Finally, we construct a chemo-
electro-fluid-MD-elastic model. This model allows simultaneously three different
treatments, discrete point charges, molecular mechanics and elastic dynamics, of charge
transfer macromolecular complexes, fuel cells and solar cells. In the solvent domain,
multiple solvent species and their fluid flows are considered. This paper ends with
concluding remarks.

Il Variational multiscale multiphysics and multidomain models

In this section, we discuss a family of variational multiscale multiphysics and multidomain
models. Our formulation extends the theory of the differential geometry based multiscale
models64 with the multidoain consideration. The novelty of our new models is the use of
multiple domains to accommodate multiphysics descriptions of large biomolecular
complexes and nano-bio systems.

We first discuss the scope of the present multiscale multiphysics and multidomain modeling.
Three different models, a solvent model, a charge transport model, and a chemo-electro-
fluid-MD-elastic model, are developed to illustrate our ideas.

II.LA Scope of the present formulation

We denote Q C R? as the total domain. Assume that there are a total of N macromolecular
domains, denoted as, 2, | =1, 2, ..., N. We characterize these domains by a set of
hypersurface functions {S;}, 1=1, 2, ..., N, such as r € €, if S;(r) > 0. Obviously, these

N
domains overlap each other, 0 Q, >0. Additionally, we denote Ss=1 — =1 — 212151 the
solvent characteristic function. The solvent domain is labeled as 2. Obviously, the sum of

N
all characteristic functions is the partition of unity Zblsﬁss:l

Electrostatic interactions are fundamental in nature and ubiquitous in all biomolecules,
including proteins, nucleic acids, lipid bilayers, sugars, etc. Electrostatic interactions are
inherently of long range, which leads to computational difficulties. Since 65-90 percent of
cellular mass is water under physiological condition, biomolecules live in a heterogeneous
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environment, where they interact with a wide range of aqueous ions, counterions, and other
molecules. As a result, electrostatic interactions often manifest themselves in a vast variety
of different forms, due to polarization, hyperpolarization, vibrational and rotational
averages, screening effects, etc, to mention just a few. The importance of electrostatics in
biomolecular systems and nano devices cannot be overemphasized because they underpin
the molecular mechanism for almost all important biological processes, including signal
transduction, DNA recognition, transcription, post-translational modification, translation,
protein folding and protein ligand binding. In general, electrostatics is often the fundamental
mechanism for macromolecular structure, function, dynamics and transport. In the chemical
and biophysical literature, it is a convention that only those interactions that directly obey
the Coulomb's law are referred to the electrostatic (or polar) interactions. All other
interactions, including dispersion interactions, steric effects,11:17.71,80.103,155 jon_water
dipolar interactions, hyperpolarizations, ion-water cluster formation or dissociation, ion spin
effects, ion-protein interaction, hydrogen bonds and van der Waals interactions, are referred
as non-electrostatic (or nonpolar) interactions, although they are ultimately electrostatic in
origin.23.164.166 Thjs convention was adopted in our earlier work and is employed in the
present work as well.

As in our earlier work, electrostatic modeling is the main focus of the present work. Due to
their long range characteristic, electrostatic interactions are modeled as a global quantity that
penetrates across domains. Therefore, electrostatic interactions between all domains are
considered in the present work. Additionally, although non-electrostatic interactions are
relatively short range, their influences near the interfaces can be significant. In particular,
the mobile ions in the solvent domain are extremely sensitive to non-electrostatic
interactions near the solvent-solute interfaces. Therefore, non-electrostatic interactions
between the solvent domain and all macromolecular domains are of primary concern in the
present work. Finally, it is well-known that solvent-solvent non-electrostatic interactions,
including ionion non-electrostatic interactions, play a major role in determining ion
microstructures near the solvent-solute interfaces. Therefore, we consider ion-ion non-
electrostatic interactions as well. We denote US all the non-electrostatic (or nonpolar)
interactions involving the solvent (S)

Uszza:an(f @

where p,, is the density of solvent species @ and 7? is given by

rj B

where U,ff (r) is the pairwise nonpolar interaction potential between the ath solvent species

and jth component in the Ith solute domain. Similarly Ufg (r) are the pairwise nonpolar
interaction potentials between the ath solvent species and fth solvent species in the solvent
domain. These interactions, particularly the ones between solvent species, are important for
the understanding of a number of phenomena, such as the solvent polarization, size effects, ¢
potentials and solvent microstructures near the solvent-solute interfaces.
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For generality, we do not specify the form of 7 in the present work. We assume that
various interactions such as dipole,54 multipole,89:134/ potential and steric effects,° are

modeled in the present theory by appropriate selections of 7. As an example, Lennard-

Jones potentials, which have already been employed for U3, (r)3% and UZ5 (r)?3168 in our
earlier work, can be utilized. As pointed out in our earlier work,23:31:32,166 these | ennard-
Jones potentials involve one or two continuum variables and are significantly different from
the conventional Lennard-Jones potential, which traditionally represents short-range
interactions between two explicitly labeled particles. Therefore, the resulting formulations
involve integral-differential equations. Note that integral equation
approaches,13:20,50,123,128,157,174 jnclyding classical density functional
theory,8.93,96,115,120,133,161,170,172,173 gre quite popular in solvation analysis. Our
formulations therefore connect both integral equation and differential equation approaches.

In the rest of this section, we first construct a new multiscale multiphysics and multidomain
solvation model in Section 11.B. Based on this new model, we further develop corresponding
differential geometry based models for charge transport in Section I1.C. Finally, we illustrate
the flexibility and robustness of the proposed theory by constructing a multiscale
multiphysics and multidomain model involving electro-statics, multiple charge species, fluid
dynamics, molecular dynamics and elastic dynamics in Section 11.D. In the solvent domain,
flow convection and viscosity are considered. In the molecular mechanical description, all
the bonding and nonbonding interactions in the implicit MD level®7 are accounted. In the
elastic domain, the stress-strain relation is considered.

[1.B Multiscale-multiphysics-multidomain model for solvation

Due to the ubiquitous nature of electrostatic interactions and the aqueous environment
common to chemical, and biomolecular systems, analysis of molecular solvation is of
significant importance in chemistry, biophysics, and medicine. Solvation is a physical
process which involves a variety of solvent-solute interactions, such as the electrostatic,
dipolar, induced dipolar, hydrogen bonding and van der Waals interactions between the
solvent and the solute. Both explicit3%:121 and implicit models are used to describe the
solvation process. Implicit solvent models that treat the solvent as a dielectric continuum,
and describe the solute molecule as a static atomistic charge
distribution3:49.76.85.131,138,160.169 haye hecome popular recently, due to their simplicity and
efficiency. Generalized Born,:25:51.66,70,97,114,118,150,152,182 poarjzable
continuum,8.18.38:45,82,113,147.151 pgjsson-Boltzmann (PB) models*9:62:101.138 and nonlocal
dielectric methods’? are commonly used. Among them, the PB models are the most popular
and can be formally derived from Maxwell's theories.12:75117 A relatively comprehensive
descriptions of the solvation process, solvation models and various applications of solvation
methods can be found in our two review-style papers.31.32

[1.B.1 Total energy functional for solvation

Main direct experimental measurements of solvation include solvation free energy and
solvent microstructures near the solvent-solute interface. These measurements validate
solvation models. Typically, a solvation model offers either a description of the solvation
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free energy or the solvent microstructure. In the present work, we try to develop models for
both physical observations.

Nonpolar free energy functional—The solvation free energy can be divided into polar
(i.e., electro-static) and nonpolar contributions.31:55:156 \\e propose the following
multidomain nonpolar free energy functional

GHOHPOIMZXI: (v,Area,+p,Vol,) —|—fQS USdr, recR? ®)
where “Area;” and “Vol,” are respectively the solute surface area and volume of the Ith
solute domain, v(r) is the surface tension, and p, is the pressure associated with the Ith
solute domain. Here the integration is over the solvent domain Qs. In Eq. (3), the first two
terms come from the scaled particle theory (SPT), which describes the surface free energy
and the mechanical work of creating a cavity of the solute size in the solvent,124.144 and the
third term describes the solvent-solute interactions,31:55.156,164

To bring the first two terms of Eq. (3) into an Eulerian representation, we utilize the mean
surface area for domain 2,164 and the coarea formula®®

Area,=[}f l dode=[q|VS, (r)|dr, recR? @
I

-1
sy ens

where 0 < S; < 1 is a characteristic function or hypersurface function of the solute domain .
Therefore, the volume of a macromolecular domain in Eqg. (3) can be given by

VolI:fﬂI dr=[(S, (r)dr, ®)

where € is the Ith macromolecular domain. Note that for adjacent domains, 0, N, is not
empty because each hypersurface function S; is a smooth function, which leads to the
overlapping between €, and ;. We rewrite the last term in Eq. (3) as

fﬂs USdr=/, (1 -3’5, (r)> USdr=[,S, (r) U%dr. (s
I

Polar free energy functional—In our solvation models, the polar solvation free energy
is modeled with the Poisson-Boltzmann theory. Sharp and Honig!37 introduced a variation
formulation of the Poisson-Boltzmann equation. The derivation of solvation forces has been
given by Gilson et al®® and others.67:164 In our multidomain formalism, we express the polar
solvation free energy as

c 9 7qa<I>+UQS—ua0
—2|VY| —k‘BT%:pao <e T —1>Hdr, 0

where @ is the electrostatic potential, &5 and & are the dielectric functions of the solvent and
the Ith solute, respectively, and g represents the charge density of the Ith solute. The form

J Theor Comput Chem. Author manuscript; available in PMC 2014 November 05.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

LB—PB
Gtotal

=/ {E [0V [+, 5,48, (~%VeP+e  o,)]+5,
I

Page 9

of ¢ depends on the level of the physical description. For example, in the static atomistic

description, one has QIZZjQ§5 (r - rJI) with Q§ denoting the partial charge of the jth
atom in the Ith solute. Whereas, charge density g, takes a continuous form when the domain
I is described in a continuous representation. It can also be computed with the density
functional theory as demonstrated in our recent work.33 Here kg is the Boltzmann constant,
T is the temperature, p,o denotes the reference bulk density of the ath solvent species, and
g, is the charge valence of the ath solvent species, which is zero for an uncharged solvent
component, such as water molecules.

The Boltzmann distribution in Eq. (7) is of the same form as that in our earlier work and can
be derived from the equilibrium condition of the generalized electrochemical potential.166

Similar to integral equation theories,®8:12° the potentials 75 involve the integration of the

continuum variable. By modifying 7 term in the Boltzmann distribution, one can easily
take into the consideration of dipole,5* multi-pole,8%.134 steric effects,> and van der Waals
interactions in a generalized Poisson-Boltzmann equation. In the present solvation model,
the focus is on a simple description of the solvation free energy and solvent microstructures
near the solvent-solute interface. The non-electrostatic interactions between different
macromolecular domains have little impart to the equilibrium solvation properties, and thus,
are neglected, for simplicity.

The direct combination of polar and nonpolar solvation free energy functionals does not lead
to the desirable total free energy functional for solvation. Instead, a modification of the
nonpolar energy functional is necessary because the solvent-solute interactions have been
accounted in the Boltzmann distribution

[{S:}, @]
90 ®+US —pao

_€TS|V(I)|2 - kBT%:paO <e *pT

Here, the first row is the solvation free energy of the solute molecules and the second row is
the polar solvation free energy of the solvent. Equation (8) provides a starting point for our
variational analysis.

[1.B.2 Governing equations for solvation

Established in a series of work,21:31:32.164,166 the variation of the solvation free energy
functional (8) is quite standard. The derivation of two governing equations is discussed
below.

Multidomain Laplace-Beltrami equations—In our formalism, the surfaces of
biomolecular complexes are described by hypersurface functions {S,}, which are governed
by generalized Laplace-Beltrami equations. The total solvation free energy{in Eq. (8) is a
functional of hypersurface functions {S;} and electrostatic potential ®. By using the Euler-
Lagrange equation, we have
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5GéﬁiPB VSI €; 2 € 9 _(Iaq>+U§7/,La0
—V\"vs -5 IVe[+e S IVe|*+k,T BT —1]=0.
55[ = -V ('71 ‘VSI‘) +p,; 5 |V | + o+ 5 |V | +Kg Zpao e B (9)

It is convenient to introduce an artificial time10:31.32.164 to arrive at the following
generalized Laplace-Beltrami equations

8S VS,

I . LB—PB =1.---
It ‘VS1|[V (’71|VSI|>+‘I ]a I=1, , N, (20)

where the potential driven terms are given by

40 P+US —ua0

VILBfPB:_pI_'_%|V¢,|2_¢) QI_%SW¢>|2_]<;BTZ,OQO (e kpT — 1) - (11

Generalized Laplace-Beltrami equations (10) determine not only the solvent-solute
interfaces but also the solute-solute interfaces. It is possible for many domains to overlap at
one particular point of the space. Technically, there is some similarity between the present
multidomain Laplace-Beltrami flows and the phase field theory based multi-component
multiphase fluid flows,%2 despite of their major conceptual differences.

Multidomain Poisson-Boltzmann equation—\Variation with respect to electrostatic
potential ® leads to

LB—PB
5Gtotal = V. (
0P

4a®+US —nq0

V<I>> +>°8,0,455 qapace BT =0. (12)
T Y

Sses—i—ZS]el
Ji

From Eg. (12), one has the multidomain Poisson-Boltzmann equation

_ 4a®+US —pao

=V (e(S)Ve) :ZSI 91+Sszqapaoe N > (13)
T @

where € (5) =Ss€s+2151 €1 is the generalized permittivity function for a multidomain
setting. It reduces to the form discussed in our earlier work31:164 when there is only one
solute domain. As described in our earlier work, &(S) is a smooth dielectric function. The

Boltzmann factor e—kUBST in Eqg. (13) gives rise to a non-electrostatic correction to the charge
density near the interface. Therefore, it can be used to describe solvent microstructures near
the solvent-solute interface.

In our formulation, Egs. (10) and (13) govern the surface evolution and the electrostatic
potential, respectively. We denote these coupled equations the Laplace-Beltrami and
Poisson-Boltzmann (LB-PB) equations. When there is only one solute domain, these
equations reduce to their corresponding forms obtained in our earlier work.166

The solvation model describes the system at equilibrium. However as the charge density is
approximated by the Boltzmann distribution, which involves appropriate integrals in the
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potential 75,23166 the generalized Poisson-Boltzmann equation, Eq. (13), is in fact an
integral-differential equation. The solution of Eq. (13) needs to carried out iteratively for
realistic problems.

[1.C Multiscale-multiphysics-multidomain model for charge transport

Solvation models are for systems at equilibrium, in which ion densities can be efficiently
approximated by the Boltzmann distribution. However, for non-equilibrium systems, such as
charge transport in fuel cells, solar cells, nano-fluidics, ion channels, gap junctions and
neuron synapses, an independent description of ion densities is required. A wide variety of
transport theories have been developed, ranging from Boltzmann kinetics,16:37.73.141,158
Monte Carlo approach,®* Fokker-Planck and Master equations,6%:83 non-equilibrium Green's
function,2247,48,87,100,136,145 copled Navier-Stokes and Poisson-Boltzmann (PB)
equations,26 to Poisson-Nernst-Planck (PNP) equations.#26:57.61,98,110.140 Among these
approaches, the PNP model is relatively simple, and able to offer very good predictions of
current-voltage curves for many channel proteins.19-98.177 However, the PNP theory neglects
the finite size effect due to its continuum representation of ion
densities.17:44.80.86,90,106,110,139 Adyantages and limitations the aforementioned transport
models have been discussed in the literature.2,5,35,36,40—
42,42,54,57,58,99,104,105,111,130,135,154 The reader to referred to Ref1%6 for a recent
review.

Differential geometry based charge transport models have been introduced in our earlier
work.184 Extension to proton transport and validation with experimental data have been
carried out recently.21:23.166 A major feature of our differential geometry based charge
transport models is that they combine the transport modeling with the geometric flow based
surface modeling so as to generate self-consistent solvent-solute interfaces.184 Another
important feature of our transport models is that they unify the transport modeling with the
solvation modeling. As a result, our nonequilibrium transport models reduce to
corresponding equilibrium solvation models at equilibrium.166 In the next subsection, we
provide a multidomain generalization of our earlier transport formalism.

II.C.1 Total energy functional for a system with charged species

Charge transport involves material exchange and thus chemical potential(s). In

nonequilibrium thermodynamics, chemical potential related free energy can be expressed
166
as

Gchem:f%; {(#g ~ fa0) patkTpa ln% — kT (pa — pao } dr, (14)

where ;0 is a reference chemical potential of the ath species at which the associated ion

density is py,, given &=U2=p,,=0. The second term is associated with entropy of mixing,
and the last term is for relative osmotics.112

To construct a total energy functional for charge transport, we need to recognize that the
densities of ion species do not obey the Boltzmann distribution. We therefore utilize the
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nonpolar free energy functional (3), and modify the source term of the solvent polar energy
functional (7). Together with chemical potential related free energy (14), the total free
energy functional for the charge transport is given by

GthfaTPNP [{S/},®.{pa}]

:f {; (’YI'VSI‘—I_pISI) +SSUS+XI:SI [_%[V(I)‘Q—"(I) Q[} +55 {_%|V(I)|2+(D%:Poz‘ﬂx] +Ss%: [(,ug - /LLaO) PatkyTp

where the first row is the nonpolar solvation free energy functional for our multidomain
description, the second row is the polar (electrostatic) solvation free energy functional, and
the last row is the chemical potential related energy functional for charge transport. We
denote A, a Lagrange multiplier for ensuring appropriate physical properties at
equilibrium 61.166

II.C.2 Governing equations

As functionals of hypersurface functions {S,}, electrostatic potential and ion densities {0},
the total free energy (15) can be minimized by using the variational principle, which gives
rise to desirable governing equations for the system, namely, partial differential equations
(PDEs) for {S;}, ® and {p,. The solution of these PDEs in turn minimizes the total free
energy in Eq. (15).

Multidomain Laplace-Beltrami equations—As discussed in the last subsection,
hypersurface functions {S,} are governed by generalized Laplace-Beltrami equations. These
equations are different in their source terms. We apply the Euler-Lagrange equation to {S;}
to have

LB—PNP
SGi v (v ;g )
I I
€

+p, —US =) (j\W\z% 91)

. ! (16)
+§|V¢>|2 — @) pada

(87
Pa

- Z |:_:ua0pa+kBTpoz In— — kBT (pa - pa()):| =0.
« Pal

By using the same procedure as that used in our earlier work,3164 we arrive at a set of N
Laplace-Beltrami equations:

95, VS LB—PNP
=|VS [V~<’y I)—i—V ], I=1,...,N, a7
5 /| 1V, (17)

where

- € € Pa
VPPN — _p 4US 4 (3’\W>I2 -0 91)—§IV¢>I2+¢’Zpaqa+Z {’%T (pa o~ pa+pao> - uaopa] - (18)
I o a o
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Multidomain Poisson equation—We first carry out the variation of the total free
energy functional with respect to the electrostatic potential ®

LB—PNP
5Gtota,l =V.
0P

SSES—FZSIEI V@) —l—ZSIgI—FSSZpaqa:O. (19)
I I [eY

This gives rise to the desirable multidomain Poisson equation

-V - (e(S) VD) :ZSI 0; +SSZ,004qaa (20)
I [e3

where € (5) =Ss€s+215161 is an interface dependent dielectric profile, which is a
continuous function. Obviously, Eq. (20) involves hypersurface functions S; and densities of
ions p,. The latter is determined by a set of PDEs, instead of a Boltzmann factor, in the
present formulation.

Multidomain Nernst-Planck equations—The derivation of Nernst-Planck equations is
similar to that described in our earlier work.1%6 Let us carry out the variation with respect to
ion densities {p}

6GLB—PNP p
ol = I =10, — prao kT I+ ga @+US A0 (21)
5poe Pa0d

where ;,9¢™ is the relative generalized potential of species @ and vanishes at equilibrium,
which gives rise to

_ 4a P+US —pia0

kT

5 (22)

Ao=— g and  pa=page
It is seen that the generalized Boltzmann factor used in the last subsection is justified by
equilibrium condition (22).

For charge transport, the system is of non-equilibrium in general due to inhomogeneities in
ion densities and electrostatic potential. In many situations, these inhomogeneities originate
from boundary conditions, such as concentration gradient between intercellular and
extracellular ions, and electrostatic potential gradient due to applied voltages in nanofluidic
devices and patch clamps. We construct a set of ion flux equations by using Nernst-Einstein

en

equation J,= — DaPaV”jQ;T with D, being the diffusion coefficient of species a. In fact,

k
D, needs to be a position dependent function in many applications, such as ion channels.1?”

By taking into consideration of Eq. (22), the relative generalized potential 9™ is given by

pi =k, T an%JrququrUg — pao- We further make use of Fick's law of diffusion

dpa— _V.J to arrive at desirable Nernst-Planck equations
t «

0pa Pa S
2e_v.|D,(V \Y U
5 [ a( pa+kBT (qa@+ a))}, (23)

J Theor Comput Chem. Author manuscript; available in PMC 2014 November 05.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

LB—PNP__
total -

Page 14

where q,® + U, can be regarded as a mean field potential, which gives rise a generalized
convection (force) term in the ion density dynamics. This approach, namely, the
construction of a flow flux from the energy minimization, is often called a gradient flow
method in the literature.

At steady state, Eq. (23) becomes

Pa
k., T

B

Vo D (Vout L9 (0.0405) )| <0.

The solution of Eq. (23) depends on &, i.e., the solution of the multidomain Poisson
equation (20). We call Egs. (20) and (23) the generalized Poisson-Nernst-Planck (PNP)
equations. Note that the solution of Eq. (20) depends on hypersurface functions S.

The multidomain Laplace-Beltrami equations (17) and PNP equations (20) and (23)
constitute a coupled system, and are called generalized LB-PNP equations. Their solution
minimizes the total free energy functional (15) for charge transport. Unlike the traditional
PNP equations, the present LB-PNP equations self-consistently couple biomolecular
surfaces and dielectric profiles with electrostatic potentials and ion densities. Additionally,
the general interaction potential US include possible solvent-solute and ion-ion interactions,
which endows the present LB-PNP formalism with the capability of predicting ion
microstructures near solvent-solute interfaces. Finally, the multidomain setting in the present
formulation further allows the flexibility of modeling multiple material compositions.

[1.C.3 Consistency with the multidomain solvation model

In our earlier work, we have shown both theoretically and numerically that the non-
equilibrium LB-PNP model reduces to the equilibrium solvation model at equilibrium.166
This consistency between a non-equilibrium theory and an equilibrium one is essential in
theoretical modeling and our understanding of non-equilibrium dynamics. In the present
multidomain modeling, we demonstrate further that this important consistency can also be
established.

To this end, we apply the constraints in Eq. (22) to the total free energy functional in Eq.
(15)

F{5 (1175, 148,5) +SU5+35, [~4IVOL+8 0] +5, |~V +0Tpata] +5,5 [(2 = o) Pk T

Additionally, for the surface driven functions of the generalized LB equation, it is easy to
show that under the constraints of Eq. (22), one has VLB-PNP  LB-PB Eyrthermore, under

gen

the constraints of Eq. (22), Jo= — DapaV ‘;;T 0 and PNP equations (20) vanish.
Therefore, we fully recover the equilibrium LB-PB model from the non equilibrium LB-
PNP theory at equilibrium.
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I1.D Chemo-Electro-Fluid-MD-Elastic model

Many chemical, physical and biological systems are excessively large and involve a huge
number of degrees of freedom. As such, their atomic description is intractable with current
computer capability. Subcellular organelles, molecular motors, virus particles and fuel cells
are examples of excessively large aqueous systems. Theoretical modeling, analysis and
simulation of these systems pose a fabulous challenge to the research community.
Multiscale, multiphysics and multidomain methods proposed in this work provide potential
tactics and strategies for this class of excessively large problems.

In this subsection, we demonstrate the use of the present multidomain theory by considering
a system with three distinguished domains, a solvent domain and two molecular domains.
The solvent domain is described in terms of the fluid mechanics. One of the molecular
domain is treated with the molecular dynamics (or coarse grained dynamics) and the other
molecular domain is furnished by using the elastic dynamics. Two molecular domains are
directly coupled to each other via electrostatic interactions. Additionally, both molecular
domains are strongly coupled to the solvent domain via electrostatic interactions as well as
general solvent-solute non-electrostatic interactions described by US.

I1.D.1 The action functionals

Fluid dynamics—Fluid flows play an important role in nanofluidic devices and fuel cell
systems. In nanofluidics, fluids are controlled and manipulated at submicrometer and
nanometer scales to study the behavior of molecular and biological systems. At such scales,
the characteristic length scale of the fluid coincides with the length scale of the biomolecule
and the scale of the Debye length. As a result, fluids show interesting behaviors which are
not observed in larger scales. Mirco/nano fluidic apparatuses have been developed for basic
measurements, ranging from molecular diffusion coefficients,8 pH values,109.167 chemical
binding affinities,88 to enzyme reaction kinetics.>372 As a new technology, nanofluidics has
been devised for polymerase chain reaction (PCR) amplifications,14 macromolecule
accumulator,39.168 electrokinetics,! biomaterial separation®? membrane protein
crystallization,107 single nucleotide polymorphism genotyping,1°® and gene expression
analysis via DNA computing.1’® The influence domain of electrostatic potentials in

nanofluidic systems is characterized by the Debye length Ao = \/EskB T/Zapaoqg, which
varies dramatically from the channels of transmembrane proteins, pores of proton exchange
membranes, to clefts of neuron synapses. To model electro-osmosis and electrophoresis, it is
necessary to combine fluid mechanics with electrostatic analysis.

We consider multicomponent homogeneous incompressible flows. The Lagrangian of an
incompressible viscous flow was discussed in our earlier work.164 It consists of kinetic
energy, potential energy and viscous energy lost due to friction164

2 t{ov, , ovi\2 ./
Lyua=/(1-15) [p% - (‘I’+PS+US — (G ) a )] dx, (26)
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where PZZQPQ is the total solvent density for a multicomponent homogeneous flow, pg is
the hydrodynamic pressure, v is the flow stream velocity, v; are velocity components and s
is the viscosity of the fluid. Here, ¥ is the potential energy mostly due to the gravitation.
The last term in Eq. (26) is the stress energy density

2
pf i OV OV; I ST

E, =—[— dt =—["T=dt, (7

swes =g ( ox, T o, 2! 27)

where T is the stress tensor. The Einstein summation convention is used in the above
expression. Obviously, the stress tensor is symmetric

Tij=Tji- (28)

The reader is referred to Ref.164 for more detailed discussion of the fluid energy functional.
In the present work, we slightly modify Eq. (26) to avoid redundancy in energy density
functional.

Molecular dynamics—Unlike the macroscopic fluid dynamics, the molecular mechanics
seeks microscopic atomistic or coarse grained descriptions of a solute component, which is
typically crucial to the physics of interest. For example, the structure and dynamics of an ion
channel protein is the key to the understanding of the channel gating mechanism. Molecular
dynamics can be employed to obtain structure information due to mutations. The molecular
mechanics in the present formulation is akin to the implicit molecular dynamics proposed in
the earlier work by Gilson et al®® and others,81:198 including ours.%7

The energy functional of a molecular mechanics was introduced in our earlier work.164 The
Lagrangian of molecular mechanics includes the kinetic energy of each individual atom or
particle and the potential energy due to various microscopic interactions64

.2
Lyp=/[S% {Pj% -uM (Z)] dxdz  (29)
J

where g = mjd(z; — X;) is the mass density of the jth atom or particle in a coarse grained
description, m; and x; are the mass and the macroscopic position of the jth atom or particle,

respectively. Here pi ; and UM(2) are respectively the kinetic and the potential energy

densities of the jth atom or particle with Zj:%- Additionally, we denote

z= (z1, Zy, - 7ZN0) € R* as the microscopic variable of N, atoms or particles and dz =
dz,dz; - - - dzy,. In principle, the potential interactions UM include all bonding and
nonbonding components used in implicit MD calculations.67:108

Elastic dynamics—The microscopic domain described above is complemented with an
elastic domain to dramatically reduce the number of degrees of freedom. Both fluid
dynamics and electrostatic interactions will be coupled to molecular dynamics and elastic
dynamics. Some pioneer work on fluid-structure coupling was due to Peskin.122 The
coupling of electrostatics and elasticity was considered by Zhou et al*81 for biomolecules.
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Alternatively, phase field®2 and Helfrich curvature!1® approaches of the elastic bending
energy for vesicle membranes were discussed in the literature.

Let us consider a point r in R” that is deformed to r due to a displacement w, i.e.,
w=r —r. (30)

The deformation can be characterized by a strain tensor64

1 8Wi+8Wj
0ij=3 )
175 | or; Tory |0 @Y

where the nonlinear term in w is omitted for relatively small deformations.164 This linear
elasticity analysis has been widely used. The Einstein summation notation is used in the
above expression.

For an isotropic system, the elastic potential energy density takes the form

1 2
EElasLic:§ |:)\E0-i2i+:u’E (Uij) } ,  (32)

where \g is the elastic modulus or stress/strain ratio, and g is the shear modulus. Both the
elastic modulus Ag and the shear modulus pg are connected to the atomic or molecular
interaction strengths.

Additionally, the kinetic energy density can be expressed as ‘e w2 Where pg is the mass
density of the elastic macromolecule and w is the velocity of the displacement. Therefore,
the Lagrangian of the elastic system is given as the difference of the kinetic energy and the
potential energy

LElastic:fS [pTEWZ - % <)‘Eaz'2i+ﬂE (o-ij)Q)} dr. (33)

Total action functional—Total action functional of the present multidomain system
involves energy densities from differential physics, namely, polar and nonpolar solvation,
chemical mixing, fluid dynamics, molecular dynamics and elastic dynamics. However, we
need to eliminate any redundancy in energy densities. We consider the following total action
functional

th;gtglif'DiﬂD [S, @, {pa}]

€ 2 € 2 €q S
:fff {7]\/{VSAI|+’YF)VS[[+p1\/[SA/[+pE‘SE+SSUS+SA/T [7 IQW |VCI)| +q) QM} +SE [7 §|V<I>| +(I> @E] +SS {*75|V‘1)|

where expressions from the first to the last row in Eq. (34) are respectively the multidomain
nonpolar free energy, electrostatic energy, chemical potential related energy, fluid dynamics
energy, molecular dynamics energy and elastic dynamics energy.
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I1.D.2 Governing equations

We derive governing equations by a total variation in the present case.164 A number of
coupled PDEs are obtained as described below.

Generalized Laplace-Beltrami equation—BY using the same procedure as that used in
the earlier sections, we end up with two generalized Laplace-Beltrami equations, one for the
molecular mechanics domain and the other for the elastic domain

8s, |VS,| Vs,
= . \ I=ME

ot [v ( I‘VSI|>+ 1}7 , £, (35)

where driven terms V), and Vg are respectively given by

V= —py+U%+ “\V‘PI —®o,

- §|V~1>\ 'HI)ZPQ‘JQ
«

—|—Z [kBT (paln% - pa"‘p(xO) - ﬂaopa]
2
v p,f dv; Ov; /
dt
[p2 j <8rj+8ri> ]

+§Jj{ % UM()}.

(36)

and

V, :_pE+US F|V(I>| - Do,

- 75|V<I>| —|—(I>Zpaqa

2 . A\ 2 37)
Pao v Kf o f OV OV '
k (ll (6% (e {e4 « 5 8 a 9 t

+ {pZEW - - (/\Eau—l—,uE(U”f)} :

The above two expressions differ in their electrostatic energies and their last terms, which
are associated with specific dynamic descriptions. Solution to these equations determines Sy,
and Sg, as well as Sg, because of Sg=1 - Sy — Sg.

Generalized Poisson equation—The variation of the total action functional (34) with
respect to @ leads to the generalized Poisson equation

=V (e(S)V®)=5,,0),+5 QE+SSZPQQa (38)

where &(S) = Sses + Spméem + Sgeg is the generalized permittivity function. Obviously, Eq.
(38) is a special case of Eq. (20).
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Generalized Nernst-Planck equation—W:ith a non-vanishing flow velocity, the

derivation of the generalized Nernst-Planck is slightly different from that in Section I1.C.2,
but is very similar to that discussed in our earlier work.166 The variation of the total action
functional (34) with respect to ion densities p,, gives rise to a generalized relative potential

gen

Ha

2

Vv
Lo Gu®+US — oo — = (39)

gen—k _TI
/‘La B " Pa0 2

We use Eq. (39) to construct a generalized flux

gen

Jo=— Dapavg:T.

(40)

The generalized Fick's law, which takes care of chemical reactions and incompressible fluid
flows, givesl64.166
Opo,

—r TV Vpa=—V- JQ+ZDQJ»JJ‘ (1)
J

where v, ; J7 is the density production of «a species per unit volume in the jth chemical
reaction.164 Explicitly, the generalized Nernst-Planck equation reads

9pa Pa s V2
Vpa=V D, |Vpa v (gaotUS - ¥
ot TV VP [ Pot i T (q + 2

+D Vai ! (w2)
J

Equation (42) provides a generalized mass conservation where the rate of change of the ath
ion species is balanced by the convective transport of the incompressible multicomponent
fluid flow, density gradient, electrostatic gradient, potential forces due to solvent-solute
interactions, solvent-solvent interactions, the flux of the fluid kinetic energy, and finally,
chemical reactions. Equation (42) reduces to Eq. (23) when the velocity and the chemical
reaction flux vanish.

Generalized Navier-Stokes equation—The conservation equation for flow stream
velocity of incompressible flows can also be derived from variational principle.164.166 The
total variation of total action functional (34) leads to the generalized Navier-Stokes equation

ov 1
P <E+v . Vv) =-— VpS—I—S—V S, T+F,, (43)
S

where flow stress tensor T can be expressed as

My dv; Ov; _ My T
T= 2 (8rj+8ri> - 2 {VV—F(VV) }’ (44)

where symbol T denotes the transpose. In Eq. (43), Fg is the total force given by
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1

F=—
B 1_SM_SE

<_SMVPM - SEVpE - SszpaanS"'QMv (SM(I)) +9EV (SE(b)) (45)

Equation (45) reduces to the standard Navier-Stokes at the inner solvent domain (i.e., Sy =

Sg = 0), except for an extra force term —ZaPaVU&g, which is due to the consideration of
solvent-solvent interactions. In our earlier work,164 we discussed the reduction of the two-
domain version of Eq. (45) to the Stokes equation, which is relevant for biomolecular
systems. The connection of the two-domain version of Eq. (45) with the Navier-Stokes
equation for classical electroviscous flows was also discussed.166

Generalized Newton equation—As discussed in our earlier work,164 part of the total
variation is associated with &z, which gives rise to the desirable Newton's equation for the
molecular dynamics (MD)

p]Z]:fJa ]:1727 ’Na’ (46)

where {fi} are a set of forces associated with solvent-solute interaction near the interfaces

and molecular interactions. We have that f/=f/_ +f/ +f/ with the components given as

SSI

. S
fl,==5-ViU°

SST— S
M

1
S

M

fzja'eF: (0, Vj (5,®)+0,V; (5,9)) (48)

f1J>I: - vj uM (z) » (49)

where fngl, fﬁF and ff;l are respectively, solvent-solute interaction force, reaction field force

and potential interaction force due to atomic or particle interactions.

Elastic dynamics—The variation of the total action functional also leads to the governing
equation for the elastic dynamics of the macromolecule

L1
peW=o— [(Aptpp) VS,V - whp, V- S, Vw] +£2. (50)
E

where f7=f” +£F

;T are the forces acting on the elastic macromolecule. The fluid-structure

interaction (FSI) force ffSI and reaction field (RF) force ffF are given by

S
E _ S
fFSI_ o inavaa (51)
«
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. 1
fREF: - S_(I) (81 Vwo,+5,Vwoy) - (52)

&

To understand Eq. (50), we define the stress tensor of the elastic material asl64
ng/\go'iiéij‘f'zﬂﬁaij- (53)

We therefore finally rewrite Eq. (50) as

1 ek
prW=5—V - ST+ )

E

Equation (54) is a generalized version of the classical elastic dynamics. Its steady state is
given by

1
S—V . SETE—I—fE:O. (55)

E

Here, Eq. (55) describes the possible bending of the biomolecule due to the solvent-solute

interaction potential force ffSI and the RF force ffF, which originates from non-uniform
charge distributions. The bending and curvature of vesicle membranes due to protein
interactions are popular research topics.>2:119 However, most work in the literature is
essentially qualitative. The Helfrisch curvature and phase field models provide interesting
phenomenological descriptions to relatively simple geometries.>2:74.119 The proposed
multiscale multiphysical models have a potential to provide new insights to the bending and

curvature of macromolecular complexes.

In the present multiscale, multiphysics and multidomain theory, the generalized Laplace-
Beltrami equation (35), Poisson equation (38), Nernst-Planck equation (42), Navier-Stokes
equation (43), Newton's equations (46) and elastic equation (54) are directly or indirectly
coupled to each other to form a system of governing equations for aqueous macromolecular
complexes. Solution to these equations minimizes the total action functional and determines
physical variables {S}, @, {o.}, v, {z}, and w.

[l Concluding remarks

Last decade has witnessed the continuous miniaturization of mechanical, chemical, thermal,
optical, and electronic devices in the engineering sciences, meanwhile, an increased ability
to manipulate large biomolecular complexes and subcellular organelles in biological
sciences. These developments have led us to the exciting era of nanoscience and
nanotechnology. However, nanoscale chemical, physical and biological systems pose
fundamental challenges in theoretical modeling and numerical computation due to their
excessively large number of degrees of freedom. Multiscale approaches are efficient
strategies for dimensionality reduction of the aforementioned problems. The goal of
multiscale analysis lies in developing new methodologies which sufficiently describe all the
key physical observations, while dramatically reduce the total number of degrees of freedom
so that the resulting systems are tackleable with the contemporary computer capability.
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One of multiscale paradigms that is particularly suitable for the modeling and computation
of aqueous chemical, physical and biological systems was introduced by the present
author.164 A major feature of this multiscale formalism is the use of differential geometry
theory of surfaces as a versatile tool to geometrically divide the total computational domain
into a macroscopic solvent domain and a microscopic solute domain, and dynamically
coupling the continuum mechanics in the solvent domain and the discrete mechanics in the
solute domain. An essential strategy of our approach is the use of energy functional to put
multiphysics on an equal footing. Subsequently, key physical observables are served as the
main variables of the energy functional and their variations give rise to coupled governing
partial differential equations (PDESs). The solution of these PDES results in the minimization
of the energy functional. The incorporation of quantum descriptions further enhances the
power of our multiscale formulation.21:23:33 Qur multiscale paradigm has been extensively
validated with experimental measurements, such as solvent free energies,31-34.149.176
binding affinities,32 current-voltage curves,21:23.166 etc. A limitation of our earlier theory is
that only two domains, namely, a solvent domain and a solute domain, are employed.
However, for large macromolecular complexes and sophisticated nano-bio devices, it is
desirable to simultaneously invoke a number of differential physical descriptions for
appropriate parts of the macromolecular complexes and/or nano-bio devices. The present
work formulates such a multiscale, multiphysics and multidomain theory.

In the present formulation, the solvent domain is either represented with a dielectric
continuum or equipped with fluid dynamics. A total of N different domains is assumed for
macromolecular complexes. Depending on the need, these solute domains can be furnished
with different physical descriptions, such as static atomistic point charges, molecular
dynamics (MD), coarse grained dynamics, quantum mechanics, elasticity, etc. In all cases,
the electrostatic interactions among all domains, which are delocalized and of long range,
are carefully considered. Additionally, all the solvent-solute non-electrostatic interactions,
including potential dipolar, multipole, dispersion and van der Waals interactions, are
accounted. Moreover, ion-ion non-electrostatic interactions in the solvent domains are
included. Appropriate force fields or interactions are assumed for MD, coarse-graining and
quantum descriptions within their domains. To demonstrate these ideas, we have explicitly
studied three multiscale, multiphysics and multidomain models. The first model is for
solvation analysis. In this case, we consider a simple equilibrium system with dielectric
continuum representation of the solvent and static charge density presentations of the solute
complex, which is divided into multiple domains with different surface tensions, pressures,
dielectric functions, and charge density distributions. The interactions among solvent
components and between the solvent and the solute are accounted. Generalized Boltzmann
distributions are used for ion densities. The morphology of each solute domain is governed
by one generalized Laplace-Beltrami (LB) equation (i.e., geometric flow equation).
Additionally, the multidomain Poisson-Boltzmann (PB) equation is obtained for the
electrostatic potential. The second model is for charge transport in chemical, physical and
biological systems. We formulate our theory for a non-equilibrium system whose
generalized electrochemical potential does not vanish due to spatial inhomogeneities in
densities and/or electrostatic potentials. For the dynamics of ion densities, the gradient flow
approach is employed to construct a set of multidomain Nernst-Planck equations, which are
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coupled to a multidomain Poisson equation for the electrostatic potential. These equations
are further coupled with a total of N LB equations, one for each macromolecular domain.
We have illustrated that this LB-PNP model recovers the LB-PB theory at equilibrium.
Finally, we develop a fluid-electro-MD-elastic model. In this model, additional Navier-
Stokes equations, Newton's equations, and elasticity equation are systematically derived for
electrostatic fluid dynamics, molecular dynamics, and elastic dynamics, respectively. Force
balances within or between domains are obtained via the total variation.

Although quantum mechanical treatment is not explicitly described in the present work, it is
straightforward to add the quantum description in one or few domains. The related quantum
formulation in the framework of our differential geometry based multiscale models has been
developed in our earlier work.33 For simplicity, we have omitted quantum description in the
present work.

It is worthwhile to point out that our earlier quantum dynamics in continuum
formalism21:23.24 js in fact a quantum density functional theory (QDFT). This method treats
protons in the solvent quantum mechanically. The variation of its energy functionals results
in a non-conventional Kohn-Sham equation for proton transport. Additionally, the LB-PNP
model developed in our earlier work%6 and the present multidomain LB-PNP model are
essentially non-convention density functional theory (DFT). Classical DFT of complex
fluids88:170 has found its success in microstructure prediction. Unlike the classical DFT,
which depends on hard-sphere approximations for correlations, our DFT utilizes realistic
potentials. It will be interesting to compare the performance of our DFT methods with that
of the classical DFT for real world problems. This aspect will be investigated in our future
work.

The numerical validation of the present multiscale multiphysics and multidomain models is
under our consideration. An interesting numerical issue is the verification that the proposed
integral-differential LBPB model is capable of predicting solvent microstructures near the
solvent-solute interfaces. Currently, more expensive integral equation theories, including
hyper-netted chain equation, Carnahan-Starling equation, Percus-Yevick equation and

density functional theory of liquids, are employed to deliver solvent microstructures at
equiIibrium.13r63v68v129v153

The multidomain methodology proposed in the present work, in conjugation with our
multiscale and multiphysics paradigm, is potentially useful in many chemical, physical and
biological systems, including deoxyribonucleic acid (DNA) nanowires, molecular junctions,
fuel cells, solar cells, battery cells, molecular switches, nanotubes, field effect transistors,
nanofibers, thin films, ion channels, ATPases, neuron synapses, etc.
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Figure 1.
Ilustration of multiscale, multiphysics and multidomain models with a protein-membrane

complex. Multiphysical descriptions at multiscales are employed in multidomains, which are
labeled with different colors.
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