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Role of AhR/ARNT system in skin homeostasis
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Abstract Aryl hydrocarbon receptor (AhR) is a ligand-

dependent transcription factor that binds to structurally

diverse synthetic and naturally occurring chemicals

including dioxins, flavonoids, tryptophan photoproducts,

and Malassezia metabolites. Upon binding to its ligands,

cytoplasmic AhR translocates to the nucleus, heterodi-

merizes with aryl hydrocarbon receptor nuclear transloca-

tor (ARNT), and mediates numerous biological and

toxicological effects by inducing the transcription of vari-

ous AhR-responsive genes. AhR ligation controls oxida-

tion/antioxidation, epidermal barrier function, photo-

induced response, melanogenesis, and innate immunity.

This review summarizes recent advances in the under-

standing of the regulatory mechanisms of skin homeostasis

mediated by the AhR/ARNT system.

Keywords Aryl hydrocarbon receptor � Aryl hydrocarbon

receptor nuclear translocator � Dioxin � Malassezia �
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Introduction

The skin is a highly sophisticated sensory organ covering

the surface of the body. The sensing of external physio-

logical and chemical stimuli plays key roles in self-defense

and homeostasis. Aryl hydrocarbon receptor (AhR, also

called dioxin receptor) is a chemical receptor that responds

to exogenous and endogenous chemicals by inducing/

repressing the expression of several genes with toxic or

protective effects in a wide range of species and tissues [8].

The best-characterized high-affinity ligands for AhR

include several ubiquitous hydrophobic environmental

contaminants, such as halogenated and nonhalogenated

polycyclic aromatic hydrocarbons (e.g., dioxins and ben-

zo[a]pyrene) [8, 26]. Recent studies have also demon-

strated that AhR can bind and be activated by structurally

diverse chemicals, such as various phytochemicals [34,

52], Malassezia metabolites [45], and photo-induced

chemicals [9, 93, 94] with a wide range of affinities. As

keratinocytes, sebocytes, fibroblasts, melanocytes, endo-

thelial cells, Langerhans cells, and other immune cells

possess AhR [23, 30, 31, 34, 82, 84], the physiological and

pathological processes of skin homeostasis and differenti-

ation are variably affected by the ligand-dependent acti-

vation of the AhR signal transduction pathway.

AhR/ARNT signaling

Aryl hydrocarbon receptor is a basic helix-loop-helix/Per-

ARNT-Sim (bHLH-PAS)-containing transcription factor

essential for adaptive responses to xenobiotics by inducing

xenobiotic-metabolizing enzymes such as cytochrome P450

1A1 (CYP1A1) [51]. Most AhR ligands such as 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene
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are very hydrophobic; these ligands enter target cells via

diffusion and bind to cytosolic AhR, which exists in an

inactive or latent state as a multiprotein complex containing

heat shock protein 90 (hsp90), immunophilin-like XAP2,

the co-chaperone protein p23, and pp60src (Fig. 1) [1].

Upon ligand binding, AhR is presumed to undergo a con-

formational change that exposes its N-terminal nuclear

localization sequence, facilitating the nuclear translocation

of the AhR–ligand complex. The translocated HSP90-

bound AhR subsequently dissociates from the HSP90

complex by binding to a structurally related nuclear protein,

aryl hydrocarbon receptor nuclear translocator (ARNT)

[22]. AhR–ARNT dimerization facilitates the conversion

and transformation of the ligand–AhR–ARNT complex into

its high-affinity DNA-binding form [22, 75]. Meanwhile,

the dissociated pp60src activates epidermal growth factor

receptor (EGFR) and induces the internalization and

nuclear translocation of EGFR (Fig. 1) [1, 39].

The binding of the heterodimeric ligand–AhR–ARNT

complex to its specific DNA recognition site, namely, the

xenobiotic-responsive element (XRE) or dioxin-responsive

element, upregulates the transcription of responsive genes

such as cyp1a1. CYP1A1 is a member of a multigene

family of xenobiotic-metabolizing enzymes [8, 26, 51].

Besides its physiological role in the detoxification of

polycyclic aromatic compounds, the activity of this

enzyme can be deleterious because it generates mutagenic

metabolites and reactive oxygen species (ROS). In addition

to the upregulation of CYP1A1 and consequent ROS pro-

duction, a high-affinity AhR ligand, TCDD, causes a broad

spectrum of biochemical and toxicological effects, such

as teratogenesis, immunosuppression due to thymic

Fig. 1 Schematic representation of the AhR/ARNT signaling system.

Aryl hydrocarbon receptor (AhR) resides in the cytoplasm as a

protein complex with hsp90, XAP2, and p23. Various external and

internal ligands like dioxins, dietary flavonoids, Malassezia metab-

olites, and ultraviolet light-induced metabolites bind to and activate

AhR. Upon ligand binding, ligand–AhR protein complex translocates

into the nucleus, where AhR nuclear translocator (ARNT) binds to it,

releasing hsp90, XAP2, p23, and pp60src. The ligand–AhR–ARNT

complex binds to the xenobiotic-responsive element (XRE) and

induces the transcription of responsive genes such as cyp1A1. During

the process of metabolism of ligands (e.g., dioxins) by CYP1A1, a

large number of reactive oxygen species (ROS) are produced. This

ROS generation is closely related to various cellular responses, such

as cytokine production and DNA damage. Meanwhile, the dissociated

pp60src activates epidermal growth factor receptor (EGFR) and

induces its internalization and nuclear translocation. Moreover, the

AhR signaling induces the transcription of AhR repressor (AhRR).

This induced AhRR forms a heterodimer with ARNT, which

competes with AhR/ARNT heterodimer to bind to the XRE sequence,

consequently inhibiting AhR transcriptional activity
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involution, and tumor promotion. Extensive studies on the

function of AhR using AhR-deficient mice have demon-

strated that AhR is responsible for most, if not all, of the

toxic effects caused by TCDD [51].

Moreover, the AhR signaling pathway is downregulated

via feedback inhibition, particularly via the activity of the

AhR repressor (AhRR) [50, 51]. The AhRR promoter has a

functional XRE sequence, and its gene expression is

enhanced upon the ligand activation of AhR. The induced

AhRR forms a heterodimer with ARNT, which competes

with AhR/ARNT heterodimer to bind to the XRE

sequence, consequently inhibiting AhR transcriptional

activity. However, the feedback competition of AhRR/

ARNT in AhR/ARNT signaling is a complicated and

poorly understood regulatory system (Fig. 1) [51].

Role of AhR/ARNT in oxidative stress

The cells lining the outer and inner surfaces of the body,

such as keratinocytes and airway epithelial cells, express

AhR/ARNT complex [4, 84]. Benzo[a]pyrene actively

induces the nuclear translocation of AhR and subsequent

CYP1A1 and ROS generation, leading to DNA damage

(i.e., 8-hydroxydeoxyguanosine production) and interleu-

kin 8 (IL-8) production in keratinocytes, as well as mucin

(MUC5AC) production in airway epithelial cells [4, 84].

AhR knockdown by specific siRNA abrogates this series of

reactions, indicating their dependence on AhR. These

results are concordant with the fact that the carcinogenic

and inflammatogenic activities of benzo[a]pyrene and

TCDD are abolished in AhR-null mice [51, 73]. Using an

ex vivo skin organ culture system, Costa et al. [7] con-

firmed that benzo[a]pyrene actually upregulates CYP1A1

expression, ROS production, and subsequent protein per-

oxidation. As benzo[a]pyrene is one of the major harmful

ingredients of tobacco smoke, AhR-mediated IL-8 pro-

duction may explain why tobacco smoking exacerbates IL-

8-related inflammatory skin diseases such as psoriasis and

palmoplantar pustulosis [2, 10, 84].

In addition to oxidative stress, recent studies have dem-

onstrated that the AhR/ARNT system mediates antioxida-

tive and protective signaling in response to different

ligands, such as flavonoids, herbal medicines, and azoles

(Fig. 2) [20, 21, 28, 59, 83]. For example, ketoconazole

binds and induces the nuclear translocation of AhR without

producing ROS. Instead, it activates nuclear factor-ery-

throid 2-related factor-2 (Nrf2) and subsequently

NAD(P)H:quinone oxidoreductase 1 (Nqo1), which are key

molecules that protect cells from ROS-induced oxidative

damage [20, 28, 83]. Ketoconazole actually inhibits ben-

zo[a]pyrene- and tumor necrosis factor-alpha (TNF-a)-

induced ROS and IL-8 production, which is abolished by

AhR or Nrf2 knockdown, but not by AhRR knockdown

[83]. Similar findings have been obtained with traditional

herbal remedies such as Bidens pilosa extract [34]. Both

benzo[a]pyrene and TNF-a also induce marked ROS pro-

duction in endothelial cells. B. pilosa extract potently

inhibits ROS production by upregulating Nrf2 and Nqo1,

which are abrogated by knockdown of AhR or Nrf2 [34].

The tea flavonoid epigallocatechin gallate upregulates Nrf2

and Nqo1 expression while downregulating AhR and

CYP1A1 expression [21]. Quercetin, one of the flavonoids,

efficiently induces AhR activation and CYP1A1 production

[53]. However, it potently inhibits ultraviolet B (UVB)-

induced ROS production [95]. In addition, quercetin also

induces AhRR mRNA upregulation [59]. Benzo[a]pyrene-

induced ROS production is AhR-dependent since it is

inhibited by siRNA specific for AhR [84]; however, keto-

conazole- and quercetin-mediated AhR activation occurs

without ROS production [83, 95]. Therefore, the AhR-

related production of ROS is likely to be evoked in a ligand-

dependent manner. These complicated results indicate that

the AhR/ARNT system acts as a master switch for up and

downregulating oxidative stress by modulating diverse

genes (e.g., those of AhR, AhRR, CYP1A1, Nrf2, and

Nqo1). However, the precise mechanisms by which various

phytochemicals and environmental pollutants differentially

affect the AhR/ARNT system remain largely unknown.

Fig. 2 AhR ligation induces not only oxidative stress but also

antioxidative response in a ligand-dependent manner. Environmental

pollutants such as benzo[a]pyrene and TCDD bind to AhR and induce

ROS production, DNA damage, and inflammatory cytokine produc-

tion. In contrast, ketoconazole and certain flavonoids bind to AhR,

resulting in the activation of Nrf2 and subsequent induction of

antioxidative enzymes such as Nqo1. These antioxidative enzymes

inhibit ROS production, DNA damage, and inflammatory cytokine

production. Thus, AhR acts as a master switch for oxidation and

antioxidation
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Role of AhR/ARNT in epidermal barrier function

Coal tar comprises at least 10,000 high-molecular-weight

hydrocarbon and aromatic compounds, which may target

the AhR/ARNT system. Topical coal tar remedies have

been widely used to treat inflammatory skin diseases for at

least two millennia [49]. Using organotypic skin models

with primary keratinocytes from atopic dermatitis patients

and controls, van den Bogaard et al. [86] demonstrated that

coal tar activates AhR, resulting in the induction of epi-

dermal differentiation (i.e., upregulation of filaggrin, lori-

crin, and hornerin expression), and thickens the cornified

layer. Furthermore, AhR knockdown by siRNA completely

abrogates this effect. In atopic dermatitis patients, coal tar

completely restores the expression of major skin barrier

proteins including filaggrin. Coal tar also diminishes

spongiosis, apoptosis, and CCL26 expression in organo-

typic skin stimulated by the Th2 cytokines IL-4 and IL-13

via the dephosphorylation of STAT6; this is most likely due

to the AhR-regulated activation of the Nrf2 antioxidation

pathway [86]. Many studies have shown that AhR mediates

the upregulation of epidermal differentiation [42, 43, 67,

77]. TCDD increases the quantity of cornified envelopes in

monolayer cultures and organotypic cultures of keratino-

cytes [43]. TCDD also enhances filaggrin, involucrin,

transglutaminase, and IL-1b expression [42, 63, 77]. In

addition, TCDD exposure significantly augments the

mRNA expression of other epidermal differentiation com-

plex genes [38]: repetin, hornerin, late cornified envelope

(LCE) 3E, LCE3A, LCE2B, LCE2A, LCE1C, small pro-

line-rich protein (SPRR) 1A, SPRR2A, SPRR2B, S100A9,

S100A12, and S100A7 [77]. Accordingly, the targeted

ablation of ARNT in mouse epidermis results in profound

defects in desquamation and epidermal barrier function,

particularly decreased filaggrin and SPRR2A expression

[18]. It is quite interesting that the increase in cornified

envelope proteins such as SPRRs decrease oxidative stress

by quenching excess ROS [88, 89]. Recent work by Ken-

nedy et al. [33] has also revealed that TCDD increases the

expression of 40 % of the genes of the epidermal differ-

entiation complex found on chromosome 1q21, such as

hornerin, filaggrin, SPRR2B, SPRR4, and LCE3A. In

addition, TCDD increases the expression of 75 % of the

genes required for de novo ceramide biosynthesis, leading

to the overproduction of ceramides 1, 2, 3, 4, 5, 6, 7, and 9

without affecting the levels of cholesterol and free fatty

acids. Moreover, the cornified envelope formation induced

by TCDD is blocked in the presence of antioxidative agents,

quercetin, catalase, or N-acetyl-L-cysteine, indicating an

important role for ROS production in the TCDD-induced

acceleration of epidermal terminal differentiation [33].

Exposure to extremely high concentrations of dioxins

induces chloracne in humans, as was demonstrated in the

Yusho and Seveso industrial accidents in Japan and Italy,

respectively (Fig. 3) [3, 14]. The pathology of chloracne is

characterized by hyperkeratinization of the interfollicular

squamous epithelium, hyperproliferation and hyperkera-

tinization of hair follicle cells, and a metaplastic response

of the sebaceous glands [29, 61, 63, 68, 76, 85]. Highly

lipophilic dioxins appear to accumulate in and are excreted

via sebaceous glands and sebum [25, 74], which may

efficiently excrete dioxins from the intoxicated body [47].

TCDD also affects the differentiation of sebaceous gland

cells, probably by switching human sebocytes toward

keratinocyte-like differentiation [29]. Although the precise

mechanism behind chloracne is not understood, sustained

AhR hyperactivation and exaggerated hyperkeratinization

of pilosebaceous units may be the cause of this devastating

toxicity.

AhR-null mice appear normal at birth, but their growth

is slightly slower than that of wild-type mice during the

first few weeks of life. Thereafter, they catch up and no

difference is apparent in animals over 12 weeks of age

[73]. Tauchi et al. [80] generated transgenic mice

expressing the constitutively active form of AhR in kerat-

inocytes. At birth, these transgenic mice were normal, but

Fig. 3 Severe chloracne in Yusho patients (oral intoxication of a high

concentration of 2,3,4,7,8-pentachlorodibenzofuran)
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severe skin lesions developed postnatally, along with

marked scratching. Prominent epidermal acanthosis and

hyperkeratosis were evident, with severe dermal infiltration

of lymphocytes and polymorphonuclear cells in the le-

sional skin. Th2-skewed immune deviation was evident in

the skin lesions and spleen in the transgenic mice, with an

elevated circulating IgE level [80]. Interestingly, kerati-

nocyte-specific ARNT-deficient mice generated by a K5-

Cre-loxP system exhibit severe skin barrier dysfunction

and die because of rapid dehydration [79]. The keratino-

cyte-specific ARNT disruption results in significant changes

in the amount and composition of ceramides, but not

cholesterol and fatty acids. The most prominent changes in

the ceramide composition of the ARNT -null epidermis are

observed for ceramide 2 and ceramide 5. The 4-sphinge-

nine that these ceramides normally contain is largely

replaced by sphinganine due to the impaired transcription

of dihydroceramide desaturase isozyme, Des-2 [79].

Another type of epidermal ARNT -null mice generated by

Geng et al. using a K14-Cre-loxP system also exhibits the

upregulation of genes of the epidermal differentiation

complex (S100A8, S100A9, S100A10, SPRR1, and SPRR

2) and the alteration of ceramides. In addition, the ARNT-

null epidermis exhibits the upregulation of secretory leu-

kocyte protease inhibitor (Slpi), which inhibits stratum

corneum chymotryptic enzyme (kallikrein 7), leading to

hyperkeratosis due to impaired corneodesmosome degra-

dation and delayed detachment of corneocytes [18]. These

studies highlight the importance of the AhR/ARNT system

in keratinocyte terminal differentiation.

Although ROS production has been shown to be a pre-

requisite in the TCDD-induced upregulation of keratino-

cyte terminal differentiation [33], excessive antioxidant

activity also hampers the epidermal barrier function [69,

71]. K5-Cre-Nrf2 transgenic mice generated by Schäfer

et al. [69] express high levels of constitutively active Nrf2

in the epidermis together with the overexpression of Nqo1

and other antioxidative enzymes. Unexpectedly, their skin

is dry with hair loss and scaling. In terms of their histology,

epidermal acanthosis and hyperkeratosis are evident, with

sebaceous gland enlargement and hair follicle abnormality.

Like ARNT-null keratinocytes [18], the Nrf2-transgenic

keratinocytes exhibit the upregulated expression of Slpi,

SPRR2d, and SPRR2 h. The upregulated Slpi again

inhibits kallikrein 7 activity, leading to impaired detach-

ment of corneocytes, which results in hyperkeratosis [69].

The prolonged Nrf2 activation in K5-Cre-Nrf2 transgenic

mice also causes sebaceous gland enlargement and sebor-

rhea due to upregulation of epigen, a recently identified

ligand for EGFR. Upon aging, the upregulation of Slpi,

SPRR2d, and epigen in the pilosebaceous unit results in

infundibular acanthosis, hyperkeratosis, and cyst formation

mimicking chloracne [71]. Therefore, Slpi, SPRR2d, and

epigen are crucial target molecules of Nrf2 in modifying

epidermal and pilosebaceous differentiation. Kelch-like

ECH-associated protein-1 (Keap1) is an Nrf2 repressor

protein. In keeping with the findings in Nrf2-transgenic

mice, Keap1-null mutation induces constitutive Nrf2 acti-

vation leading to hyperkeratosis [90]. With regard to the

effect of EGFR signaling on the AhR/ARNT system,

EGFR signaling blocks TCDD-induced CYP1A1 produc-

tion as well as filaggrin upregulation [78]. Meanwhile,

EGFR signaling is capable of activating the Nrf2/Nqo1

system [62]. However, there remain a plethora of unan-

swered questions in terms of the crosstalk among AhR,

Nrf2, and EGFR signaling.

Role of AhR/ARNT in photobiology, melanogenesis,

and immunodermatology

The critical roles of ROS and the AhR/ARNT system in

photobiology have been elegantly reviewed by Schäfer

et al. [70] and Krutmann et al. [37]. Besides environmental

contaminants and dietary constituents [52, 57], many

endogenous compounds including various indoles, heme,

and arachidonic acid metabolites are AhR agonists; more-

over, tryptophan is the precursor of many of the most

active ligands for AhR [57]. Fritsche et al. [12] first dem-

onstrated that UVB irradiation induces the intracellular

tryptophan photoproduct, 6-formylindolo[3,2-b]carbazole

(FICZ), which eventually induces the nuclear translocation

of AhR. Furthermore, AhR-knockout mice exhibit com-

promised UVB responsiveness. Thus, AhR signaling is an

integral part of the UVB stress response [12]. FICZ, which

is formed upon the exposure of tryptophan solutions, cell

culture media, or cells to UV radiation, binds to AhR with

greater affinity than TCDD [57]. UVB is the most efficient

means of generating FICZ from tryptophan [57, 60]. FICZ

formation increases 40- to 400-fold in the presence of the

photosensitizer riboflavin (vitamin B2), especially upon

exposure to UVA and visible light; this is because ribo-

flavin absorbs light efficiently at these longer wavelengths

[57, 60]. This relatively easy conversion of tryptophan to

FICZ in the presence of riboflavin and light suggests that

the same process could occur in the skin. Thus, the for-

mation of FICZ may explain the reported UV-dependent

activation of CYP1 enzymes in human skin [93]. Indeed,

FICZ metabolites are detected in human urine [93].

6-Formylindolo[3,2-b]carbazole is a high-affinity ligand

for AhR; its Kd value is 0.07 nM, which is two or more

orders of magnitude less than that of low-affinity ligands

such as prostaglandin and lipoxin derivatives [56, 57, 60].

FICZ upregulates the expression of AhR-responsive genes

(e.g., CYP1A1) in an efficient but transient manner; this is

because FICZ is rapidly metabolized by CYP1A1 in a
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feedback mechanism [92–94]. This sequence of events,

which is typical of autoregulatory loops in biological sig-

naling, suggests that FICZ may be an important physio-

logical ligand for AhR. UVB as well as FICZ does indeed

activate the AhR/ARNT system and upregulates the gene

expression of CYP1A1 and matrix metalloproteinase 1,

which are abolished in the presence of AhR antagonists

[81]. Both FICZ and UVB activate EGFR and its down-

stream signaling extracellular signal-regulated kinases 1

and 2 and cyclooxygenase-2 (COX-2) [1, 12]. The induc-

tion of CYP1A1 and COX-2 mRNAs in the skin of mice

exposed to UVB was blunted in AhR-deficient mice [12].

Moreover, it has been shown that AhR signaling may play

an antiapoptotic role in UVB-exposed skin [11], strongly

indicating that AhR signaling does in fact contribute to

photocarcinogenesis, as proposed by Agostinis et al. [1].

However, we have to keep in mind that FICZ is a tiny

fraction of tryptophan photoproducts and the outline pro-

posed above has yet to be confirmed empirically. The role

of FICZ in cutaneous photobiology remains largely

unclear.

Normal murine melanocytes also express functional AhR

[31]. Using standard UVB tanning protocols, Jux et al. [31]

have demonstrated that AhR-deficient mice develop a sig-

nificantly weaker tan than wild-type mice and that epider-

mal tyrosinase activity is decreased in AhR-deficient mice.

However, tanning response and tyrosinase activity are

normal in keratinocyte-specific AhR-conditional knockout

mice, indicating that downregulation of the melanogenic

response is a direct effect of UVB/AhR signaling on mel-

anocytes [31]. In fact, AhR can modulate melanogenesis by

controlling the expression of melanogenic genes in mela-

nocytes. Luecke et al. have reported that exposing normal

human melanocytes to TCDD activates the AhR signaling

pathway, as well as the AhR-dependent induction of

tyrosinase activity, with the elevation of total melanin

content. Neither the induction of tyrosinase enzyme activity

nor that of total melanin could be attributed to the enhanced

cell proliferation of melanocytes; instead, they are due to

the induction of tyrosinase and tyrosinase-related protein 2

gene expression [44]. Nakamura et al. [54] have demon-

strated that tobacco smoke extract exerts similar melano-

genic effects by activating AhR in melanocytes. In this

context, Schallreuter et al. have demonstrated that AhR

signaling is severely impaired in the lesional and nonle-

sional skin in cases of vitiligo, despite the presence of FICZ

[72]. UVB phototherapy is the mainstay treatment for vit-

iligo. A recent study by Lan et al. [39] has revealed that

excimer light (peak wavelength 308 nm) is more potent at

inducing melanogenesis of cultured melanocytes than nar-

row-band UVB (peak wavelength 311 nm) because the

former upregulates AhR–EGFR-dependent tyrosinase

activity more efficiently than the latter.

Wang et al. [91] examined the functional AhR gene

polymorphisms and suggested that the T allele of

rs10249788, which is located in the promoter of the AhR

gene, is associated with a protective effect against vitiligo

in Han Chinese populations. Concordantly, our recent

study clarified that a transcription factor, nuclear factor 1-C

(NF1C), which suppresses AhR gene transcription, pref-

erentially binds to the C allele over the T allele at

rs10249788 [41]. Therefore, it is conceivable that subjects

with the T allele at rs10249788 express higher levels of

AhR and are more melanogenic than those with the C

allele.

AhR-mediated melanogenesis may also explain the

marked hyperpigmentation that occurred in victims of the

Yusho industrial accident, who were exposed to extremely

high levels of dioxin-related compounds (Fig. 4) [27, 53].

However, it should be mentioned that skin pigmentation

was not always recognized in the victims of TCDD

intoxication [19, 68]. Yusho patients may be different, as

they were exposed to a wide variety of polyhalogenated

polycyclic hydrocarbons, in particular polychlorinated

biphenyls, which may simply produce a charcoal-like

blackish skin color.

Malassezia yeasts are unique in that they are virtually

the sole eukaryote among the microbial flora of the skin

[15]. Malassezia furfur produces malassezin and other

indole derivatives by converting L-tryptophan in culture

medium [35, 48]. Since L-tryptophan is present in sweat

[24], Malassezia is expected to produce these compounds

on the surface of human skin in vivo. Indeed, human skin

Fig. 4 Hyperpigmentation in Yusho patients
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extracts from seborrheic dermatitis lesions infected by

Malassezia contain indirubin, FICZ, indolo[3,2-b]carba-

zole (ICZ), and malassezin [16, 17]. Interestingly, these

molecules are active AhR agonists and induce CYP1A1

production [45]. In the presence of malassezin, human

melanocytes undergo apoptosis; this may explain why

pityriasis versicolor induces depigmented macules [36].

Thus, how AhR discriminates similar but oppositely ago-

nistic ligations by TCDD (i.e., in melanogenesis) and

malassezin (i.e., in melanocyte apoptosis) is an intriguing

issue [36, 54].

In the immune system, AhR appears to play a crucial

role in T-helper 17 (Th17) and regulatory T (Treg) cells

[13, 46, 64–66, 87]. AhR-deficient mice can develop Th17

cells, but fail to respond to AhR ligands to enhance Th17

cell development [87]. AhR activation during the induction

of experimental autoimmune encephalomyelitis accelerates

the onset and increases the pathology of this condition in

wild-type mice, but not in AhR-deficient mice [87]. The

development of Treg cells is reciprocally related to that of

Th17 cells. The agonistic ligation of AhR by TCDD

induces functional Treg cells, suppressing experimental

autoimmune encephalomyelitis. On the other hand, AhR

activation by FICZ interferes with Treg development,

boosts Th17 cell differentiation, and increases the severity

of experimental autoimmune encephalomyelitis in mice

[65].

Aryl hydrocarbon receptor-mediated Treg cell induction

appears to operate in UV-induced immunosuppression.

Navid et al. [55] have demonstrated that the AhR antago-

nist 3-methoxy-4-nitroflavone reduces UV-mediated

immunosuppression as well as the induction of Treg cells

in murine contact hypersensitivity. Conversely, AhR acti-

vation by the agonist 4-n-nonylphenol suppresses the

induction of contact hypersensitivity and induces antigen-

specific Treg cells similarly to UV radiation. This has been

further confirmed in AhR-knockout mice, which exhibit

significantly reduced UV radiation- and 4-n-nonylphenol-

induced immunosuppression [55].

Kynurenine is an important immunoinhibitory metabo-

lite of tryptophan and is generated by indoleamine 2,3-

dioxygenase (IDO) [58]. AhR activation by TCDD is

required to induce IDO expression in dendritic cells. In the

presence of lipopolysaccharide or CpG, bone marrow-

derived dendritic cells skew the differentiation of naı̈ve T

cells toward Treg cells rather than Th17 cells, however, the

capacity of developing Treg cells is deteriorated in AhR-

deficient dendritic cells. The restoration of the Treg-

inducible function in AhR-deficient dendritic cells by

exogenous kynurenine indicates that AhR/IDO/kynurenine

induction is important for the generation of tolerogenic

dendritic cells under lipopolysaccharide or CpG stimula-

tion [58].

Epidermal Langerhans cells also express AhR [30].

When cultured, AhR-deficient Langerhans cells show

insufficient maturation and decreased expression of

costimulatory molecules such as CD40, CD80, and CD24a.

In keeping with this notion, AhR-deficient mice exhibit

significantly weaker contact hypersensitivity to hapten

[30]. The maturation of Langerhans cells is stimulated by

granulocyte–macrophage colony-stimulating factor pro-

duced from surrounding keratinocytes. However, this pro-

duction of granulocyte–macrophage colony-stimulating

factor is significantly decreased in AhR-deficient kerati-

nocytes [30]. Another immunocompetent bone marrow-

derived cell type in the murine epidermis is the cd T cells

(dendritic epidermal T cells; DETCs) [32]. The prolifera-

tion and distribution of DETCs are markedly impaired in

AhR-null mice due to insufficient expression of c-Kit,

which is a downstream target molecule of AhR [32].

Other studies

The AhR/ARNT system plays diverse and complex roles in

tissue differentiation, immunoregulation, and carcinogen-

esis. As this system is fundamentally involved in various

cellular responses, numerous papers have recently been

published on it. The AhR/ARNT system is also important

for the connection between food and health [40]. Exposure

to AhR ligands through the human diet, even in the first

weeks of life, is critical for the development of immune

responses, as they control the maturation of innate lym-

phoid cells. Innate lymphoid cells drive immune responses

against intestinal infections, and their generation is

impaired in AhR-deficient mice. Mice fed a diet lacking

natural AhR ligands suffer from deficient innate lymphoid

cell generation and are prone to intestinal infection. The

sole addition of the natural AhR ligand indole-3-carbinol to

the diet restores both the generation of innate lymphoid

cells and the immune response in an AhR-dependent

manner. This highlights the importance of exposure to AhR

agonists through the diet and their role in the maintenance

of intestinal homeostasis [40]. Human blood actually

contains a number of AhR ligands, such as resveratrol and

indole-3-carbinol derived from vegetables, fruit, nuts, and

herbs [5]. The complexity of regulatory mechanisms

associated with the AhR/ARNT system has also been

highlighted by a melanoma study by Contador-Troca et al.

[6]; they found that AhR contributes to tumor-stroma

interaction, that is, blocking melanoma growth and

metastasis when expressed in tumor cells, but supporting

melanoma when expressed in the stroma. Studies on skin

surface sensing by AhR/ARNT should elucidate enigmatic

host-environment interactions and may provide novel

strategies for drug development.
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RH, Steglich W, Mayser P (2005) Pityriarubins, novel highly

selective inhibitors of respiratory burst from cultures of the yeast

Malassezia furfur: comparison with the bisindolylmaleimide ar-

cyriarubin A. ChemBioChem 6(12):2290–2297
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