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Abstract

Automation has the potential to aid humans with a diverse set of tasks and support overall system 

performance. Automated systems are not always reliable, and when automation errs, humans must 

engage in error management, which is the process of detecting, understanding, and correcting 

errors. However, this process of error management in the context of human-automation interaction 

is not well understood. Therefore, we conducted a systematic review of the variables that 

contribute to error management. We examined relevant research in human-automation interaction 

and human error to identify critical automation, person, task, and emergent variables. We propose 

a framework for management of automation errors to incorporate and build upon previous models. 

Further, our analysis highlights variables that may be addressed through design and training to 

positively influence error management. Additional efforts to understand the error management 

process will contribute to automation designed and implemented to support safe and effective 

system performance.
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1. Introduction

Modern automated systems are present in a multitude of environments, including aviation, 

process control, transportation, and healthcare. These technologies are designed to support 

overall system performance, assisting human operators with tasks such as information 

acquisition and processing, decision making, and action execution (Parasuraman et al. 2000). 

Many automated systems are not perfectly reliable, often due to technological limitations. 

For example, automation that involves sensing certain states in the environment may err 

because its sensors have limited detection capabilities. Although these errors may be rare, 

the resulting consequences can be severe.

Examples of serious consequences are not hard to find. One recent incident involved a 

family and their in-vehicle navigation aid (Clark 2011). This family was sightseeing in 

California’s Death Valley when they instructed their navigation aid to give them directions 

for getting home. Following the instructions provided by their navigation aid did not lead 

them home; rather, the family became lost in Death Valley at the height of summer (it turns 

out the system was relying on outdated maps). Although the family was located after three 
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days, a similar incident occurred two years prior in which a mother and son were lost for five 

days. The mother survived, but her son did not.

These unfortunate events highlight the important role that the human serves when working 

with imperfect automation. If the individuals in the previous cases had had access to another 

source of information, such as a paper map, they could have sought to verify the 

automation’s suggested directions and realized they were being sent into the middle of 

nowhere. Humans are the last safeguard before automation errors propagate into accidents. 

This human role involves ‘error management’, which is the process of detecting errors, 

understanding why errors occurred, and correcting errors (Kontogiannis and Malakis 2009). 

Unfortunately, because of humans’ prominent role in this chain of events, they often receive 

the majority of the blame when their efforts fail. However, “the enemy of safety is not the 

human: it is complexity” (Woods et al. 2010, p. 1).

Understanding the process of error management is key to enhancing safe and successful 

automation interactions. Yet there has not been a systematic review of the nature of this 

complexity with the goal of identifying the variables that influence a human’s ability to 

manage automation errors. We conducted an analysis of the research literature from the 

fields of human-automation interaction and human error to identify the factors that influence 

the error management process. We identified and organized the automation, person, task, 

and emergent variables that influence error management of automation. This organizational 

framework serves multiple purposes. First, it provides a heretofore non-existent integration 

of the research literature pertinent to managing errors of automated system. Second, it can 

guide improvements in error management by identifying the potentially relevant variables to 

be addressed through design and training. And third, our analysis revealed gaps in the 

literature and needs for future research to ensure successful management of automation 

errors.

2. Overview of the review process

Research on human interaction with automated systems is extensive. Because the focus of 

the current investigation was to understand how various factors influence how well an 

individual manages automation errors, several criteria were used to select relevant 

publications from the body of literature on human automation interaction. First, if 

participants interacted with an automated system, the experiment had to include a version of 

the automated system that was less than 100% reliable. This departure from perfect 

reliability could result in automation errors, which we defined as an error committed by the 

automation during which the automation does not behave in a manner that is consistent with 

the true state of the world. Therefore, we do not include situations during which the 

automation behaves as it should, and an overall system error occurs because the human 

operator is deficient in some way, such as not understanding what mode the automaton is in, 

or supplying the automation with inaccurate information.

Automation errors may include misses and false alarms (Green and Swets 1988), 

misdiagnoses, and inappropriate action implementation. Automation designers know that 

certain errors, such as misses, will occur when they set the threshold for detection (i.e., 
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beta). One might argue that because these errors are part of the automation’s programming, 

they should not be considered errors. However, we contend that an error has occurred if the 

automation behaves in a manner that is inconsistent with the true state of the world. The 

navigation aid example illustrates an automation error in which the automation 

recommended the use of roads that were no longer in existence.

In addition to automation errors, automation failures can also occur. During failures, the 

automation is non-responsive, not available, or not functional, and therefore forces the 

human to perform the task manually. For example, Woods et al. (2010) described an 

automatic infusion controller used during surgery to control the rate that drugs are delivered 

to the patient. If the controller cannot regulate flow or detects one of many potential device 

conditions, it is programmed to turn off after emitting an alarm and warning message. In this 

scenario, the operator of the automation would need to detect that the controller had turned 

off, then explain and understand what caused the failure, which may be necessary to 

controlling the system manually or getting the system back online (correction). One might 

assume that detecting an automation failure is a trivial matter, but there are numerous 

instances in commercial aviation (e.g., Eastern Flight 401, China Airways Flight 006) during 

which pilots failed to detect that their automation had disengaged. Although automation 

errors and failures represent two different categories of activity, both require error 

management by the human. Thus, the empirical research in this review included studies 

investigating both errors and failures.

A second criterion for our review was that if the experimental investigation included 

interaction with an automated system, a dependent measure of error management success 

was required. For example, an experiment may have measured how many of the automation 

errors were detected by the participant. Although many empirical investigations of human-

automation interaction employ imperfect automation, oftentimes the dependent variables 

relate to other constructs, such as trust in automation, rather than error management success.

Lastly, the review focused on interactions between a single human operator and one or more 

automated systems. Although it is important to understand how error management occurs in 

teams composed of multiple humans and multiple forms of automation, this was beyond the 

scope of the current analysis.

We identified the variables that have been shown to influence the management of automation 

errors, which we classified into four categories: (1) automation variables, (2) person 

variables, (3) task variables, and (4) emergent variables (see Table 1). Automation variables 

included characteristics of the automation such as the reliability of the automation, the types 

of errors the automation is likely to make, the level of automation, and the nature of the 

feedback that the automation provides to a human operator. Person variables represented 

factors that were unique to the individual, and included an individual’s complacency 

potential (i.e., attitudes that influence complacent monitoring behaviour), nature of training 

received, and knowledge regarding the automation. Task variables included variables that 

described the context in which the human and automation are working together. These 

included the consequence of an automation error if unmanaged by the human, the costs 

associated with verifying automation’s suggestions or information, and the degree to which 
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the human is held accountable for the results of an automation error. Lastly, emergent 

variables described factors that result from the interaction between the human and 

automation. For instance, the trust that an individual has towards a specific piece of 

automation is the result of not only characteristics of that person (e.g., very trusting), but 

also aspects of the automation (e.g., reliability), and the task in which they are engaged (e.g., 

highly critical). The emergent variables included trust in automation, workload, and situation 

awareness.

Before we present the empirical evidence regarding how these variables influence a human’s 

management of automation errors, we first provide an overview of the research on error 

management processes outside of the automation literature, and discuss how these 

theoretical frameworks can be applied to human-automation interaction.

3. Error management

Errors have been discussed in the context of socio-technical systems in which errors or 

failures may originate from the human or the technology involved. Historically, the 

dominating focus has been error prevention; that is, keeping errors from occurring at all. 

More recently, perspectives regarding errors have shifted due in part to the distinction of 

errors and their consequences, as well as the understanding that not all errors can be 

prevented. Errors may occur, but actions to stop or reduce their consequences can be taken. 

Therefore, a supplementary goal to error prevention should be error management, or the 

process of limiting the consequences of error. This approach has also been called resilience 

engineering and espouses that anticipating possible disturbances or errors in a system is a 

more valuable effort than attempting to eliminate them completely (Sheridan 2008). 

Particularly in the case of using imperfect automation, operators cannot prevent the 

automation from erring, as its designers determine its reliability. But, operators can mitigate 

the consequences of errors by managing them. Researchers generally agree that error 

management consists of three components: (a) detection, (b) explanation, and (c) correction 

(Kontogiannis 1999, 2011, Kanse and van der Schaaf 2001).

Detection involves realizing that something has gone wrong or that an error is about to 

occur. Explanation is the process of identifying the nature of the error as well as 

understanding the underlying cause of the error (Kontogiannis 1999). Correction involves 

modifying the existing plan or developing a new plan as a countermeasure against the 

potential adverse events of the error (Kanse and van der Schaaf 2001). During the correction 

stage, operators may have different goals, influenced by the nature of the error, ensuing 

consequences, and time pressure (Kontogiannis 1999). For instance, correction actions may 

serve as a strategy to avoid immediate consequences of an automation error. Correction can 

also be considered from a maintenance perspective, such as replacing a faulty sensor that 

was responsible for the error to avoid similar errors in the future.

Progression through the three phases is not necessarily linear, and overlap between the 

phases is possible. Corrective measures can be taken while attempts to explain the source of 

the error are underway. Particularly in time-restricted situations, operators may take action to 

correct the error without thoroughly understanding its cause. For instance, Kanse and van 

McBride et al. Page 4

Theor Issues Ergon Sci. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



der Shaaf (2001) analyzed the sequence in which operators moved through the various error 

management stages. They discovered that in many cases detection was followed 

immediately by corrective action, with explanation occurring later. In other situations, an 

effective plan to correct the error cannot be obtained without first understanding the nature 

of the error.

To further understand the processes involved in the three phases, one can turn to Reason 

(1990), who proposed a generic error-modelling system (GEMS) to describe how humans 

manage various types of self-committed, human errors. As depicted in Figure 1, behaviour 

proceeds from the routine actions at the skill-based level to the rule- and knowledge-based 

levels in the event of issues being detected. Detection of an error occurs by means of 

attentional checks, during which higher levels of cognition come to the forefront and 

determine whether behaviour is running according to the established plan, or whether the 

plan needs to be altered to reach the goal. Attentional checks may fail as a result of 

inattention (omitting a critical check) or overattention (checking at an inappropriate time).

After a problem has been detected, behaviour transitions from monitoring to problem 

solving. The first attempt at problem solving occurs at the rule-based level wherein an 

individual will search for an applicable, pre-established corrective procedure. If a stored rule 

successfully resolves the problem, behaviour continues towards the goal state. If a stored 

rule is not sufficient, then behaviour proceeds to the knowledge-based level. At the 

knowledge-based level, problem solving may occur through the use of analogies, mental 

models, or abstract relationships.

Although this description suggests that this process is predominantly linear in nature, 

Reason pointed out that switching from one level of performance to another is unlikely to be 

so clear cut. Rather, it is more likely that behaviour occurs at multiple levels simultaneously, 

and that the transitions between the levels may not just proceed down from skill- to rule- to 

knowledge-based, but back up and down multiple times. For example, if one finds an 

applicable rule at the rule-based level, then enacting that rule may involve routinized actions 

at the skill-based level.

GEMS can be used to describe the behaviour of a human operator interacting with imperfect 

automation to accomplish a task. The same attentional checks used to assess the operator’s 

own performance should also be used to check that the automation is working properly. In 

cases where a problem with the automation is detected, either an error or a failure, the 

importance of accessing stored rules and knowledge and using them effectively to problem 

solve cannot be understated. This process can make the difference between an automation 

error that was recovered from and an error that led to an accident.

3.1 Summary of error management

Literature on error management describes the process individuals engage in to mitigate the 

consequences of an error. Error detection, explanation, and correction are necessary 

components in recovering from automation errors as well. Reason’s (1990) GEMS can be 

used to further understand the detailed cognitive paths that are traversed to explain and 

ultimately correct automation errors. On that basis, we developed a framework highlighting 
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the error management processes in a human-automation interaction context (see Figure 2). 

This framework illustrates how each phase might occur in an interaction with automation. 

Detection occurs by monitoring the automation and the world and can happen before or after 

the error affects the world. For example, an error in the drip rate of an automated infusion 

pump may be noticed by a healthcare provider who physically sees that the medication is 

dripping faster than it should be (pre-effect), or the error may be detected once the patient 

has a negative medical reaction to the overdose of medication (post-effect).

The explanation phase of our framework borrows from Reason’s (1990) rule-based level in 

which individuals search for familiar patterns to compare their current situation to. In 

interactions with automation, operators may similarly examine their memory of previous 

automation errors for a comparable event, and apply stored rules as a means of correction. If 

such a pattern is not available, the explanation phase also contains elements inspired by the 

Reason’s knowledge-based level, which described how individuals use their mental 

representation of the problem space, or of the automation in our case, to make explanatory 

connections. This process may also involve generating and testing hypotheses, followed by 

the observations of outcomes on the system, which can lead to multiple iterations of 

corrective attempts.

One critical component of error management that has thus far been understated or absent in 

the literature to date is the process of integration. Integration describes the process of 

learning that occurs as a result of experiencing automation errors or failures. This exposure 

may give the human more detailed information regarding the automation’s capabilities and 

limitations, circumstances under which errors may be more likely to occur, and heuristics 

that may lead to quicker error correction. These insights must be integrated into the human’s 

mental representation of the automation and task, resulting in a more refined and complete 

understanding. This may then influence future instances of error management because it 

may lead a human to adjust his/her monitoring strategies and allow for better error detection.

4. Human-automation interaction variables

Many empirical investigations have examined the variables influencing how a person 

handles automation errors, and these have included automation, person, task, and emergent 

variables (see Table 1). We analysed this literature with respect to error management to 

identify both the relationships that have been documented as well as gaps that remain in the 

literature. We would have liked to organize the automation literature research by the relevant 

phase of error management (detection, explanation, correction, integration). However, the 

majority of studies in the human-automation literature have focused on detection or a 

simplified method of correction as their dependent variable, thereby limiting our ability to 

classify studies according the phases of error management. We will return to this issue in the 

discussion.

4.1 Automation variables

4.1.1 Reliability—One of the most widely investigated characteristics of automation is its 

reliability level. Reliability can be thought of as the “probability that the automation would 

make a correct classification” (Riley 1996, p. 23). Not surprisingly, research has 
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demonstrated that using perfectly reliable automation results in superior system performance 

when compared to manual performance (Moray et al. 2000, Dixon et al. 2005). Further, 

using 100% reliable automation results in superior performance compared to imperfect 

automation (Kantowitz et al. 1997, Moray et al. 2000).

What is less clear is how performance varies when using imperfect automation compared to 

performing the task manually. In such situations, is overall performance better served by a 

human manually performing the task without any automated assistance, thereby avoiding the 

trouble of managing automation errors, or is performance superior when a human uses 

automation prone to errors? Our review indicated that the answer is not as simplistic as it 

might seem.

In a study by Skitka et al. (1999), participants either worked with an 88% reliable automated 

monitoring aid or were required to monitor the task manually without any automation. Of 

interest to the researchers were six of the 100 trials in which the automation group failed to 

receive prompts to critical events. Because the manual condition never received prompts 

throughout all 100 trials, the two groups could be compared on those six trials. Participants 

using the automated aid missed significantly more of the critical events than those working 

manually. For the 94 trials when the automation was correct, those in the automated aid 

condition had significantly better performance.

This finding suggests that imperfect automation benefited performance, but only when the 

automation was correct. When the automation failed, those in the manual conditions had an 

advantage. To better understand the driving forces behind these performance differences, 

Skitka et al. (1999) correlated participants’ error rates with measures of perceived task 

difficulty, effort, beliefs that automation improves accuracy of responses, and diffusion of 

responsibility. Of those, delegating the responsibility of system monitoring to the automation 

and attitudes that the automation was infallible were associated with higher omission and 

commission error rates.

Although the group using automation suffered performance decrements during the 

automation miss trials, this group demonstrated better overall performance than those not 

using automation. Maltz and Shinar (2004) similarly found that individuals in a driving 

simulator maintained safer driving distances if they used an imperfect warning aid compared 

to no aid at all. Additionally, experienced air traffic controllers using imperfect automation 

were as likely to detect a potential conflict (which the automation missed) as the controllers 

who were performing the task manually (Metzger and Parasuraman 2005). It appears that 

imperfect automation generally leads to better or comparable performance compared to 

manual task performance. Given this finding, using imperfect automation is a better choice 

because it would result in the same or better levels of performance and reduce the workload 

placed on the operator.

Because imperfect automation does appear to provide significant support, one might assume 

the best approach would be to accept a certain level of inaccuracy but get as close to 100% 

reliability as possible. This strategy would reduce the number of automation errors, thereby 

increasing overall performance. Researchers have suggested that this logic is flawed and 
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noted that there appears to be a tradeoff that occurs with more reliable (still <100% reliable) 

automation (Bainbridge 1983, Wickens et al. 2010). Indeed, Sorkin and Woods (1985) noted 

that optimizing the automation’s performance alone did not lead to gains in overall system 

performance. In a comparison between 80% and 60% reliable automation, participants using 

60% reliable automation had better decision making accuracy for trials when the automation 

was unreliable (Rovira et al. 2007).

These data reflect that automation that errs can support human performance, and it appears 

that in some cases, more error-prone automation may provide a greater benefit than less 

error-prone automation. But at what point does error-prone automation become no longer 

useful? Wickens and Dixon (2007) focused on modelling the role of reliability in human 

interaction with automated diagnostic aids. Their goal was to determine whether there is a 

reliability level below which the automation fails to provide any benefit or begins to impair 

performance. A linear regression revealed the predicted crossover point in reliability to be 

70%, such that when using automation less than 70% reliable, task performance was worse 

than if the person were doing the task manually. Further, Wickens and Dixon’s analysis 

suggested that when automation reliability dropped below 70%, individuals continued to 

depend on the automation but failed to correct its errors, and did so as a means of preserving 

their cognitive resources for the other tasks.

One compelling explanation for why more reliable automation hurts error management 

performance comes from research examining complacency, or a state of sub-optimal 

monitoring behaviour. The idea is that when interacting with reliable automation (but not 

perfectly reliable), individuals come to believe their dependence on the automation is 

warranted, and complacent behaviour increases, which reduces the probability of detecting 

automation errors when they occur. Therefore, if complacency can be disrupted (i.e., by 

varying reliability), then detection of automation errors should improve.

In an experiment by Parasuraman et al. (1993), four groups of participants were responsible 

for monitoring an automated aid for errors. In two groups, the automation’s reliability was 

constant across the experiment at either 87.5% or 56.25%. In the other two groups, the 

reliability switched between 87.5% and 56.25% after every 10-minute block (12 blocks 

total). The variable-reliability groups were significantly more likely to detect automation 

errors than the constant-reliability groups (detection rates of approximately 75% versus 

30%). This effect was not present in the first block, but emerged in the second block and 

increased in later blocks. Parasuraman et al. posited that by varying the reliability, 

participants became more wary of the automation and increased their vigilance. These 

findings were replicated by Prinzel et al. (2005) using A’ (a measure of detection sensitivity 

less sensitive to response distributions than d’) as the dependent variable.

We believe there may be an alternative or supplementary explanation for the benefit of 

varying automation reliability. Because the variable-reliability group was exposed to two 

levels of reliability (87.5% and 56.25%), the average level of reliability was approximately 

72%. Indeed, Rice and Geels (2010) have found evidence that when using multiple 

automated systems of varying reliability, individuals tend to merge the reliability of the aids 

and treat them as a single unit. Because a 72% reliable aid was not included as one of the 
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levels used in the constant-reliability conditions, the performance benefit may be a 

consequence of this intermediate level of reliability, rather than the varying nature of 

reliability for the group. Therefore, future investigations should include a constant-reliability 

group that matches the average of the variable-reliability group to allow for a direct 

comparison.

Even if varying reliability is an effective method of disrupting complacency, it is not clear 

how this might be implemented in operational contexts. To vary reliability would require the 

introduction of contrived automation errors. If operators know the bogus nature of these 

errors, they may lose substantial trust in the system or reduce their monitoring behaviour. 

Another possible avenue might be taking the automation offline and forcing periods of 

manual performance. Empirical research will be necessary to determine if this would result 

in a comparable performance benefit.

Our analysis identified a factor that often varies between studies of automation reliability; 

namely, the base rate of the event or signal to be detected by the automation. For example, 

an automated aid designed to assist with luggage screening is designed to detect the event of 

a weapon concealed in a suitcase. The base rate of this event, or the probability that it will 

occur, is very low. This is true for many base rates.

Much of the research examining reliability has used experimental situations in which the 

base rate is extremely high. For example, in one study a fault that the automation was 

designed to detect occurred every trial, and each trial lasted approximately 2.5 minutes 

(Moray et al. 2000). Although this high base rate may represent some operational 

environments, the other end of the spectrum has not received as much empirical attention.

We need to understand how error detection performance changes as a function of base rate, 

as vigilance decrements may reduce error management success. One of the few studies that 

has examined monitoring automation with a very low base rate of errors (i.e., a single failure 

in a 30 minute session), found that detection rates dropped significantly if the failure 

occurred in the last 10 minutes of the 30 minute block compared to if it occurred in the first 

10 minutes (Molloy and Parasuraman 1996). The high base rates of errors in previous 

studies may have masked potential vigilance effects and overestimated how capable 

individuals may be in detecting errors over extended periods of time with rare error events.

It is not clear whether the effects found in the literature will scale up when errors only occur 

every other day, week, or month, rather than multiple times in an experimental session. 

Certainly, there are limitations to what can be done experimentally due to time and monetary 

constraints, but understanding the effect of base rate on error management should be a 

research priority.

Overall, our analysis revealed that an automated system’s reliability influences a human’s 

ability to manage automation errors. 100% reliable systems certainly support overall task 

performance compared to manual task performance. However, the benefit of imperfect 

automation is not quite as clear. Overall performance can be divided into two categories: (a) 

performance when the automation is working (routine performance), and (b) performance 

when the automation is erring or has failed completely (error or failure performance). 
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Although one might conceive that closer approximations to 100% reliability will yield 

superior performance, this is not necessarily the case. As Bainbridge (1983) suggested, “…

the most successful automated systems, with rare need for manual intervention …may need 

the greatest investment in human operator training” (p. 777).

Explanations for this paradox or tradeoff have included increases in complacency, or 

suboptimal monitoring of the automation. Greater complacency may be found in highly 

reliable (but imperfect) automation during routine performance, which leaves the human less 

vigilant and less able to respond appropriately to automation errors or failures. If this 

tradeoff does exist, we need to understand why it occurs and whether it is an effect that 

needs to be eliminated or may be used to automation designers’ advantage.

Moray (2003) has pointed out that the manner in which complacency has been studied is 

ambiguous. Specifically, complacency is typically defined as monitoring or sampling of the 

automation below some optimal level; however, this level is typically not defined and 

detection of error is often measured instead of sampling behaviour. Therefore, to claim that 

complacent behaviour has occurred in these situations is inappropriate. Further, Moray 

suggested that when automation is typically reliable, a lack of sampling or monitoring may 

be a rational decision when other tasks require the operator’s attention, suggesting that the 

negative connotations associated with complacency are not always suitable.

Parasuraman and Manzey (2010) also argued that complacent behaviour needs to be 

evaluated independently of detection performance. Such work has been accomplished more 

recently (see Bahner et al. 2008a, 2008b under the Training section). However, Parasuraman 

and Manzey also pointed out that normative or optimal sampling models need to take into 

consideration the cost of sampling and the value of the sampled information.

4.1.2 Nature of errors—In addition to the level of error that the automation commits, the 

nature of the errors committed has also been examined in relation to error management. 

Generally, the errors committed by automation are classified as false alarms or misses 

(Wickens and Carswell 2006). A false alarm occurs when the automation incorrectly detects 

a signal in the environment, and a miss occurs when a signal is present in the environment, 

but the automation fails to detect it. The errors committed by many types of automated 

systems, particularly those designed to detect certain states (such as the presence of a system 

malfunction), may be considered in this manner according to signal detection theory (Green 

and Swets 1988).

Sanchez et al. (2011) employed automation designed to assist with collision avoidance. 

Participants were exposed to either 10 false alarms or 10 misses out of 240 events over the 

course of the experimental session. The miss group had significantly more errors and lower 

trust in the automation than the false alarm group, suggesting that misses may be more 

detrimental to error management than false alarms.

Evidence to the contrary has been reported (Dixon and Wickens 2006). A diagnostic aid was 

set to be 67% reliable, with the remaining 33% either false alarms or misses. Participants 

used this aid in addition to performing two other tasks simultaneously. Detection rates for 
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critical events were subdivided based on whether the event occurred during a moment of low 

or high workload. When workload was low, participants’ detection of critical events was 

near ceiling, suggesting they were very capable of detecting and correcting when the 

automation missed or false alarmed. Under conditions of high workload, error type had a 

significant impact on detection rates. The miss group detected significantly more critical 

events than the false alarm group. Dixon et al. (2007) also found that misses were associated 

with greater detection of system failures than false alarms as measured by d’.

False alarms and misses are unavoidable consequences of imperfect automation. The ratio of 

false alarms to misses is at the discretion of the system designer, who must weigh the 

relative costs of these two events. Although a miss may constitute an extraordinarily high 

cost in terms of immediate consequences (a plane flying into the side of a mountain), 

minimizing misses may not be an appropriate alternative considering the evidence that false 

alarms are more detrimental to the operators’ error detection. Further research is needed to 

determine if the effect of false alarms can be reliably mitigated. A limitation of the current 

research on error types is that the majority of research has focused on early stage 

automation, or automation responsible for acquiring and analyzing information, but not 

making decisions or taking action (as defined by Parasuraman and Wickens 2008). Future 

research should investigate whether the patterns found in early stage automation hold for 

later stage automation. Stages of automation are discussed further in the following section.

4.1.3 Level of automation—Automation does not operate in an all-or-none fashion 

(Wiener and Curry 1980). Rather, the degree of control allotted to the human and to the 

automation moves along a spectrum, such that a higher level of automation (LOA) has 

greater control or autonomy compared to a lower level of automation. Various accounts have 

been provided regarding the levels of automation (Endsley and Kiris 1995, Endsley and 

Kaber 1999, Parasuraman et al. 2000).

In a study using an automobile navigation task, Endsley and Kiris (1995) examined whether 

using higher levels of automation would hurt decision making performance when the task 

had to be completed manually. They hypothesized that the time to make a decision during 

this manual phase would positively correlate with LOA. Their data only revealed an increase 

in decision time among participants who had been using the highest level of automation 

compared to participants who had been performing the task manually the entire session. In 

fact, although decision time varied, the quality of the decisions made was near ceiling for all 

of the groups.

Endsley further refined and expanded her LOA taxonomy (see Table 2), and she examined 

the effect of these levels on performance in a dynamic control task (Endsley and Kaber 

1999). Each participant completed two trials with two different LOAs. During each trial, 

three automation failures occurred in which control reverted to manual. Performance data 

were separated into performance during normal conditions and performance during an 

automation failure.

Although there were significant performance differences between LOAs during normal 

conditions, the effect of LOA was less pronounced during the automation failures. 
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Performance across the LOAs was not significantly different except that batch processing 

and automated decision making were worse than manual performance. These two LOA 

groups also showed the longest time to recover from the automation failure. These data 

represent a pattern in performance seen in other areas of research, such as automation 

reliability; that is, it highlights the paradox of automation. A LOA that boosts performance 

during normal conditions (e.g., batch processing) leads to the worst performance when the 

automation fails. Endsley and Kaber (1999) explained this particular finding by highlighting 

that in batch processing, which is a relatively low LOA and should not impair failure 

performance, participants were likely to try to plan ahead, distracting them from the task at 

hand and resulting in the poorer performance observed during automation failures.

There is not strong evidence for an effect of LOA on error management. There may be 

certain methodological limitations that reduced the likelihood of uncovering such an effect. 

The underlying theoretical perspective is that higher LOAs create a more passive role for the 

human, resulting in more complacency and lower situation awareness, which negatively 

affects performance during automation failures. However, in both of the previously 

discussed studies, we believe the experimental procedure did not provide enough time for 

complacency to form and situation awareness to suffer.

For example, in Endsley and Kiris’s (1995) study, participants were presented with a short 

text based scenario, and then required to make a decision. On average, the decision time 

ranged from 15-30 seconds. The probability of complacency forming under these 

circumstances is low, which we believe is why the effect of LOA on performance was not 

observed. In Endsley and Kaber’s (1999) study, there were no more than 2-3 minutes of 

continuous use of the automation at the LOA being tested. This period of use is so brief that 

it is very unlikely complacency and the subsequent performance decrement would have time 

to develop. Although it has been shown that complacency can develop in just 20 minutes 

(Parasuraman et al. 1993), it occurred after 20 minutes of continuous use. The time period in 

question consisted of 12-13 minutes of use with a 5-minute break partway through, 

rendering it unlikely that participants had enough time to develop complacent behaviour.

In addition to the LOA taxonomy suggested by Endsley and Kaber (1999), Parasuraman et 
al. (2000) proposed a model that included four stages of functions that can be performed by 

the automation or human (see Figure 3). Within each of these stages, the level of automation 

can range from low to high. As depicted in Figure 3, degree of automation is defined by both 

the stage and level of automation.

One study that examined the relative benefit of the varying stages of automated support 

compared information automation (stages 1 & 2) with decision automation (stages 3 & 4). 

Rovira et al. (2007) found that with 80% reliable automation, when the automation was 

imperfect, the decision automation was associated with less accurate decisions and longer 

decision times, whereas the information automation was not. Rovira et al. suggested that the 

information automation may be less affected by unreliable automation because users will 

continue to generate alternative courses of action, whereas a user of decision automation 

may cease engaging in this process.
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Wickens et al. (2010) conducted a meta-analysis to determine the extent to which varying 

the degree of automation leads to a tradeoff in performance between routine and failure 

conditions (also known as the paradox of automation). Although the initial analysis 

supported the hypothesized tradeoff, a subsequent analysis called this into question. The 

original analysis included data points for conditions in which the task was performed 

manually. When these data points were removed, the effects changed dramatically. The 

correlation between routine and failure performance switched to positive, although non-

significant, showing a trend for higher degrees of automation to result in improved 

performance when the automation is working correctly and when the automation errs.

Wickens et al. (2010), and recently, Hancock et al. (2013), discussed several possible 

explanations for the lack of support for the tradeoff. If automation is well designed and 

operators are well trained, this can actually mitigate or overcome the tradeoff. However, 

what makes a display or a training program effective in terms of supporting error 

management performance is not readily apparent. In fact, Lorenz et al. (2002) found that 

participants using a high LOA actually were faster to identify faults when the automation 

failed compared to a medium LOA. Data on the sampling behaviour showed that high LOA 

participants were more likely to sample relevant information, which kept them “in the loop” 

and prepared to handle automation failures.

The data collected thus far do not paint a clear picture of the relationship between LOA and 

error management. One could conceive that high LOA supports error management because 

the automation is handling most of the task leaving the human available to monitor the status 

of the system. On the other hand, at a lower LOA the human is actively involved in the task 

at hand and therefore might be more likely to detect an abnormality. Both explanations 

appear plausible, so further research is needed to identify which scenario represents reality.

4.1.4 Feedback—A critical component of well-designed automation is the feedback 

provided by the automation to the human. This feedback is the only way the automation 

communicates information to the human regarding its behaviour and the overall state of the 

system. A breakdown in communication or lack of feedback may have profound effects on a 

human’s understanding of the automation’s actions, which can result in severe performance 

decrements if the automation errs or fails. Automation with poor feedback capabilities has 

been described as silent (Woods 1996). Norman (1990) posited that a lack of appropriate 

feedback is at the heart of many of the issues raised regarding the implementation of 

automation. A case study from the aviation domain presented in his writing nicely illustrates 

this point. Below is a quotation from an accident report filed with the NASA Aviation Safety 

Reporting System:

Shortly after level off at 35,000 ft.…the second officer brought to my attention that 

he was feeding fuel to all 3 engines from the number 2 tank, but was showing a 

drop in the number 3 tank. I sent the second officer to the cabin to check that side 

from the window. While he was gone, I noticed that the wheel was cocked to the 

right and told the first officer who was flying the plane to take the autopilot off and 

check. When the autopilot was disengaged, the aircraft showed a roll tendency 

confirming that we actually had an out of balance condition. The second officer 
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returned and said we were losing a large amount of fuel with a swirl pattern of fuel 

running about mid-wing to the tip, as well as a vapor pattern covering the entire 

portion of the wing from mid-wing to the fuselage. At this point we were about 

2000 lbs. out of balance… (Norman 1990, p. 139)

In this case, the autopilot had compensated for the weight imbalance caused by the fuel loss. 

However, because the automation did not provide feedback to the pilots indicating that it 

was compensating for imbalance more than usual, the fuel leak may have gone unnoticed 

had it not been for the second officer’s detection of the discrepancy. Even though the source 

of the discrepancy was unknown to the second officer, by voicing his observation to the rest 

of the crew, he exchanged important information that set an investigation into action. In the 

same way, if the automation could have “voiced” its observation that it was compensating 

more than normal, this likely would have alerted the crew to the problem.

A lack of feedback has been linked to lapses in mode awareness, which refers to “an 

operator’s knowledge and understanding of the current and future automation configuration, 

including its status, targets, and behaviour” (Sarter 2008, p. 506). One may consider mode 

awareness a subcomponent of the more encompassing construct of situation awareness. 

Although in many cases decrements in mode awareness may be the result of poor feedback 

from the automation, there is also evidence that in cases where feedback is available to 

operators, they may not allocate attention to it (Sarter et al. 2007).

Well-designed cues can effectively draw a human’s attention to relevant output from the 

automation. Nikolic and Sarter (2001) discovered this in a study investigating the relative 

merit of peripheral visual feedback, or feedback that can be processed using peripheral 

rather than foveal vision. Participants using peripheral cues detected significantly more 

mode transitions and detected them significantly faster than participants using a traditional 

feedback display that required foveal vision.

Although the perceptual characteristics of feedback may be important, another critical aspect 

of acquiring feedback is the process of gathering pieces of information from various sources, 

and integrating the information to create an understanding of the automation’s behaviour and 

resulting system state. Skjerve and Skraaning (2004) conducted a series of experiments to 

investigate this process among experienced nuclear power plant operators. They argued that 

by designing an interface that provides explicit feedback and increases the observability of 

the system, human-automation cooperation will be enhanced, which will benefit overall 

performance.

Participants worked in multi-person crews in the experimental scenarios, in which they were 

responsible for maintaining normal operation and responding to critical plant occurrences 

(such as malfunctions). Operators’ ability to detect critical plant events and their response 

times to these events was superior when using an experimental interface, wherein the 

automation’s activity was made explicit through the addition of graphical and verbal 

feedback, compared to the conventional interface.

It is important to recognize that in many, if not most, cases, incorporating appropriate 

feedback requires increasing the complexity of the displays. However, as Skjerve and 
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Skraaning’s (2004) work demonstrated, this increased display complexity actually supported 

performance, because the task of gathering information from various sources to produce an 

understanding of the automation’s behaviour was reduced or eliminated. Unfortunately, it is 

easy to imagine an interface where the opposite situation might occur. The feedback may 

become an additional element that must be monitored and its potential benefit is lost if not 

well implemented. This may be particularly true in cases where an operator is working with 

multiple automated systems that are poorly integrated and focus on different task subgoals.

4.1.5 Summary of automation variables—Aspects of the automation itself (e.g., 

reliability level, nature of errors, level of automation, and feedback to the human) influence 

an operator’s ability to manage errors. Contrary to what one might expect, more is not 

necessarily better for reliability and level of automation. That is, higher reliability and higher 

levels of automation have been associated with greater complacency, which can lead to 

worse error management. This is certainly an area warranting further research as these 

phenomena are negatively related to error management.

4.2 Person variables

4.2.1 Complacency potential—Individuals’ level of complacency has been shown to be 

an important predictor of whether they will manage errors effectively. Complacency is not 

only affected by aspects of the automation and the task, but also by aspects of the person. 

Singh et al. (1993a) identified complacency potential as an attitude towards automation that 

individuals bring to a situation that, when combined with environmental and automation 

variables, may result in complacent behaviour. Singh et al. (1993a) developed the 

Complacency-Potential Rating Scale (CPRS) to capture an individual’s potential for 

complacency by measuring favourable and unfavourable attitudes towards different aspects 

of automation.

Singh et al. (1993b) used the CPRS to determine the extent to which complacency potential 

predicted failures of monitoring. The reliability of the automation was manipulated to be 

either constant or variable. A median split was used to classify participants as either low or 

high complacency. In the variable reliability condition, complacency potential participants 

did not affect detection performance, suggesting that the effect of variable reliability 

(discussed earlier in the Automation Reliability section) may be strong enough to wash out 

an effect of complacency potential.

Under conditions of constant reliability, and contrary to the expected pattern, high 

complacency potential individuals had superior detection rates compared to low 

complacency potential participants (52.4% vs. 18.7%, respectively). However, when the 

correlation between complacency potential and detection rate was computed within each 

complacency potential group, the high complacency group had a negative, albeit 

insignificant, correlation of (r = −.42), and the correlation for the low complacency potential 

group was essentially null.

Our analysis revealed several possible explanations for the lack of evidence for a 

relationship between complacency potential and detection rates found by Singh et al. 
(1993b). First, the CPRS was administered after the first of two experimental sessions. 
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Participants’ experience with the automation in this first session may have influenced their 

CPRS scores, resulting in an inaccurate representation of their true complacency potential. 

In addition, the median split used to create the two complacency potential groups was 56, 

such that the low complacency group contained scores from 47-56, whereas the high 

complacency group contained scores from 57-70. Considering that the range of possible 

scores was 16-80, there was not much of a spread in the scores obtained in this sample, 

perhaps limiting the effect.

Although this initial investigation did not provide much support for a relationship between 

complacency potential and automation error management, we believe this is likely due to the 

methodological issues discussed above, as Prinzel et al. (2005) reported data showing an 

effect of complacency potential. They used the same tasks, automation conditions, and 

instructions as those used by Singh et al. (1993b); however, they computed perceptual 

sensitivity (A’) to serve as the measure of automation monitoring performance. They also 

included 40 participants in their sample, compared to Singh et al.’s 24 participants. Once the 

CPRS scores were gathered, a median split of 58 was used to divide participants into low 

and high complacency potential. They found a significant interaction between complacency 

potential (high or low) and reliability (constant or variable) for automation monitoring 

performance, such that all groups performed comparably, except for the high complacency-

constant reliability group, who performed significantly worse. Their findings demonstrate 

that complacency potential does influence automation error detection, primarily in situations 

that are conducive to the formation of complacency (constant automation reliability).

A recent investigation examined how individual differences in working memory and 

executive function may contribute to a person’s likelihood of exhibiting complacent 

behaviour. These cognitive components are highly heritable and under dopamingeric control, 

and the dopamine beta hydroxlase (DBH) gene is thought to regulation dopamine 

availability in the prefrontal cortex. Therefore, Parasuraman et al. (2012) divided 

participants into low and high DBH enzyme activity groups (lower DBH activity is 

associated with more dopamine), and examined their decision making performance when 

using an imperfect automated aid. They found that when the automation erred, the low DBH 

group was more likely to verify the automation’s suggestions and had significantly better 

decision accuracy (i.e., detected more automation errors).

Taken together, these studies suggest that individual differences in complacent behaviour or 

automation bias may be linked to two sources. Complacency potential, or an individual’s 

attitude towards automation that reflects a tendency towards complacent behaviour (e.g., not 

verifying the automation or seeking confirmatory/disconfirmatory evidence), has been 

shown to predict the likelihood that complacent monitoring behaviour will occur. In addition 

to attitudinal differences, recent evidence has shown that complacency potential may also 

have genetic underpinnings in terms of an individual’s working memory and executive 

function abilities.

4.2.2 Training—Prior to engaging with automation in an operational environment, 

individuals often partake in some form of training. These training programs can range in 

duration, fidelity, and content. Consider, for example, the numerous hours commercial pilots 
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must spend in flight simulators before they receive certification, and contrast this to the 

training (or lack thereof) a consumer might receive after purchasing an automated GPS 

navigation aid. Although the difference in training is clear, both of these user groups have 

been found to demonstrate poor automation error management skills. If a portion of training 

programs was devoted to improving error management, would this result in measurable 

performance gains?

One study investigated this question by implementing various training programs designed to 

overcome automation bias, which is the tendency to defer to the automation rather than 

engage in information seeking behaviour (Mosier et al. 2001). Participants experienced one 

of three training interventions: (a) general training related to the aircraft systems and how 

the automation could be verified, (b) training that stressed participants must verify the 

automation, or (c) training that provided information regarding automation bias, the errors 

people often make when using automation, and how to avoid these errors. Participants 

encountered seven automation errors during a simulated flight, including six opportunities 

for an omission error, and one opportunity for a commission error. Training intervention did 

not have a significant effect on the likelihood of committing an omission or commission 

error.

A similar study may shed some light on why there was not an effect in the above study. In 

this study, the same three training interventions were used and participants worked in a 

similar simulated flight environment (Skitka et al. 2000b). The critical difference between 

this and the above study was the increase in opportunities for commission errors. In this 

study, there were six opportunities for an omission error and six opportunities for a 

commission error. With this change, Skitka et al. found that training had a significant effect 

on the number of commission errors committed. Specifically, participants who experienced 

the training emphasizing automation bias and the possibility of errors made fewer 

commission errors than the other two training groups. These findings suggest that this form 

of training may primarily reduce commission errors, but not omission errors. This might 

explain why Mosier et al. (2001) did not find an effect of training. There was only one 

opportunity for a commission error, reducing the potential for differences between the 

training groups.

Bahner et al. (2008b) examined the effectiveness of an intervention designed to improve 

automation error management by exposing participants to errors during training. They 

reasoned that simply discussing the potential for automation errors may not be enough to 

effectively change monitoring behavior. The experience group was exposed to two diagnosis 

errors during training. The information group received only correct diagnoses from the 

automation during training. The experimental session included a misdiagnosis on the 10th 

out of 12 faults. If participants followed the misdiagnosis provided by the automation for 

fault 10, they committed a commission error.

Only five out of the 24 participants committed this commission error, and the distribution of 

these individuals was not affected by training group (experience group = 2; information 

group = 3). However, the experience group sampled a significantly higher portion of 

information relevant to the diagnosis than did the information group. Further, individuals 

McBride et al. Page 17

Theor Issues Ergon Sci. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



who detected the misdiagnosis sampled significantly more relevant system parameters than 

those who missed it. Thus, training influenced information sampling behaviour, which in 

turn predicted whether participants detected the automation error. However, a direct effect of 

training on error detection was not found.

In another study, using the same simulation, the authors focused on the warning function of 

the automation rather than the diagnosis component (Bahner et al. 2008a). The experimental 

manipulation was the same such that one group was exposed to automation errors during 

training whereas the other group was only told about the potential for errors and warned to 

double check the automation. The automation errors were misses, that is, the automation 

failed to detect the presence of a system fault.

In the experimental trials, automation missed faults 10 and 13 (out of 14 total faults). At 

fault 10 the experience group was significantly less likely to make an omission error than the 

information group (18.2% vs. 80%). By the next opportunity for an omission error on fault 

13, there was no longer a significant difference between the groups (18.2% vs. 22.2%). At 

fault 14, rather than a miss, the automation misdiagnosed the fault. The majority of 

participants (74%) failed to catch this misdiagnosis, and there was not a clear effect of 

training. Those who successfully identified the misdiagnosis had sampled a significantly 

greater portion of the relevant information up to that point. This finding further highlights 

the importance of actively monitoring the automation and sampling relevant information as 

it repeatedly predicts the likelihood of detecting automation errors.

The absence of a group effect for the fault 14 misdiagnosis can be traced back to the specific 

focus of training. Training for the experience group only included exposure to automation 

misses, not misdiagnoses. The effect of training was constrained to the type of errors 

experienced in training, and did not result in a system wide increase in monitoring 

behaviour, which the authors attribute to individuals having high functional specificity 

(discussed later in the section on trust). We identified an alternative explanation as to why 

error detection differed between the two subsystems. Specifically, differences in error 

detection were related to the consequences of the two types of automation errors. Perhaps 

the diagnosis component was not as carefully monitored because if a misdiagnosis were 

acted upon, participants would receive notification that the repair did not work and then 

would simply have to manually repair the fault. Conversely, if a miss went undetected, the 

system would enter a critical state, a considerably more serious consequence.

Future research needs to address several issues and open questions. The transferability of 

error management training to various automated components within a system warrants 

further investigation, as does the duration of training effects on error management. Further, 

identifying the specific aspects of training that lead to greater information sampling, and 

thus greater error detection, will allow training programs to capitalize on the effect. Sarter et 
al. (1997) proposed that training should focus on encouraging active exploration and 

knowledge seeking behaviours to help develop refined knowledge structures. The role of 

knowledge in error management is discussed next.
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4.2.3 Knowledge—Users of automation must have knowledge about their role and 

responsibilities in a given task, knowledge about the automation they are working with, and 

knowledge about the context in which they are working. This knowledge forms a model of 

the system and is critical to the process of managing automation errors. For example, 

consider an automated fault management system designed to detect faults such as a broken 

pipe. In this scenario, an operator will have some level of knowledge regarding the event the 

automation is designed to detect (broken pipes happen more often in cold weather due to 

freezing), and knowledge related to the capabilities of the automation (tends to false alarm 

rather than miss).

Ideally, operators would integrate these pieces of knowledge into a larger understanding of 

the system that they are a part of, and use this understanding to improve error management. 

That is, the hypothetical operator would be more wary of an alert from the automation 

regarding a broken pipe if it occurred in July compared to if it occurred in January. 

Unfortunately, the complexity of many modern automated systems makes this knowledge 

increasingly difficult to acquire and apply. Operators often have gaps or misconceptions in 

their models of a system that can cause severe disruptions in performance. Further, these 

inaccuracies may be unbeknownst to the human, resulting in operators who are more 

confident in their abilities than is warranted.

Such a pattern has been documented in an investigation of the effect of mental model quality 

on task performance while using an automated navigation aid (Wilkison et al. 2007). 

Participants were given varying levels of exposure (no exposure, low, and high) to a 

simulated city map to establish a different mental model quality for each of the three groups. 

Participants then used a decision aid to navigate the simulated city and could accept or reject 

the aid’s navigation advice. When using a 70% reliable aid, participants who had a low 

exposure to the city map during training, and presumably had a weak or vague mental 

model, were significantly more likely than the no or high exposure groups to reject the 

advice of the decision aid when it was correct, opting instead to choose their own, less 

optimal route. Training programs designed to quickly teach learners “the basics” might 

actually be harmful if they lead individuals to believe they know more than they actually do.

Sarter and Woods (1994) used a simulated flight scenario to reveal deficiencies in the mental 

models of experienced pilots interacting with the Flight Management System, considered a 

core system of flight deck automation. Over 70% of the pilots showed deficiencies related to 

seven of the 24 scenario probes. A majority of the deficiencies resulted from a lack of 

knowledge regarding the functional structure of the system. Sarter and Woods also noted 

that many of the pilots were not aware they had gaps in their knowledge. Future research 

should use Sarter and Woods’s approach of documenting knowledge gaps in conjunction 

with performance measures to determine how these gaps influence error management.

One particular subset of knowledge that might influence error management is whether the 

user has a causal explanation for the errors committed by the automation. Dzindolet et al. 
(2001) contended that individuals may judge automation to be less reliable if they do not 

understand why it makes errors, leading them to distrust and disuse an aid that might 

actually provide a benefit. Dzindolet et al. (2003) examined this hypothesis by providing one 
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group of participants an explanation for automation errors, whereas the other group did not 

receive this information. Regression analyses revealed that reliance on the aid was greater 

among participants who were given an explanation for the automation’s errors. It is 

important to note, however, that the increased reliance on the aid was not always warranted. 

The error explanation influenced participants’ behaviour, but did not make them better at 

managing automation errors.

The relationship between knowledge and error management is not clear, due in part to the 

scarcity of empirical research examining this topic. Certainly, the complexity of knowledge 

required in many domains may be daunting. There are many open questions to be answered. 

For instance, does having the requisite knowledge for a particular task guarantee that an 

individual will access and use it appropriately when needed? Further, although a wealth of 

knowledge is gained during training, this knowledge base does not remain static. The “on 

the job” experiences will also alter knowledge. Therefore, providing useful and accurate 

feedback to operators may help to further refine knowledge.

4.2.4 Summary of person variables—When individuals interact with an automated 

system, they bring aspects of themselves to bear on how successfully they manage the 

automation. These factors include their complacency potential, the training they received, 

and their knowledge of the system. In comparison to the characteristics of the automation, 

person characteristics have been under-studied. Moreover, factors relating to trust and 

knowledge may be particularly critical to the explanation, correction, and integration phases 

of our error management framework, but have primarily been investigated in relation to error 

detection.

4.3 Task variables

Humans and automation do not work together in a vacuum; rather, they are engaged in 

performing a task and are part of a larger system. Characteristics of the task can influence 

the human’s error management skills.

4.3.1 Consequence of automation error—When an automated system errs, it results 

in the potential for consequences to occur. These consequences can range from minor to 

severe, and in many systems (e.g., aviation, nuclear power), severe consequences may 

include the fatalities of many people as well as significant monetary losses. The literature 

has generally demonstrated that as consequences become more severe, people adjust their 

behaviour and manage automation errors more effectively.

In a flight simulation study, the data revealed that if an automation error did not affect flight 

safety, pilots were less likely to detect it than if it did influence flight safety (Palmer and 

Degani 1991). In fact, the automation errors that would have resulted in a crash were 

detected by all of the flight crews. Other studies have also found that the failures most 

harmful to flight safety had higher detection/correction rates (Mosier et al. 1998, Mosier et 
al. 2001).

An important fact to note regarding the previously discussed studies is that they all occurred 

in the aviation domain with trained pilots. As discussed by Mosier et al. (2001), these pilots 
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had received extensive training before taking part in the experiment, and part of their 

training undoubtedly involved prioritization of tasks during flight, with more critical tasks 

receiving greater priority. From a review of these studies alone, it is not yet clear whether 

severity of consequences affects error management generally, beyond trained pilots in an 

aviation context.

To explore how costs influence error management in an unfamiliar context, Ezer et al. 
(2008) systematically manipulated the consequence of failing to correct an automation error 

by implementing a point scheme into her experimental task. A significant effect of 

consequence of error was found, revealing that as the consequence became more severe 

(more points lost), participants were less likely to rely on the automation. Unfortunately, 

Ezer et al. did not disclose the performance data related to cost of error, so it is unclear 

whether the reduced reliance was associated with improved error management. However, in 

this task, participants’ counting ability was measured and was roughly equal to the reliability 

of the automation (approximately 70% correct). Therefore, from a strategic point of view, 

greater reliance on the automation was an effective strategy because performance would be 

roughly equivalent but less effort would be expended.

Although research on the consequences of automation error is not extensive, there is general 

agreement among the findings. As consequences of letting the automation err become more 

severe, the likelihood that the error is managed increases. Interestingly, many empirical 

investigations in the human-automation literature have used point schemes or other reward/

penalty devices to motivate participants to put forth their best effort in the experimental 

trials. The focus of those studies was not whether consequences influenced behaviour, but 

their use suggests researchers generally recognize the effect exists.

4.3.2 Cost of verification—A critical step in managing automation errors is verifying or 

checking the automation. This verification procedure is often the step that leads a user to 

detect that an error is present, and/or determine the appropriate course of action for 

overcoming the error. As discussed by Cohen et al. (1998), verification may include several 

activities, such as:

… checking the aid’s reasoning, examining the aid’s conclusion against evidence 

known to the user but not to the aid… or attempting to find (or create) a better 

alternative. Verification is not usually a once-and-for-all decision. More typically, it 

is an iterative process…The process should end when the uncertainty is resolved, 

the priority of the issue decreases, or the cost of delay grows unacceptable. (p. 19)

Ezer et al. (2008) allowed participants to verify an automated suggestion by choosing to 

view relevant stimuli. They manipulated the cost associated with this verification process 

such that the cost of verification was either high (loss of one point for every 2 seconds of 

verifying), or low (no loss of points for verification). Task performance was superior in the 

low cost of verification condition, relative to the high cost condition.

The current research examining how the cost of verifying automation influences error 

management is minimal. Future research should investigate the various forms that cost can 

take, such as time, resources, and performance, to determine if certain costs are more 

McBride et al. Page 21

Theor Issues Ergon Sci. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



influential than others. It is likely that minimizing verification costs would support error 

management performance. This is easier said than done, and research is needed to 

understand how to successfully accomplish this.

4.3.3 Accountability—In human teams, responsibility for successful task completion is 

often dispersed among all team members. In a human-automation team, the automation 

cannot be expected to detect its own errors in the same way that humans are capable of 

detecting when they themselves have erred, so this task must fall to the human. If diffusion 

of responsibility occurs between a human and an automated system, it may lead the operator 

to accept automated directives without any form of double-checking (Mosier and Skitka 

1996).

Mosier et al. (1998) conducted one of the first endeavours in understanding the role of 

accountability in the context of human-automation interaction. Pilots were placed in either 

an accountable or a non-accountable group. Those in the accountable group were informed 

that their performance would be monitored, collected, and evaluated with respect to how 

they used the automation, and they would have to justify their performance in a post-

simulation interview. Pilots in the non-accountable group were told that performance data 

could not be collected due to a computer issue, and that their contribution would primarily 

be subjective responses to a questionnaire. No mention of justification was included.

The likelihood of detecting automation errors did not vary significantly with the 

accountability manipulation. However, pilots who missed none or only one automation error, 

when asked to rate their perceptions of accountability, reported a higher sense of being 

evaluated on their performance and strategies, and reported a stronger need to justify how 

they interacted with the automation. Although the experimental manipulation of 

accountability did not affect error management, individuals who reported feeling less 

accountable were more likely to miss automation errors than those who reported feeling 

accountable.

In a following investigation, Skitka et al. (2000a) adjusted their experimental manipulation 

of accountability and examined the effect of general versus specific accountability 

instructions on performance. Participants were given either non-accountable instructions, or 

one of four types of accountable instructions. The accountable groups were informed that 

their goal was to maximize either overall performance, accuracy, response time, or tracking 

performance.

Forms of accountability had a significant effect on the number of omission and commission 

errors committed by participants. Omission errors (failing to detect automation misses) 

occurred less frequently in the accountability groups focused on overall performance, 

accuracy, and response time. Further, commission errors (failing to detect automation false 

alarms) occurred less frequently in the accountability groups focused on overall performance 

and accuracy. An examination of participants’ verification behaviour revealed that the two 

groups with the best error management performance, those accountable for overall 

performance and accuracy, verified the automation more than the other three groups.
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4.3.4 Summary of task variables—Aspects of the task that the human and automation 

are engaged in play a role in how well the human manages automation errors. As the cost of 

failing to correct automation errors increases, the likelihood of detecting those errors also 

increases. It is important to note that minor consequences are still consequences, and if these 

types of errors are largely ignored, the sum of their impact may create opportunities for 

serious accidents. In addition to consequences, the costs (both to performance and operators’ 

cognitive load) associated with verifying the automation, and the form of accountability 

imposed on the operator regarding task success influence how likely operators are to detect 

automation errors.

4.4 Emergent variables

Several of the most widely researched variables in the human-automation literature cannot 

be ascribed solely to the automation, human, or task. These variables result from the 

interaction of all three components. For example, individuals’ trust in automation is 

determined by previous experiences with automation, by the capabilities and design of the 

current automation, and by the task being worked on. Oftentimes, these emergent variables 

are examined as outcome variables, but there is evidence that they also predict the extent to 

which operators will successfully manage automation errors.

4.4.1 Trust in automation—Lee and See (2004) defined trust as “the attitude that an 

agent will help achieve an individual’s goal in a situation characterized by uncertainty and 

vulnerability” (p. 51). Generally, individuals’ trust in automation positively relates to their 

dependence on automation (Muir 1994, Muir and Moray 1996, Parasuraman and Riley 1997, 

Dzindolet et al. 2003). However, because dependence is not always warranted, as is the case 

when automation errs, a critical aspect of trust is calibration. Calibration is the match 

between capabilities of the automation and an individual’s trust in the automation (Lee and 

See 2004). Dependent upon this match, individuals may have calibrated trust (trust matches 

automation capabilities), overtrust (trust exceed automation capabilities), or distrust (trust 

falls short of automation capabilities).

One of the first empirical investigations examining the effect of trust on performance was 

reported by Muir and Moray (1996). After each experimental trial, participants completed a 

series of subjective ratings to assess trust in the automated component. A high positive 

correlation was found between operators’ trust and the amount of time they left the system 

in automatic mode, and a negative correlation was found between trust and operators’ 

monitoring of the automation. Overall, the more operators trusted the automation, the more 

they left it in control without supervision. In this study, the effect of trust on error 

management could not be directly assessed because the automation did commit a distinct 

error, but went through periods during which manual control would be more effective and 

lead to superior system output. However, we suspect that because trust reduced operator’s 

monitoring of the automation, it is likely that errors committed by the system would have 

gone undetected.

Another study assessed trust in an automated system that committed misses (Bailey and 

Scerbo 2007). Trust in the automation was measured with a 12-item questionnaire with 
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subscales for the two automated aids. Regression analyses revealed that trust in two 

automated aids significantly predicted error detection in the two tasks. Higher trust predicted 

lower detection rates of the automation misses.

As automated systems and automated components become more widespread in socio-

technical systems, understanding the functional specificity of trust should become a research 

priority. Functional specificity is “the differentiation of functions, subfunctions, and modes 

of automation” (Lee and See 2004, p. 56). Consider the numerous automated systems within 

a modern glass cockpit (e.g., autopilot, collision avoidance, thrust management, navigation, 

engine indications). If operators’ trust varies by the automated component or function in 

question, they have high functional specificity. If trust is based on the system as a whole, not 

distinguishing between the various components, functional specificity is low. It currently it 

not clear how capable human operators are of demonstrating high levels of functional 

specificity. This question is an important one, because if high functional specificity is not 

common, then individuals may be inappropriately generalizing from one automated 

component to another and reducing the likelihood that they manage automation errors 

effectively.

Several studies have reported that an error in one automated component did not cause a loss 

of trust in other similar, but functionally distinct automated components, indicating 

individuals were capable of high functional specificity (Lee and Moray 1992, Muir and 

Moray 1996). Evidence to the contrary has surfaced in the last few years. Rice and 

colleagues have repeatedly found support for the notion that people display system-wide 

trust, rather than component-specific trust (Keller and Rice 2010, Rice and Geels 2010).

These differences in the functional specificity of trust may be related to the level of skill or 

experience operators have with the automation in question. Such a distinction may explain 

the contradictory results discussed above. In the two studies that did not find evidence of 

functional specificity, participants spent relatively minimal time with the automation (60 

minutes in Keller and Rice 2010; 20 minutes in Rice and Geels 2010). However, in the 

studies that reported evidence for functional specificity of trust, participants’ interaction with 

the automation ranged from six hours (Lee and Moray 1992) to between eight and 16 hours 

(Muir and Moray 1996).

The literature supports the proposition that trust negatively influences error management 

processes. It is not clear whether trust in multiple automated components is distinct for each 

component, or if the various components are merged and trust is based on a perception of the 

system as a whole.

4.4.2 Mental workload—Workload can be thought of as the supply and demand of 

attentional or processing resources (Tsang and Vidulich 2006). Typically, operators are 

responsible for other tasks in addition to monitoring automation. If operators are under high 

levels of workload, they may not have resources available to engage in an appropriate level 

of monitoring or verification, reducing their error management efficacy.
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In one study examining workload, the researchers manipulated workload by increasing the 

number of concurrent tasks across sessions within participants, and the rate of an alarm in a 

secondary task between participants (Bliss and Dunn 2000). Increasing the number of 

concurrent tasks significantly increased response time to alarms and decreased the rate of 

responding, whereas the effect of increasing the rate of alarms did not significantly affect 

performance.

In a study conducted by Dixon et al. (2005), workload varied as a function of the task 

demands as well as how many UAVs the operator was responsible for controlling (one = low 

workload; two = high workload). Both manipulations of workload had significant negative 

effects on response times to errors, but response accuracy was not affected. Thus far, the 

research suggests that in high workload situations, rather than letting performance suffer, 

individuals will adjust their strategies and engage in a speed/accuracy tradeoff wherein they 

may take longer to respond but accuracy remains high.

Contrary evidence was reported by McBride et al. (2011). The experimental task required 

participants to perform two tasks, one of which was supported by a 70% reliable automated 

aid. The search demands of the non-automated task were manipulated to create three levels 

of workload (low, moderate, and high). Workload had a negative effect on performance in 

the automated task, such that the high workload group detected significantly fewer 

automation errors than the low workload group.

These findings differ from the previous work that only showed a decrement in response time, 

but not in accurate performance. This may be explained by the variable time limits enforced 

across the experimental tasks. In McBride et al.’s (2011) task, participants had a 10 second 

window in which they needed to respond. Bliss and Dunn (2000) allotted 15 seconds for 

participants to respond to alarms, and Dixon et al. (2005) had 30 seconds to identify and 

indicate a failure had occurred. It may be that the time pressure of McBride et al.’s task did 

not allow the participants to take more time to respond and keep accuracy high. This idea 

needs to be empirically investigated, as removing or increasing the time limits might change 

the effect of workload and the strategies used by participants in unanticipated ways.

4.4.3 Situation awareness—Another factor critical in the process of automation error 

management is an individual’s situation awareness (SA). Endsley (1996) defined SA as “the 

perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future” (p. 

165). This definition specifies levels of SA, including level 1 (perception), level 2 

(integration and comprehension), and level 3 (projection). Numerous empirical studies have 

demonstrated that these levels can vary independently.

With respect to the role of SA in human-automation interaction, much of the research has 

examined how the level of automation (LOA) affects SA, and how this process influences 

error management. The hypothesized relationship is that a high LOA places operators in a 

passive role, reducing their engagement in the task, and consequently, their SA. When the 

automation fails and operators must take over, their low SA will result in poor performance 

and longer time to recover from the failure. To that end, the experimental paradigms used 
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typically consist of a period where automated support is unavailable. In these scenarios, 

error management success would be defined as how well the individual can perform the task 

manually during those periods when automation is offline.

The findings of Endsley and Kaber (1999) do not follow the predicted relationship between 

LOA, SA, and recovery from automation failure. Their results demonstrated SA was not 

associated with performance, either in terms of time to recover during the failure conditions 

or manual performance. The groups with high SA did not perform significantly better or 

worse than the other groups. The only exception to this was the group using automated 

decision support (medium-high LOA) had high SA scores but one of the lowest levels of 

performance.

Kaber and Endsley (2004) reported further evidence of the dissociation between SA and 

performance. Using a manual condition (no automation) and five levels of automation, they 

demonstrated that participants using the lowest LOA and second highest LOA had 

substantially worse SA than the other LOAs. The group using the lowest LOA, that had the 

worst SA, also had the best task performance. Indeed, of the two LOA groups with the 

highest SA, one had the second highest task performance, and the other had the second 

worst performance.

The effect of SA on error management has received mixed support and requires additional 

investigation. One particular aspect of the experimental methodology needs to be examined. 

In all of the cited research, automation failed, rather than erred. The human did not have to 

react to misses or false alarms, but had to take over and perform the task manually because 

the automation went completely offline. Although the effect of SA in this context deserves 

attention, so too does the effect of SA on managing automation errors, such as misses and 

false alarms.

4.4.4 Emergent variables—Of the three emergent variables discussed, trust in 

automation is the only variable found to affect error management in a consistent manner. 

The influence of workload and SA are not clearly understood. Future efforts will benefit 

from systematic manipulations of workload and SA. For example, in the reviewed studies, 

SA was manipulated by varying the LOA. This design decision is based on the assumption 

that LOA has a straightforward effect on SA, but the literature does not provide adequate 

support for this conjecture.

5. Conclusion

5.1 Overview of analysis

Automation has the potential to aid humans with a diverse set of tasks and to support system 

performance in many contexts. Automated systems are not always perfectly reliable, which 

may pose a barrier to achieving the intended task success. Therefore, the presence of errors 

in human-automation interactions cannot be eliminated completely. When automation errs, 

the human must engage in error management, or the process of detecting, explaining, and 

correcting the error. The success of this process determines whether the consequences of an 

error will come to fruition.
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To gain deeper insights into the process of error management, we examined relevant areas of 

the human error literature. Reason’s (1990) GEMS described the general process people 

engage in to detect and resolve human errors. We took key components of this process and 

incorporated them into our own conceptualization of the error management process in 

human-automation interaction (see Figure 2). This framework describes different methods 

by which errors are detected, explained, and corrected. It also adds a process not specified 

by current models of error management; namely, integration. The integration process 

represents how people learn about the automation and refine their mental representation of 

the automation, which will likely influence future error management experiences.

Although we believe integration is a key component of error management, there is currently 

not a body of research aimed at understanding how integration occurs. For instance, does 

integration tend to occur naturally after experience with automation or a particular type of 

error? Or perhaps effective integration requires a more explicit and directed review of an 

interaction with automation, with the purpose of gleaning additional new pieces of 

information. If we understand the manner in which integration occurs and have evidence that 

integration improves future error management attempts, our next priority should be to 

understand how to train individuals to engage in this process.

Another gap in the automation literature is that error management has thus far been 

primarily measured at the level of detection. Research aimed at understanding the 

explanation and correction phases of error management is almost non-existent. Although 

identifying and predicting whether people can detect and correct automation errors is 

important, examining what explanatory processes allow them to generate the appropriate 

corrective action is similarly important.

Part of the reason explanation and correction have not been emphasized may lay with the 

research design. For instance, in many tasks participants are required to monitor for 

automation errors (e.g., Prinzel et al. 2005, Dixon et al. 2007). When an error is detected, 

participants do not have to engage in any error explanation processes because: a) they are 

trained to respond with a button press or mouse click that indicates they have detected the 

error and prompts the system to “correct” the error, or b) the only response option is to 

switch to manual control. Although these tasks may represent some operational 

environments, they do not accurately represent other environments that require more 

complex reasoning and explanation to produce a successful correction method. There are 

some exceptions to these types of experimental paradigms wherein corrective actions depend 

heavily upon the participant’s ability to examine relevant system parameters to reach a 

decision (e.g., Bahner et al. 2008a, 2008b), but they are uncommon by comparison. Because 

the explanation phase of error management has received little attention in the literature, 

understanding how knowledge supports explanation, and thus, error management, should be 

a research priority.

Knowing the relative influence of variables would be informative but the data are not 

available to do a systematic quantitative analysis of relative effect sizes. However, on the 

basis of our review, we can speculate regarding what variables may be the most relevant to 

explanation and correction. For instance, explanation involves searching for familiar patterns 
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and also referring to one’s own mental representation of the system. Greater experience with 

or knowledge of the automation might result in a greater quantity of relevant patterns that 

could be accessed, as well as a more refined mental representation. Additionally, if a critical 

component of correction is observing the system to determine if further action is needed, 

displays that communicate this information effectively are necessary. But what does this 

mean in terms of display design? There is much to be done to understand what happens after 

individuals detect problems when using complex automation in dynamic situations.

We focused our review on identifying the factors that influence a human’s error management 

success. Critical variables included automation, person, task, and emergent variables (see 

Table 1). A summary of these variables’ effects on error management is provided next.

The reliability of automation influences error management in a number of ways. The more 

reliable the automation, the greater the benefit to performance when the automation is 

functioning. On the other hand, during periods of failure associated with a highly reliable 

automated system, the human’s ability to manage those errors may be severely disrupted. 

Further, as reliability becomes more variable, recovery from errors improves. Similar to the 

effect of reliability level, research has suggested that as the level of automation increases, 

performance during errors or failures suffers. Situation awareness has been noted as a 

potential mediator in this relationship, although the data supporting this assertion have been 

mixed.

We examined automation error type, but it is not clear whether one type (miss or false alarm) 

is harder to detect. High quality feedback provided by the automation to the operator 

regarding its activities and overall system state has been found to support error management. 

Further research is required to understand if feedback may accomplish this by refining 

knowledge, improving situation awareness, or both. The consequences associated with 

automation errors influences error management such that errors with more serious 

consequences are more likely to be detected compared to those with minor consequences. In 

addition, if operators are made more accountable for their performance (including error 

management), the more likely it is that these errors are managed. Individuals high in 

complacency potential are less effective monitors of automation, and struggle with error 

management, compared to low complacency potential individuals.

Trust in automation is appropriate during routine performance, but when the automation 

fails, that same trust often limits how well the person manages the failure. Operators’ 

workload negatively affects their error management abilities, although this effect may be 

limited to situations with high levels of time pressure. In cases where time is not as 

constraining, individuals may sacrifice speed to maintain high levels of accuracy. The costs 

associated with verifying automation’s behaviour have a negative impact on the likelihood of 

detecting when automation errs. Further, these costs will likely increase operator workload, 

compounding the problem further. Effective training programs, especially those that focus 

on automation errors and how to recover from them, support the development of error 

management skills. Investigations of operators’ knowledge and situation awareness did not 

yield consistent findings regarding their effect on error management.
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5.2 Themes and Next Steps

Our analysis uncovered themes in the empirical research on error management in an 

automation context. These themes represent avenues for future research that will increase 

understanding of the contexts in which humans excel or fail at managing automation errors. 

One such theme is the paradox of automation. That is, factors that positively affect 

performance when the automation is working may undermine performance when the 

automation errs or fails. These factors include automation reliability, level of automation, 

complacency potential, and trust. If this is the case, is it better to maximize routine 

performance when automation is correct and potentially forfeit error management, or focus 

efforts on improving the likelihood of catching automation errors? Kaber et al. (2011) 

suggested that perhaps the paradox could be overcome through designing effective displays, 

training to reduce complacency, or increasing operators’ understanding of automation logic. 

However, these recommendations were not based on empirical data and specifically how 

these goals can be accomplished remains an open question.

In addition to overcoming the paradox of automation, another research priority should be to 

examine automation that assists with later stages of information processing, including 

decision selection and action implementation. The majority of the research reviewed here 

employed low level automation such as decision aids or systems designed to detect certain 

stimuli, such as equipment faults. It is more difficult to conceptualize errors at these later 

stages, as they may not fit into the standard categories of miss or false alarm provided by 

signal detection theory. Consider an automated system that is responsible for the majority of 

the task including information acquisition, analysis, decision making, and action 

implementation. Now consider how devastating an automation error or complete failure 

would be to system performance if the operator were unable to recover. As automation 

capabilities increase, so too does the need for operators to be able to manage automation 

errors at all levels.

Lastly, it seems critical to examine how these numerous variables interact with one another. 

In any given interaction between a human and automation, most, if not all, of these variables 

will be at play. How do their effects change when other variables vary as well? For example, 

there is evidence that individuals with high complacency potential will only exhibit error 

management deficits if they are in a complacency inducing situation, such as one with 

automation performing at a consistent rather than variable level of reliability (Prinzel et al. 
2005). Similarly, although error type has a significant impact on error management under 

conditions of high workload, under low workload error management is at ceiling and no 

difference based on error type exists (Dixon and Wickens 2006).

This review has organized and identified the empirical findings relevant to understanding 

how individuals manage automation errors. Numerous variables are at play, and although 

there are some areas in which the findings are relatively clear, there remain many open 

questions to be answered. Continued efforts to explore error management will be necessary 

to move towards a future in which imperfect automation can be designed and implemented 

in a way that supports overall system performance.
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Relevance of the findings for ergonomics theory

This article presents a comprehensive analysis of variables that influence error 

management in interactions with imperfect automation. Our framework expands upon 

previous work to describe the relevant cognitive processes involved in error management. 

Our analysis provides direction for future research aimed at understanding and supporting 

error management processes.
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Figure 1. 
The mechanics of the generic error modeling system (GEMS), adapted from Reason (1990).
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Figure 2. 
Depiction of the error management process as it occurs in human-automation interaction.

McBride et al. Page 36

Theor Issues Ergon Sci. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Illustration of degrees of automation adapted from Wickens et al. (2010). Degree of 

automation (diagonal line) is defined by higher levels and later stages.
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Table 1

Framework for variables influencing error management.

Category Definition Examples

Automation Variables Characteristics of the automation Reliability level
Error type
Level of automation
Feedback

Person Variables Factors unique to the person
interacting with automation

Complacency potential
Training received
Knowledge of automation

Task Variables Context in which human and
automation are working together

Automation error
consequences
Verification costs
Human accountability

Emergent Variables Factors that arise from the
interaction between human and
automation

Trust in automation
Workload
Situation awareness
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Table 2

Endsley and Kaber’s (1999) hierarchy of levels of automation applicable to dynamic-cognitive and 

psychomotor control task performance.

Roles

Level of automation Monitoring Generating Selecting Implementing

1)Manual control Human Human Human Human

2)Action support Human/Computer Human Human Human/Computer

3)Batch processing Human/Computer Human Human Computer

4)Shared control Human/Computer Human/Computer Human Human/Computer

5)Decision support Human/Computer Human/Computer Human Computer

6)Blended decision making Human/Computer Human/Computer Human/Computer Computer

7)Rigid system Human/Computer Computer Human Computer

8)Automated decision making Human/Computer Human/Computer Computer Computer

9)Supervisory control Human/Computer Computer Computer Computer

10) Full automation Computer Computer Computer Computer
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