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Abstract

Questionnaire-based health status outcomes are often prone to misclassification. When studying 

the effect of risk factors on such outcomes, ignoring any potential misclassification may lead to 

biased effect estimates. Analytical challenges posed by these misclassified outcomes are further 

complicated when simultaneously exploring factors for both the misclassification and health 

processes in a multi-level setting. To address these challenges, we propose a fully Bayesian Mixed 

Hidden Markov Model (BMHMM) for handling differential misclassification in categorical 

outcomes in a multi-level setting. The BMHMM generalizes the traditional Hidden Markov Model 

(HMM) by introducing random effects into three sets of HMM parameters for joint estimation of 

the prevalence, transition and misclassification probabilities. This formulation not only allows 

joint estimation of all three sets of parameters, but also accounts for cluster level heterogeneity 

based on a multi-level model structure. Using this novel approach, both the true health status 

prevalence and the transition probabilities between the health states during follow-up are modeled 

as functions of covariates. The observed, possibly misclassified, health states are related to the 

true, but unobserved, health states and covariates. Results from simulation studies are presented to 

validate the estimation procedure, to show the computational efficiency due to the Bayesian 

approach and also to illustrate the gains from the proposed method compared to existing methods 

that ignore outcome misclassification and cluster level heterogeneity. We apply the proposed 

method to examine the risk factors for both asthma transition and misclassification in the Southern 

California Children's Health Study (CHS).
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1. Introduction

Understanding the relationship between explanatory variables and outcomes is one of the 

most fundamental tasks in statistical science. However, in practice, both explanatory 

variables and outcomes could be measured with error. In the case of categorical outcomes, 

an erroneous assignment of an attribute into a category other than that to which it should be 

assigned is referred to as misclassification. While measurement error models in general have 

received considerable attention in the literature for over 50 years [1-3], the issue of 

misclassification in categorical outcomes is gaining growing attention more recently [4-10]. 

To our knowledge, there has been no attention to methods exploring differential 

misclassification and determinants of the health process simultaneously in the context of 

multi-level design settings. To address this gap, we propose a new multi-level modeling 

technique to conduct inference in the presence of outcome misclassification.

The proposed technique was motivated by complications that arose when modeling 

questionnaire-based longitudinal information about children's asthma status that was subject 

to misclassification and simultaneously exploring risk factors for both the true health 

process and the misclassification probability. It has been long recognized that the Hidden 

Markov Model (HMM) provides a natural structure to model a stochastic process in which 

the true process is unobservable or immeasurable [11]. A general HMM consists of two 

processes: namely, the emission process and the transition process. The transition process is 

assumed to follow a Markovian structure, and the observed outcomes are assumed to be 

independent, conditional on the latent states [12, 13]. HMMs have been successfully applied 

in many fields such as speech recognition [14] and gene profiling and recognition [15]. 

However, most HMMs are developed for a single process. In 2007, Altman [16] introduced 

the concept of mixed hidden Markov models (MHMMs), which has a generalized HMM 

form that allows for multiple processes. In MHMMs, both fixed and random effects are 

incorporated into the transition process and the emission process, so that the assumption of 

having independent observations given the hidden states is relaxed. Altman [16] 

successfully applied this general approach to count data without considering the modeling of 

the prevalence probability.

In this article, we propose an approach called Bayesian Mixed Hidden Markov Model 

(BMHMM). The proposed method complements the framework of Altman [16] to model 

prevalence and transition probabilities simultaneously for categorical outcomes in the multi-

level setting and take the differential misclassification into account. For example, in the 

Children's Health Study (CHS) data analysis discussed in Section 5, we consider multiple 

levels of aggregation at the temporal, subject and community levels. Because the Monte 

Carlo EM (MCEM) algorithm used by Altman [16] is computationally expensive in multi-

level settings that have a rich random effect structure, we propose an alternative Bayesian 

method using Markov chain Monte Carlo (MCMC) for posterior computation.

The remainder of the article is organized as follows. In section 2 we specify the proposed 

Bayesian Mixed Hidden Markov Model. In section 3, we discuss the Bayesian inference 

framework. Results from simulation studies that we conducted to validate the estimation 

procedure, to show the computation efficiency and to make comparisons with models that 
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ignore the outcome misclassification or cluster level heterogeneity are presented in section 4 

in order to illustrate the gains from our methods. In section 5, we briefly describe the 

Southern California Children's Health Study, hereafter referred to as CHS which motivated 

this work and illustrate the results of the application of BMHMM to CHS data. Finally, 

Section 6 provides a summary and discussion for further extensions.

2. Bayesian Mixed Hidden Markov Models Formulation

The Bayesian Mixed Hidden Markov Model for categorical outcomes includes a prevalence 

probability model for the baseline latent true health states, a transition probability model for 

latent true health states during follow-up and a misclassification probability model (also 

referred to as emission process in general) for the observed health states, conditional on the 

latent true health states. For the prevalence and transition probability models, we assume 

that there are S1 categories for the latent true health state variable indicated by  for the ith 

subject at a discrete time j;i=1⋯,N and j=1,⋯,Ti. Baseline health state prevalence 

probabilities, , and the transition probabilities, , are assumed to 

have a mixed-effect multinomial logit form and are modeled as functions of fixed effect 

covariates,  and random effects,  with state specific coefficients; k,l=1,⋯S1. Without 

loss of generality, we assume that the S1
th state is the reference state. For simplicity of 

exposition, a first-order Markov process is assumed for the transition probability given the 

random effects:

(1)

(2)

where  is the lth entry in the dummy vector  for 

latent health state  and the cluster heterogeneity in the latent health process is captured 

by the random-effect vector U1 (e.g., a vector representing the temporal, subject, and 

community levels as in CHS), typically assumed to follow a multivariate normal distribution 

(MVN) with mean 0 and unknown variance-covariance matrix Ψ1 and be shared by both 

equation (1) and (2). We note that the assumption of normality for U1 could be relaxed to 

allow other parametric and non-parametric alternatives. In equation (2), the term 

 captures the probability for ith subject's transition from the previous lth 

true health state to the kth true health state at time j. The parameter vector α2k denotes the 

fixed effect of covariate  on the probability of being in the true kth health state, given 

that the true state at the preceding time point is the reference state S1. The effect of covariate 

 on the probability of transition to the kth true health state from the previous lth true state 
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is captured via α2k+βkl. There is no time dependent parameter built into the model, and we 

assume that time dependence may only occur through time-varying covariates. In all terms 

dealing with the interaction of a covariate with the outcome (either at the previous time, or 

the latent outcome in the misclassification model), interpretation of the terms in the 

transition and misclassification models for the probability of transition or misclassification, 

respectively, are either at Xij=0, or at an appropriately centered value.

Let  represent the observed health state for ith subject at a discrete time j, taking on values 

from a finite set {1,⋯,S2}, where S2 is a known positive integer not necessarily equal to S1. 

Without loss of generality, the S2
th state is again assumed to be the reference state. For the 

misclassification probability model, the conditional distributions of  given  are 

typically assumed to follow the multinomial distribution and the misclassification 

probabilities  are modeled as functions of fixed effect covariates  and 

random effectS  using the following mixed-effects multinomial logit format:

(3)

where U2∼MVN(0,Ψ2) with unknown variance-covariance matrix Ψ2 and is assumed to be 

independent of the random effect U1 in equations (1) and (2), n=1,⋯,S1 and m=1,⋯,S2. The 

term  captures the probability of misclassifying the ith subject from the nth 

true health state to the mth observed health state at time j. The parameter vector γm depicts 

the effect of covariate  on the probability of observing the mth health state, given the 

true state is the reference state. The effect of covariate  on the probability of observing 

the mth health state given the true state is the nth one is given by γm+δmn.

There are several notable features in the proposed Bayesian Mixed Hidden Markov Model. 

First, the inclusion of covariates in the regression model for the observed health states 

allows for differential misclassification, i.e., differences in the misclassification probability 

for subgroups of subjects. Secondly, the random effects U1 in the prevalence and transition 

probability models are used to capture the dependence between cluster-level heterogeneity at 

the subject and/or community levels and latent true health states. The corresponding random 

effects U2 in the misclassification models are independent of the latent true health states and 

account for the heterogeneity in the misclassification probability. Thirdly, all random effects 

in this proposed method are assumed to follow the normal distribution. However, the model 

could be easily extended by assigning more robust distributions to random components such 

as the t-distribution – a case we will not consider in this paper. Fourthly, all the regression 

parameters are assumed to be time-independent, because this is a standard constraint in 

order to ensure identifiability of covariate effects [16]. This constraint is especially 

important in cases where the prevalence and transition probabilities of both observed and 

true health states depend on the same set of covariates [17]. The proposed method takes 

potential time dependence into account by including time-varying covariates in the models.
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Based on the assumption of independence among subjects, given random effects, the 

observed-data likelihood for this model is

The proposed model is flexible enough to accommodate data with complicated multi-level 

structures. For example, for the binary case where the latent true health state could take one 

of two possible states, the transition probabilities of  are modeled as functions 

of subject-level random effect ui and covariate xij with community-level random parameters 

αc and βc for main effect and interaction with , respectively:

(4)

The community-level random parameters αc and βc could be modeled as follows:

(5)

where εc and υc are community-level random error terms, usually assumed to be mutually 

independent with each other and also with ui. Note that, if we combine equations (4) and (5), 

we get the unified mixed-effect transition model (6) which is exactly the one given in 

equation (2):

(6)

3. Bayesian Inference

The hierarchical characteristics of the proposed BMHMM model make a Bayesian approach 

attractive for estimation and inference. Altman [16] proposed a number of frequentist 

estimation methods for fitting MHMMs including one that uses the Monte Carlo EM 

algorithm (MCEM). Although the MCEM algorithm guarantees increments in the likelihood 

after each iteration and eventual convergence, several issues related to implementation arise 

as model complexity increases. First, the MCEM algorithm converges relatively slowly and 

hence may not be practical for dealing with complex models. Secondly, in some cases, the 

MCEM algorithm may get trapped in a local maximum without reaching the global 

maximum when dealing with mixture models. Thirdly, calculations of standard errors and 
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confidence intervals are not usually straightforward [18]. Fourthly, the computational 

burden increases exponentially when the number of integrals becomes large. In fact, it has 

been pointed out that it is almost impossible to fit models including nonlinear functions of 

more than two latent variables using the EM algorithm under currently available 

computational capacity [19]. The Bayesian approach eliminates the need for numerical 

integration and enables interval estimation as a direct product of the estimation routine. 

Simulation based methods, such as the Markov chain Monte Carlo approach [20] including 

the Metropolis-Hasting algorithm [21, 22] and the Gibbs sampler [23], make the Bayesian 

approach relatively easily adaptable to complex latent variable models that are more difficult 

to fit in the frequentist setting.

The collection of all precision parameters in BMHMM is (Ψ1,Ψ2) and that of all regression 

parameters is Θ=(a1, a2, a3, b1,b2, α1,α2, β, γ,δ). Following Garrett and Zeger [24], we 

assign a multivariate normal prior for Θ:

We also specify an Inverse-Wishart prior for the variance-covariance matrix of random 

effects with pre-specified hyper-parameters as follows:

where the dimension of Ψg is pg. When pg=1, Inv-Whishart prior distribution will reduce to 

Inv-Gamma distribution. In this case, the inverse of Ψg is assumed to follow a non-

informative gamma prior distribution with shape parameter 0.01 and rate parameter 0.01.

The joint posterior distribution for all parameters and latent variables is

The unobserved latent true states are directly sampled from their conditional posterior 

distributions. The parameters in the models may be updated using a Metropolis-step or 

directly sampled from their posterior distributions. All of those computations can be 

implemented using WinBUGS [25]. Convergence of the MCMC algorithm is examined by 

using a convergence diagnostic statistic proposed by Gelman and Rubin [26]. In this 

approach, two parallel Markov chains with different starting values are used, and 
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convergence is then said to be reached when the Gelman-Rubin statistic is close enough to 

1. More details on the MCMC algorithm are given in the Appendix A.

Bayesian Mixed hidden Markov models are mixture models, where both observations and 

transitions are generated from mixture distributions. As is the case with Bayesian mixture 

models, the so-called label switching problem arises [27]. The label switching problem is 

caused due to the fact that the likelihood of a Bayesian mixture model could be invariant to 

permutations of the values, “labels”, of the discrete latent variable, such as . This leads to 

non-identifiability of the labels of the latent discrete variable. Although various advanced 

strategies have been proposed for “relabeling” the MCMC output in an attempt to remove 

the label switching problem, we implement the most straightforward one called the 

Identifiability Constraints method which defines a restricted parameter space (such as 

, when  and  are binary outcomes.) 

to ensure that there exists a unique permutation for component-specific parameters [27]. 

Here, the parameters in the random effects in the misclassification probability are fixed to 

ensure the identifiability of the regression parameters, without relying on informative prior 

distributions.

4. Simulation Study

A series of simulation studies were conducted to study the performance of our proposed 

modeling approach. In this section, we illustrated the performance of the new approach from 

the following aspects: 1) model validation; 2) computational efficiency of the MCMC based 

approach compared to the EM-based algorithms; 3) gains in terms of low bias and decreased 

MSE compared to the HMM that ignores cluster level heterogeneity; and 4) gains in terms 

of high average posterior coverage probabilities (APC), low bias and decreased mean square 

error (MSE) from BMHMM compared to longitudinal logistic regression model that ignores 

the misclassification. In all these simulations, we focused on the binary case, where both the 

latent and the observed health states have two categories in the simulated data structure. 

Even though an absorbing state is defined in some applications as a special true state in 

which the latent process will never leave it once it enters (e.g., death), no absorbing state in 

the true states is assumed in this simulation in order to allow for more general settings.

4.1 Model Validation

We conducted a simulation study to verify that our MCMC approach works properly. In 

each simulation replication, 400 subjects with 6 yearly binary observations were generated 

based on the following set of models:

Prevalence Probability Model

(7)
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Transition Probability Model

(8)

Misclassification Probability Model—

(9)

where covariate X1ij for ith subject at time j is a centered time-varying continuous variable 

associated with the latent process and X2i is a time independent binary variable for ith 

subject related to the misclassification model.

The MCMC algorithm was run with two chains on each simulated data set. We used the true 

values with a small perturbation as initial values. In each chain, the first 10000 iterations 

were discarded as a burn-in, and samples from every 10th iteration in the next 10000 

iterations were used to calculate the posterior summaries of parameters of interest. The 

Gelman-Rubin statistic was used to check for convergence [26]. The trace plots of the 

posterior samples versus iteration were also used to indicate that our posterior samples are 

indeed obtained from converged posterior distributions. For dealing with the label switching 

problem, we assume that parameter b2>0 and b2+λ2>0 in order to satisfy the condition that 

. This condition is a reasonable constraint for our 

applications because we believe that the sensitivity should be greater than the false positive 

rate when using a well designed questionnaire.

Table I summarized the results obtained based on 100 replications from the simulation 

process described above. The true values of all parameters in the simulated model are listed 

in the last column of Table I. Average bias and nominal 95% coverage were reported for all 

model parameters. The results showed that estimated posterior means for parameters of 

interest were close to the true values on average (Bias range = (0, 0.19)). About half of the 

median estimates were above the true parameter values. In addition, coverage rates of the 

estimated 95% credible intervals (CI) containing the true parameter values were at least 

96%. Our simulation results confirmed that our estimation procedure performed well in 

terms of average bias and nominal coverage for both mean and variance parameters.

4.2 Computational Efficiency Compared to the EM-based Algorithms

To illustrate the computational efficiency of MCMC in the proposed BMHMM, we 

compared the computational time needed to fit the models specified via equations (7)-(9) by 

using our proposed MCMC algorithm and two widely used EM-based algorithms: MCEM 

and Stochastic EM (SEM). The MCMC algorithm procedure has been described in the 

subsection 4.1. Non-informative priors are used to ensure proper comparability with 

frequentist methods. For both EM algorithms, we first generated B samples of  and ui for 

each subject from their conditional distributions on the observed data and parameter 

estimates at the pth iteration via Gibbs sampling, and then approximated the expected value 
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of the log likelihood function by calculating the average log likelihood over the B simulated 

samples in the E step. In the M step, we employed the quasi-Newton algorithm to get the 

updated parameter estimates which numerically maximize the expected log likelihood 

function in the E step. We repeated the E-step and M-step iteratively until convergence. The 

convergence is deemed to be reached when the sum of absolute changes of current estimated 

parameter values from their previous ones is less than 0.1. The size of simulated samples B 

is 2000 for MCEM algorithm. We note that the stochastic EM procedure is identical to that 

of MCEM but with only one simulation (B=1) conducted at each iteration.

Table II summarizes the estimates of all parameters from three algorithms and the 

computational time for each algorithm. The point estimates from all three algorithms 

performed properly except for the fact that a few estimates from the EM based algorithms 

might have been trapped at local maxima (such as the estimate of α3 from the Stochastic EM 

algorithm). It took the MCMC algorithm less than one hour to reach the convergence, while 

several days were needed for the MCEM algorithm. The SEM algorithm converged much 

faster than MCEM algorithm and improved the computational speed by reducing the 

computing time to five hours, but was still significantly slower than our MCMC algorithm. 

All calculations were run using a dual core 2.83 GHz Intel processor and R package.

4.3 Gains from Accounting for the Cluster Level heterogeneity

To illustrate the gains from accounting for the cluster level heterogeneity, we fitted the 

traditional HMM using the data sets simulated from equations (7)-(9) in subsection 4.1. 

More specifically, we fitted models similar to equations (7)-(9) but without the random 

effect ui. Under the same inference procedure, we calculated the estimates of parameters 

from 100 simulated data sets and compared them with the same true values used in the 

subsection 4.1 in terms of average bias and coverage rates of the estimated 95% CI 

containing the true values (Table III). We found that the estimates of main effect parameters 

a1, a2 and a3 in both the prevalence and the transition probability models had a very poor 

coverage rate and large average bias (a1: coverage rates=0%, bias=0.70; a2: coverage 

rates=25%, bias=0.36; a3: coverage rates=8%, bias=0.63). The estimates of parameters 

associated with the covariate X1ij in both prevalence and transition probability models and 

parameters in the misclassification probability models were close to the true value on 

average (Bias range=(0,0.19)). The coverage rates of the estimated 95% CI for these 

parameters were at least 95%. The homogenous effect of the covariate X1ij assumption in 

equations (7) and (8) is perhaps the main reason for good performances in parameters 

associated with the covariate X1ij. Our simulation confirmed that ignoring the cluster level 

heterogeneity in HMM resulted in severe bias and poor coverage rates in the related 

parameter estimates.

4.4 Gains from Accounting for Outcome Misclassification

To illustrate the gains obtained from accounting for outcome misclassification, we first 

employed the simulation-based approach of Wang and Gelfand [28] to compare the average 

posterior coverage probabilities (APC) of symmetric intervals around the true value with 

varying interval lengths between the proposed modeling approach and the traditional 

longitudinal logistic model for a given sample size [28-30]. This generic Bayesian method 
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provides an insight about how well the posterior samples from each given model clustered 

around the true values for a given sample size. Figure S.1 in the Appendix B provides a flow 

chart summarizing the steps in calculating APC.

For computational expediency, we simplified the above simulation process based on 

equation (9) and assumed that the misclassification probabilities in BMHMM are fixed with 

relatively high specificity (specificity=0.9) and sensitivity (sensitivity=0.9) and don't depend 

on any covariates. In each simulation replication (total 1000 replications), 100 subjects with 

six yearly observations were generated based on the following set of BMHMM models:

Prevalence Probability Model

(10)

Transition Probability Model

(11)

Misclassification Probability Model

(12)

The corresponding traditional longitudinal logistic regression method that ignores the 

misclassification and is used to fit the simulated data from equations (10)-(12) is defined as 

follows:

(13)

To further simplify the comparison, we assumed that a1=a2=a=0.1, a1=a2=a=1.5 and 

u∼N(0,1) in (10) and (11). In other words, we assume that the intercept and covariate effects 

in the prevalence and transition models are identical. Note that if we assume that 

misclassification probabilities are such that 

and the transition effect α3=0, BMHMM (10)-(12) is identical to the logistic regression (13). 

The coefficients α and β of covariate Xij in the BMHMM (true model) and logistic 

regression model (misspecified model), respectively, measure the change of the log of odds 

per one unit change in covariate Xij, describing the association between the outcome and 

covariate Xij which is a continuous covariate simulated from standard normal distribution. 

We were interested in comparing the performance of effect estimations of parameters α and 

β associated with covariate Xij from both models.
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We computed the APC of a symmetric interval around the true value of the parameters 

associated with the covariate Xij (True value=1.5) for the BMHMM and longitudinal logistic 

regression model described above and compared them for various lengths of symmetric 

intervals. The details of APC computation and the comparison procedure employed in this 

study are described in Appendix B. Figure 1 depicts the trends of APC against a series of 

increasing lengths of interval around the true value for two models. Both coverage 

probabilities increase monotonically and become identical as the length of the interval 

around the true value increases. The BMHMM had better coverage probability than the 

traditional longitudinal logistic regression in small lengths of intervals around the true value. 

These results indicated that the posterior distribution of the covariate effect from BMHMM 

is more likely to be clustered around the true value compared to those from traditional 

longitudinal logistic regression that ignores outcome misclassification.

We also investigated the potential bias reduction in the estimation of the effect of covariate 

Xij achieved by accounting for the misclassification under the same simulation setting. The 

histogram in the top panel of Figure 2 shows that in BMHMM, the estimated coefficients 

from 1000 simulated data sets are clustered around the true value of 1.5, with average bias 

of 0.06. However, the longitudinal logistic regression model that ignores the 

misclassification resulted in a severe downward bias of 0.51.

In order to take the bias-variance tradeoff into account in our model comparisons, we further 

calculated the MSEs of the estimators of the effects of covariate Xij from both traditional 

longitudinal logistic regression and BMHMM. We conducted these comparisons under three 

sensitivity/specificity settings, which represent no misclassification, low misclassification 

and high misclassification, respectively (Table IV). In all settings, our BMHMM method 

gives smaller MSE than logistic regression when the covariate Xij is associated with the 

outcomes with effect size 1.5. The difference in MSE is particularly dramatic when the 

misclassification probability is high. When the covariate X is not associated with the 

outcomes, i.e. the effect size is set to zero, the MSE in our BMHMM is comparable to those 

from a traditional longitudinal logistic regression.

5. Application in The Southern California Children'S Health Study

The proposed BMHMM model is illustrated by modeling potentially misclassified outcome 

data on self-reported asthma status (from a parent or the child) in the Southern California 

Children's Health Study (CHS). The CHS is a longitudinal study initiated in 1993 and it 

originally enrolled 3600 children from 12 Southern California communities [31]. A baseline 

questionnaire was completed by the primary caregiver of each child, covering residential 

history, current residential characteristics, personal risk factors, respiratory symptoms, and 

usual activities. An abbreviated yearly follow-up questionnaire was used to collect data on 

chronic respiratory symptoms and diseases and time-dependent covariates. When a parent or 

legal guardian answered “yes” to the question “Has a doctor diagnosed your child with 

asthma?” in the baseline questionnaire, or the child answered “yes” to the question “Has a 

doctor ever said you had asthma?” in the follow-up annual questionnaire at time of 

pulmonary function (PF) testing, the child was classified as having asthma [32, 33]. The 

main aim of our analysis was to properly handle the complications in modeling self-reported 
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and questionnaire based information on physician diagnosed asthma which is observed with 

misclassification so that we can explore the risk factors for asthma prevalence, transition and 

misclassification processes in children simultaneously. Given that the CHS has a multi-level 

study design with measurements (and hence effects estimated) made at the temporal (over 

time), individual and community level, any proper modeling needs to be able handle the 

complex correlation structure due to the multi-level design. Hence, the BMHMM we have 

developed in Section 2, mainly motivated by the CHS, provides an ideal modeling approach 

for the CHS data structure. For purposes of illustration, the study cohort in this paper was 

restricted to 643 participants (308 girls and 335 boys) who have complete 4 year 

observations (1993-1996). In this analysis, self-reported asthma status was defined as a 

binary outcome; namely, “Non-asthma” or “Asthma”. The latent true asthma status was also 

defined as a binary outcome in the same manner. The “Asthma” state in the “unobserved” 

latent process was considered to be an absorbing state, i.e., once a child reported physician 

diagnosed asthma, he/she would stay in this latent asthmatic state afterwards. Note that this 

implicitly recognizes the conventional belief that a child remains asthmatic in the “true” 

sense (regardless of level of activity) once he/she is diagnosed with asthma, even though the 

“observed” asthma status may not necessarily be consistent about that. We also point out 

that our assumption of an “absorbing” state for the latent asthma status could be easily 

relaxed under our general modeling paradigm. Gender, age and race/ethnicity variables were 

default covariates in both the prevalence and transition probability models. Age was also 

forced into the misclassification model. In this application, residual within-subject 

correlation (above and beyond what could be accounted for via the multi-level random effect 

structure) was accounted for via a Markov first-order transition structure. A community-

level random effect was included to account for community level heterogeneity. In the 

model fitting process, we ran two chains of 100,000 iterations, discarded the first 50,000 

iterations for burn-in, and kept results from every 50th iteration. The convergence of the 

model is then assessed by the Gelman-Rubin statistic [26].

The effect estimates (along with 95% CI) of the covariates entering into the final BMHMM 

for child reported asthma are summarized in Table V. In the prevalence probability model, 

we found that severe wheezing, as an important symptom of asthma, was significantly 

associated with asthma prevalence. Children with severe wheezing at baseline were more 

likely to have asthma at the same time (Severe Wheezing: OR (95% CI) = 5.2(1.7, 15.0)).

Since we assumed that the true asthma status is an absorbing state, the transition probability 

model for asthma modeled the risk of developing asthma so that we can explore the risk 

factors associated with onset of physician diagnosed asthma. We found that Age, Family 

history of asthma and Allergy were risk factors significantly associated with asthma onset. 

More specifically, as age increased, children were less likely to become asthmatic, and for 

one additional year increase of age (from 10 years of age), the odds of new onset asthma 

decreases by 50% (Age: OR (95% CI) = 0.5 (0.2, 0.8)). During follow-up, children with 

allergy or family history of asthma were more likely to develop physician diagnosed asthma 

(Allergy: OR (95% CI) = 2.7 (1.2, 5.4); Family History of Asthma: OR (95% CI) = 2.7 (1.3, 

6.4)). For comparison, we also fit traditional longitudinal logistic regression models to the 

same data set. All the covariates in the final prevalence and transition probability models in 
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BMHMM were also included in the longitudinal logistic models. Both subject-level and 

community-level random effects were included for capturing the multi-level heterogeneity. 

In the logistic mixed effects regression models, neither Allergy nor Family History of 

Asthma were significantly associated with the onset of physician diagnosed asthma 

(Allergy: OR (95% CI)=4.4 (0.0, 2186.4); Family History of Asthma: OR (95% CI)= 1.9 

(0.0, 749.9).

Besides the findings for both prevalence and transition probability models above, the 

BMHMM provides us with new insight by detecting factors associated with 

misclassification of asthma status. The covariate selection process in the misclassification 

model was based on the Deviance Information Criterion (DIC) [34]. In the final 

misclassification model, we found that children with current wheezing but without true 

latent asthma were more likely to misclassify themselves as having asthma (OR (95% CI) = 

3.4 (1.5, 7.8)). Children from families with education above the high school level were more 

likely to provide accurate response when they indeed have physician diagnosed asthma, 

compared to those with high school education or less (OR (95% CI) = 3.8 (1.1, 13.1)). Table 

S.1, a complete version of Table V, in the Appendix C provides both reported and 

unreported parameter estimates as a reader's reference.

6. Summary and Discussion

In this article, we introduced a new latent variable approach called Bayesian Mixed Hidden 

Markov Model for modeling categorical outcomes with potential misclassification in the 

multi-level setting. The approach is useful when the outcome of interest is prone to being 

measured with error and the research interest is in simultaneously exploring the risk factors 

associated with the prevalence, transition and misclassification probabilities. We treat the 

true health state as a latent variable and we model the latent variables in both the baseline 

prevalence and transition probabilities during follow-up as functions of covariates and 

random effects. The strength of the proposed BMHMM lies in its ability to easily 

accommodate data from rich multi-level settings where several random effects are 

introduced to account for multiple levels of data aggregation, and allows for differential 

misclassification via regression of the observed health state on the latent true health state 

and covariates. We employ the fully Bayesian approach for improving computational 

efficiency. For illustrating the utility and benefits of this new method, we compared the 

average posterior coverage probabilities, bias and MSE associated with the estimation of 

parameters of interest from our BMHMM to those from the traditional longitudinal logistic 

regression method that ignores misclassification. This was done under various simulated 

misclassification settings. The proposed BMHMM was successfully applied to data from the 

CHS for modeling child-reported asthma that has been shown to be prone to 

misclassification. We found that parental education and children's wheezing status are two 

influential factors on the reliability of our observed outcomes.

In our application, we set the number of latent true health states as fixed and modeled self-

reported asthma as a binary variable. However, the proposed method is general enough to 

allow any fixed number of health states. One potential future research area on this topic 

would be looking into how one could let the data themselves determine the number of latent 
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classes. For example, one can put a prior distribution on the number of states and make the 

posterior inference based on the joint model. However, the computational intensity and the 

difficulty in interpretation of findings could prove to be big challenges. Another interesting 

research area is the implementation of forward-backward algorithm and Viterbi algorithm in 

the Bayesian inference so that we can have the ability to estimate the most possible latent 

true health state at any time and health state sequence for any subject. This potential 

research direction could provide medical practitioners with a useful predictive tool and may 

have a strong practical implication for clinical practice by allowing a more accurate 

prediction of children's asthma status instead of being solely dependent on questionnaire 

based response.

As is the case with all latent variable models, identifiability of regression parameters is 

always a concern. Our proposed models are mixture models and are fitted using a Bayesian 

MCMC algorithm. In such cases, one needs to deal with a well known identifiability 

problem, the “Label Switching Problem” [35]. In this paper, we used a relatively easy 

solution of putting Identifiability Constraints [36]. However, in some cases, it is hard to have 

adequate prior knowledge in setting reasonable parameter constraints. A more recent 

development in solving the label switching problem is the probabilistic relabeling algorithm 

proposed by Sperrin et al. [37], which has been successfully applied in simple mixture 

models. Unlike the deterministic relabeling algorithm, the probabilistic relabeling algorithm 

does not rely on a specified loss function, and allows the incorporation of uncertainty in the 

relabeling process. More research is needed in integrating such relatively more advanced 

algorithms into our Bayesian modeling process. In our application, the random effect in the 

misclassification model was dropped off for parsimony as we did not think it would be 

necessary for our data. Our rationale for including the random effects in the transition 

process is due to the multi-level characteristics of the data set. However, we don't have any 

priori reasons to consider the existence of cluster level heterogeneity during the 

misclassification model and prior knowledge to assign a reasonable informative prior 

distribution to the scale parameters in the misclassification in this application.
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Appendix A: Details of the MCMC Algorithm

We describe the details of the MCMC algorithm used to sample from the joint posterior 

distribution in Section 3. Each parameter vector was updated by conditioning on all other 

parameters via Gibbs sampling. For simplicity of development, we denote the regression 

parameters in the prevalence, transition and misclassification probability models 

byΘ1=(a1,α1), Θ2=(a2,a3,α2, β) and Θ3=(b1, b2, γ, δ), respectively. The latent true health 

state for subject i is sampled directly from their full conditional distributions:
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(A1)

(A2)

The full conditional distribution of Θ1 is

(A3)

The full conditional distribution of Θ2 is

(A4)

The full conditional distribution of Θ3 is

(A5)

Since the full conditional distributions in (A3)-(A5) are not available in closed form, the 

posterior draws proceed via Metropolis algorithm [21].

Finally, the full conditional distribution ofψg is

(A6)

where dg is the dimension of random vector Ug;

Appendix B: Details of the Simulation-Based APC Comparison Procedure

The simulation-based APC comparison procedure consists of the following steps:

Step 1: Simulate one data set from the proposed BMHMM. With sample size N, the 

covariates are simulated from appropriate distributions. Based on generated covariates and 

assigned true values of parameters, the outcomes are then generated.
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Step 2: Assign prior distributions to parameters and fit both the proposed BMHMM model 

and the traditional logistic regression model to the simulated data from Step 1 using the 

MCMC algorithm.

Step 3: After convergence is reached, the posterior samples for the coefficient of covariate Z 

from both BMHMM and logistic regression model are collected.

Step 4: For both BMHMM and the logistic regression model, the generated posterior 

samples from Step 3 are used to calculate the posterior coverage probability of a symmetric 

interval around the true value

for a series of increasing lengths of interval bi(i=1,⋯,I), where α is the coefficient of 

covariate Xij in the models. A Monte Carlo approximation to this probability is computed as 

the proportion of the posterior drawn samples that fall between true value-bi and true value

+bi, namely . In our simulation, we set I=16 and bi=(i

−1) 0.1.

Step 5: Go through Steps 1-4 for a large number times, say 1000 replications. Then, the 

average posterior coverage probability for each bi,

is approximated by the average of r's across 1000 simulated samples. Finally, the curves of 

Pi against bi are drawn for both BMHMM and logistic regression models.

Appendix C: Complete Version of Table V with Full List of Parameter 

Estimates

Table S.1
Full List of Parameter Estimates of Covariate for 
Children Reported Asthma in the CHS in BMHMM

Mean SD 2.5% 50% 97.5% G-R^

Prevalence probability:

Intercept -3.92 0.42 -4.81 -3.92 -3.13 1.00

Age 0.44 0.54 -0.63 0.45 1.47 1.00

Gender -0.07 0.46 -0.97 -0.06 0.87 1.00

Ethnicity*: hispanic -0.41 0.56 -1.56 -0.38 0.63 1.00

black 0.31 0.95 -1.74 0.34 1.98 1.00

asian -0.87 1.06 -3.03 -0.82 1.00 1.00

others+mixed -0.41 0.88 -2.23 -0.39 1.24 1.00
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Mean SD 2.5% 50% 97.5% G-R^

Medication Use 5.14 0.60 3.98 5.14 6.36 1.00

Allergy 0.90 0.47 -0.01 0.90 1.79 1.00

Severe Wheeze 1.65 0.56 0.52 1.67 2.71 1.00

FEV (log scale) -0.61 1.06 -2.68 -0.59 1.45 1.00

Transition probability:

Intercept -3.46 0.53 -4.50 -3.46 -2.36 1.00

Age -0.76 0.38 -1.59 -0.71 -0.19 1.01

Gender 0.04 0.40 -0.71 0.02 0.86 1.00

Ethnicity: hispanic 0.15 0.45 -0.79 0.17 0.99 1.00

black -0.23 1.00 -2.51 -0.09 1.46 1.00

asian 0.14 0.68 -1.33 0.18 1.32 1.00

others+mixed -0.72 1.05 -3.03 -0.64 1.06 1.00

Allergy 0.98 0.39 0.18 0.98 1.69 1.00

Current wheeze 0.83 0.47 -0.15 0.82 1.73 1.01

Family History of Asthma 1.01 0.40 0.23 1.00 1.85 1.00

Ozone from 10 am to 6 pm -0.03 0.02 -0.06 -0.03 0.00 1.00

Number of Sports -0.54 0.73 -2.16 -0.48 0.72 1.00

Ozone*Number of Sports 0.97 1.08 -1.50 1.06 2.83 1.00

Misclassification probability:

Intercept -4.31 0.42 -5.15 -4.31 -3.50 1.00

Latent True Asthma 5.34 0.71 4.01 5.32 6.77 1.00

Age -0.16 0.25 -0.69 -0.14 0.28 1.00

Gender 0.11 0.42 -0.67 0.10 0.92 1.00

AboveHS†

When Latent True Asthma=0 -0.16 0.46 -1.08 -0.16 0.74 1.00

When Latent True Asthma=1 1.33 0.64 0.04 1.33 2.57 1.00

Current Wheeze 1.21 0.42 0.38 1.21 2.06 1.00

Age*Latent True Asthma 0.28 0.32 -0.33 0.27 0.93 1.00

Variance of Town Level Radom Effect 0.28 0.10 0.15 0.25 0.54 1.00

^
G-R: Gelman-Rubin Statistics.

*
The reference group is Non-Hispanic White group.

†
AboveHS: An indicator variable of whether children come from families with education above the high school level.
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Figure S.1. 
Flow Chart of Simulation-Based Average Posterior Coverage Probability Method
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Figure 1. Average Posterior Coverage Probability Curve Comparison between BMHMM and 
Logistic Model
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Figure 2. 
Top panel: Histogram of estimated effect of covariate Z for BMHMM which account for 

misclassification (True value is 1.5). Bottom panel: Histogram of estimated effect of 

covariate Z for Logistic Regression which didn't account for misclassification
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Table II

Comparisons of Computational Efficiency MCMC and EM-based Algorithms with respect to Computational 

Times.

MCMC SEM MCEM True Value

Prevalence probability:

a1 -2.6 -1.9 -1.8 -2.2

α1 0.1 0.3 -0.2 0.1

Transition probability:

a2 -3.5 -3.3 -3.4 -3.6

a3 5.4 5.9 5.7 5.4

α2 0.2 -0.4 -0.1 0.1

α3 0.3 1.1 0.3 0.2

Misclassification probability:

b1 -4 -4.1 -4.2 -4.2

b2 5.3 5.3 5.5 5.5

λ1 -0.5 0.0 0.3 -0.1

λ2 2.4 1.8 2.2 2

σ1 2.5 1.0 1.9 2

Computation Time <1 hr 5 hr >2 Days

Stat Med. Author manuscript; available in PMC 2015 April 15.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zhang and Berhane Page 25

T
ab

le
 II

I
Si

m
ul

at
io

n 
R

es
ul

ts
 f

or
 B

ay
es

ia
n 

H
id

de
n 

M
ar

ko
v 

M
od

el
 w

it
ho

ut
 C

lu
st

er
-E

ff
ec

t

C
ov

er
ag

e 
# 

(T
ot

al
=1

00
)

A
ve

ra
ge

 M
ea

n
A

ve
ra

ge
 M

ed
ia

n
A

ve
ra

ge
 S

D
M

ea
n 

B
ia

s
M

ed
ia

n 
B

ia
s

T
ru

e 
V

al
ue

P
re

va
le

nc
e 

pr
ob

ab
ili

ty
:

a 1
0

-1
.5

0
-1

.5
0

0.
13

0.
70

0.
70

-2
.2

α
1

96
0.

06
0.

06
0.

13
0.

04
0.

04
0.

1

T
ra

ns
it

io
n 

pr
ob

ab
ili

ty
:

a 2
25

-3
.2

4
-3

.2
4

0.
13

0.
36

0.
36

-3
.6

a 3
8

6.
03

6.
03

0.
23

0.
63

0.
63

5.
4

α
2

97
0.

04
0.

04
0.

15
0.

06
0.

06
0.

1

α
3

10
0

0.
14

0.
14

0.
23

0.
06

0.
06

0.
2

M
is

cl
as

si
fi

ca
ti

on
 p

ro
ba

bi
lit

y:

b 1
95

-4
.0

6
-4

.0
5

0.
17

0.
14

0.
15

-4
.2

b 2
95

5.
32

5.
32

0.
19

0.
18

0.
18

5.
5

λ 1
10

0
-0

.0
8

-0
.0

8
0.

24
0.

02
0.

02
-0

.1

λ 2
98

1.
81

1.
81

0.
32

0.
19

0.
19

2

Stat Med. Author manuscript; available in PMC 2015 April 15.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zhang and Berhane Page 26

Table IV
Mean Square Error for the Estimation of the Effect of Covariate X in the Simulation 
Study with Various Misclassification Settings

Mean Square Error

Misclassification Settings* True Effect of 
Covariate Xij

Logistic Regression (Frequentist)** Logistic Regression (Bayesian) BMHMM

1 1.5 0.05 0.04 0.04

2 0.29 0.28 0.08

3 1.15 1.12 0.23

1 0 0.02 0.02 0.02

2 0.02 0.02 0.03

3 0.02 0.02 0.01

*
1: Sensitivity=1.0, Specificity=1.0; 2: Sensitivity=0.9, Specificity=0.9; 3: Sensitivity=0.8, Specificity=0.6; These three sensitivity/specificity 

settings represent no misclassification, low misclassification and high misclassification, respectively.

**
glmer function in lme4 package in R program is used for this analysis.

Stat Med. Author manuscript; available in PMC 2015 April 15.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zhang and Berhane Page 27

Table V
Parameter Estimates of Covariate for Children Reported Asthma in the CHS in 

BMHMM^

Mean (95% CI) OR (95% CI)

Prevalence probability:

Age 0.44 (-0.63,1.47) 1.55 (0.53,4.35)

Allergy 0.9 (-0.01,1.79) 2.46 (0.99,5.99)

Severe Wheeze 1.65 (0.52,2.71)* 5.21 (1.68,15.03)*

Transition probability:

Age -0.76 (-1.59,-0.19)* 0.47 (0.20,0.83)*

Allergy 0.98 (0.18,1.69)* 2.66 (1.20,5.42)*

Current Wheeze 0.83 (-0.15,1.73) 2.29 (0.86,5.64)

Family History of Asthma 1.01 (0.23,1.85)* 2.75 (1.26,6.36)*

Misclassification probability:

AboveHS†

When Latent True Asthma=0 -0.16 (-1.08,0.74) 0.85 (0.34,2.10)

When Latent True Asthma=1 1.33 (0.04,2.57)* 3.78 (1.04,13.07)*

Current Wheeze 1.21 (0.38,2.06)* 3.35 (1.46,7.85)*

^
In the prevalence and transition probability models, we also adjusted for gender, and race/ethnicity. Medication use and Forced Expiratory 

Volume (FEV) were adjusted in prevalence models. Transition models were also adjusted for Ozone, number of sports and their interaction. In the 
misclassification probability models, we also adjusted for age and gender. Latent true asthma variable and its interaction with age were included in 
the misclassification model. Town-level random effect is included in the transition process.

†
AboveHS: An indicator variable of whether children come from families with education above the high school level.
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