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ABSTRACT

Motivation: Mapping of high-throughput sequencing data and other

bulk sequence comparison applications have motivated a search for

high-efficiency sequence alignment algorithms. The bit-parallel ap-

proach represents individual cells in an alignment scoring matrix as

bits in computer words and emulates the calculation of scores by a

series of logic operations composed of AND, OR, XOR, complement,

shift and addition. Bit-parallelism has been successfully applied to the

longest common subsequence (LCS) and edit-distance problems,

producing fast algorithms in practice.

Results: We have developed BitPAl, a bit-parallel algorithm for gen-

eral, integer-scoring global alignment. Integer-scoring schemes assign

integer weights for match, mismatch and insertion/deletion. The BitPAl

method uses structural properties in the relationship between adjacent

scores in the scoring matrix to construct classes of efficient algo-

rithms, each designed for a particular set of weights. In timed tests,

we show that BitPAl runs 7–25 times faster than a standard iterative

algorithm.

Availability and implementation: Source code is freely available for

download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is imple-

mented in C and runs on all major operating systems.

Contact: jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Sequence alignment algorithms are critical tools in the analysis of
biological sequence data including DNA, RNA and protein se-

quences. The demands placed on computational resources by

high-throughput experiments require new, more efficient meth-

odologies. While the standard algorithms of Smith and

Waterman (1981) and Needleman and Wunch (1970) calculate
the score in each cell of the alignment scoring matrix sequen-

tially, a newer technique called bit-parallelism partially over-

comes score dependencies so that scores can be calculated in

parallel to achieve much higher efficiencies.
Bit-parallel algorithms have been developed for exact and ap-

proximate string matching problems. Early examples include the

algorithms of Baeza-Yates and Gonnet (1992), which finds exact
matches to a simple string pattern, and Wu and Manber (1992),

which finds approximate matches to a string pattern or a regular

expression, where the number of differences between the pattern

and the text is at most k (counting single character substitutions
and single character insertions and deletions or indels). The latter

is implemented as the Unix command agrep. Additional k-differ-
ences examples include (Wu et al., 1996), which finds matches to

‘limited expressions’, i.e. regular expressions without Kleene clos-

ure, (Myers, 1999), which finds matches to simple string patterns
and emulates the dynamic programming solution used in align-

ment, and (Navarro, 2004), which allows arbitrary integer
weights for substitution of each pair of characters, insertion of

each character and deletion of each character, and finds occur-

rences of regular expressions where the sum of the edit weights is
at most k. In most k-differences algorithms, the complexity (and

computing time) increases with increasing k.
Bit-parallel methods have been successfully applied to the

longest common subsequence (LCS) problem (Allison and Dix,
1986; Crochemore et al., 2001; Hyyr€o, 2004), and to unit-cost

edit-distance (Hyyr€o and Navarro, 2005; Hyyr €o et al., 2005) by
modifications of Myers’s method (1999). These algorithms

compute the alignment score, de-linking that computation

from the traceback, which produces the final alignment. In the
LCS scoring matrix, scores are monotonically non-decreasing in

the rows and columns, and bit-parallel implementations use bits
to represent the cells where an increase occurs. In edit-distance

scoring, adjacent scores can differ by at most one, and the binary

representation stores the locations of (two of the three) possible
differences, +1, –1 and zero. These algorithms are ad hoc in their

approach, relying on specific properties of the underlying
problems, making it difficult to directly adapt them to other

alignment scoring schemes.
Below, we present a bit-parallel method for similarity and dis-

tance based global alignment using general integer-scoring

(Benson et al., 2013), allowing arbitrary integer weights for
match, mismatch and indel. Other approaches have been sug-

gested by Wu and Manber (1992) and Bergeron and Hamel
(2002). The method of Navarro (2004) is more flexible in scoring

and applies to both simple patterns and regular expressions, but

is much slower than our method in practice. Our contribution is
based on an observation of the regularity in the relationship be-

tween adjacent scores in the scoring matrix (Section 2.1) and the
design of an efficient series of bit operations to exploit that

regularity (Section 3). Because every distinct choice of weights

requires a different program, we show how to construct a class of
efficient algorithms, each designed for a particular set of

weights, and provide an online C code generator for users.*To whom correspondence should be addressed.
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The complexity of our algorithms depends on the weights, not

the ultimate score of the alignment. Our method works for gen-

eral alphabets, but our interest derives from frequent use of

DNA alignment when analyzing high-throughput sequencing

data to detect genetic variation.

2 METHODS

The problem to be solved is stated in terms of similarity scoring, but the

technique applies to distance scoring as well.

PROBLEM. Given two sequences X and Y, of length n and m respectively,

and a similarity scoring function S defined by three integer weights M

(match), I (mismatch) and G (indel or gap), calculate the global alignment

similarity score for X and Y using logic and addition operations on computer

words of length w.

We are interested in two measures of efficiency for the algorithms. The

first is standard time complexity and the second is a ratio of the word size,

w, and the count, p, of logic and addition operations required to process

w consecutive cells in the alignment scoring matrix. The efficiency,

e=w=p, is the average number of cells computed per operation. For ex-

ample, when using 64 bit words, LCS has e=64=4=16 [P=4 operations

per word (Hyyr€o, 2004)], and edit distance has e=64=15 � 4:2 [an im-

provement from 64/16 in the method of Hyyr €o et al. (2005) and Myers

(1999); see Supplementary Information for details]. As P is

independent of w, if the word size doubles, e doubles too. Note that we

are counting only logic and addition operations, not storage of values in

program variables. Adding store operations would be more accurate but

the number of these operations is compiler and optimization level

specific.

We require that the alignment method be global or semi-global. That

is, we do not restrict the initializations in the first row or column of the

alignment scoring matrix or where in the last row or column the align-

ment score is obtained. Typical initializations require (i) a gap weight to

be added successively to every cell (global alignment from the beginning

of a sequence), and (ii) a zero in every cell (semi-global alignment where

an initial gap has no penalty). We assume that match scores are positive

or zero, M � 0, mismatch and gap scores are negative, I;G50 and

that the use of mismatch is possible, meaning that its penalty is no

worse than the penalty for two adjacent gaps, one in each sequence,

I � 2G. While other weightings are possible, they either reduce to simpler

problems from a bit-parallel perspective (e.g. LCS has

G=0; I=�1; M=1) or require more complicated structures than de-

tailed here (e.g. protein alignment using PAM or BLOSUM style amino

acid substitution tables).

2.1 Function tables

Let S be a recursively-defined, global similarity scoring function for two

sequences X and Y computed in an alignment scoring matrix:

S½i; j�=max

S½i� 1; j� 1�+M if Xi=Yj

S½i� 1; j� 1�+I if Xi 6¼ Yj

S½i� 1; j�+G delete Xi

S½i; j� 1�+G delete Yj

8>>>>><
>>>>>:

Instead of actual values of S, we store only the differences, "V, between a

cell and the cell above, and "H, between a cell and the cell to its left:

"V½i; j�=S½i; j� � S½i� 1; j�

"H½i; j�=S½i; j� � S½i; j� 1�:

It is an easy exercise to prove that the minimum and maximum values

for "V and "H are G and M–G, respectively. Lemma 2.1 gives the

recursive definitions for "V and "H in terms of M, I and G.

LEMMA 2.1. The values for "V are as shown below and the values for "H

are computed similarly. That is, "H½i; j� in matrix S is equal to V½j; i� in the

transpose of matrix S.

"V½i; j�
8i;j�1

=

M� "H½i� 1; j� Match; i:e:: if Xi=Yj

I� "H½i� 1; j� Mismatch; i:e:: if

I� G �
"H½i� 1; j�

"V½i; j� 1�

(

G Indel from above; i:e:: if

"H½i� 1; j� �
I� G

"V½i; j� 1�

(

"V½i; j� 1�+

G� "H½i� 1; j� Indel from left; i:e:: if

"V½i; j� 1� �
I� G

"H½i� 1; j�

(

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
V½0; j�
8j�1

=G orV½0; j�
8j�1

=0

 !

PROOF. By substitution in the recursive formula for S. w

The recursion for "V is summarized in the Function Table in Figure 1.

Note the value I –G, which frequently occurs in the recursion, and the

relation "H="V. They set the boundaries for the marked zones in

the table. These zones comprise ("V;"H) pairs, which determine how

the best score of a cell in S is obtained in the absence of a match, either as

an indel from the left (Zones A and B), a mismatch (Zone C) or an indel

from above (Zone D). Borders between zones, indicated by dotted lines,

yield ties for the best score. Figure 2 shows how the relative size of the

Zones changes with changes in I and G.

3 ALGORITHM

DEFINITIONS. min=G; max=M� G; mid=I� G, low 2 fmin;
. . . ;midg and high 2 fmid+1; . . . ;maxg.

For the illustrations in this article, we use the scoring weights:

M=2; I=� 3; G=� 5;

which yield

min=� 5;max=7;mid=2;

low 2 f�5; . . . ; 2g;high 2 f3; . . . ; 7g:

The "V Function Table for these weights is shown in Figure 3.

3167

Bit-parallel, general integer-scoring alignment

,
,
(
)
(
;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu507/-/DC1
)
Since 
1
2
,
Longest Common Subsequence
,
--
,
--
,
,
paper


The algorithm proceeds row-by-row through the alignment

matrix. For each row, the input is:

� the "H values from the preceding row,

� the leftmost "V value in the current row and

� the match positions in the current row.

The computation first determines all the remaining "V values for

the current row and then, using those, determines the "H values

for the current row. A central concept is a run of "Hmin. This is a

set of consecutive positions in the preceding row for which the

values of "H all equal min (in Fig. 4, positions for which

"H=� 5).

The algorithm has the following steps (see Fig. 4), which

follow from Lemma 2.1.

1. Find the locations where "V=max (highest value in Zone
A):

Step 1A: because of a match between the characters in

Sequence X and Sequence Y. These occur at match loca-
tions where "H=min:

Step 1B: in any run of "Hmin to the right of a match

location in the run.

2. Find the locations where "V=i,fori 2 fmid+1; . . . ;max
�1g (the remaining values in Zone A). These are computed

in decreasing order of i. For each i, there are two categories,
those locations:

Step 2A: because of a match or a larger preceding "V
value. These also depend on the "H value.

Step 2B: because of the value i being carried through a run

of "Hmin:

3. Find the locations where "V=i, for i 2 fmin+1; . . . ;midg
(the values in Zones B and C). These are computed separately

for each value i and depend on:

Step 3A: a match or the preceding "V value and the "H
value (Zone B).

Step 3B: the "H value alone (Zone C).

4. Find the locations where "V=min (the values in Zone

D). These are:

Step 4: all the remaining locations with undetermined "V
values.

5. Find the current row locations where the new "H=i for:

Step 5A: i4min.

Step 5B: i=min.

We describe the simplest case where the length of the first
sequence is less than the computer word size w. Longer sequences

can be handled in ‘chunks’, where each chunk has size w. Match

Fig. 2. Relative size of Zones as I (mismatch penalty) decreases from 2G (twice gap penalty) where there is no preference for mismatches, to zero, where

mismatches are free and gaps are introduced only to obtain matches

Fig. 1. Zones in the Function Table for "V. Zone A: all values are in

Vhigh 2 fI� G+1; . . . ;M� Gg; Zone B: all values are in

Vlow 2 fG; . . . ; I� Gg; Zone C: all values are in Vlow and values depend

only on "H; Zone D: all values are G; Last row: values also apply when

there is a match;. First column: identity column for values in Vhigh
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positions for every row are computed before the calculation of

the row values as is also done for the LCS and edit-distance

problems. Details are given at the end.
We present two algorithms, BitPAl and BitPAl Packed. They

differ in the data structures used to hold and process the "H and

"V values and their computation of Steps 3, 4 and 5. Correctness

theorems for the various steps are presented in Supplementary

Information.

3.1 BitPAl

Data Structure for BitPAl One computer word (sometimes
called a vector) represents each possible value of "H and "V.

Bit i in a word refers to column i in the alignment scoring matrix.

With the weights used for illustration, there are 13 values

fG; . . . ;M� Gg=f�5;�4; . . . ; 6; 7g, and therefore 13 words

each, for "H and "V.

Computing the " values

To compute its output values, each cell needs to know its "H and

"V input values. As in standard left to right processing, the

output "V value from one cell becomes the input value for the

cell to its right. All the input "H values are in the preceding row.

Zone A Inspection of the Function Table (Fig. 3) reveals

that the output values in Zone A are interdependent and re-

quire computing in order from high to low. For example,

output "V=5 can be obtained in two ways from higher "V

input values, ð"V=7;"H=� 3Þ and ð"V=6;"H=� 4Þ. "V=

5 cannot be obtained from lower "V input values.

The leftmost column in the table, "Hmin (–5 in the example), is

an identity column. This means that for runs of "Hmin, an input

"V value yields the identical "V ouput for every location in the

run to the right of the input. For example, if the input "V=5 for

the leftmost position in a run, then the output "V for every

position in the run is also 5 (see Fig. 4 steps 1B, 2B for 4).

Carrying an input value through a run of "Hmin can be accom-

plished with an addition (+) as seen below. Addition is similarly

used to solve left-to-right dependency problems in LCS and edit-

distance bit-parallel algorithms.
Note in the bottom row of the Function Table that a match

acts as an input "Vmax (7 in the example), so we will treat the

match positions as having input "Vmax.
Steps 1A and 1B: The locations where "V=max, stored in the

"Vmax vector, are calculated with four operations (Fig. 5). The

locations are shifted one position to the right for input to sub-

sequent calculations. The operations are—(i) an AND to find max

because of matches; (ii) an ADDITION (+) to carry max through

runs of "Hmin and into the position following a run (because the

result will be shifted). This causes erroneous internal bit flips

if there are multiple matches in the same run; (iii) an XOR with

"Hmin to complement the bits within the "Hmin runs and (iv) an

XOR with the initial "Vmax to correct any erroneous bits and

finish the shift by removing the locations set with matches.

Fig. 4. An example of the calculation of "Vcurr and "Hcurr values. "Hprev values come from the previous row. The match locations and the leftmost

"Vcurr value are known. The "Vcurr value for a particular column is found using the table in Figure 3. The input is the "Hprev value in the same column

and the "Vcurr value in the column to the left, except, when there is a match, the value in the column to the left is treated as a max and, starting with Step

3, if the value in the column to the left is not assigned, it is treated as mid. "Hprev
yis a modification of "Hprev in which all Match positions have been

changed to max and all values less than mid have been changed to mid. The "Hcurr value for a particular column is found using the transpose of the

table in Figure 3. The input is the "Hprev
yin the same column and the "Vcurr value in the column to the left

Fig. 3. The "V Function Table for the weightsM=2; I=� 3; G=� 5:

Note that "Vhigh;"Hhigh 2 3; 7½ �; "Vlow;"Hlow 2 �5; 2½ �;

"Vmin="Hmin=� 5; "Vmax="Hmax=7. The "H Function Table is

the transpose of this table, i.e. the labels "H and "V are swapped
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Steps 2A and 2B: Remaining "Vhigh vectors are calculated, in

descending order from "V=max� 1 to "V=mid+1 because of

the dependencies as discussed above. The operations are: (i) find-

ing the locations because of a preceding higher "V value using

AND of appropriate ð"V;"HÞ pairs (which intersect along a

common diagonal in the Function Table) and collecting them

together with ORs; (ii) shifting the initial vectors right one

position for subsequent calculations; (iii) carrying through runs

of "Hmin computed in two operations, an ADDITION (+) as

before and an XOR with "Hmin to complement the bits within

the "Hmin runs (Fig. 6). Before the addition, those "Hmin pos-

itions that have already output a "Vmax value must be removed.

Steps 3A and 3B. (Fig. 7). At this point, all the "Vhigh input

values for Zone B have been computed (they are the outputs

from Zone A), remaining output values are all "Vlow. The oper-

ations are: (i) the AND of appropriate ð"V;"HÞ pairs, which
intersect along a common diagonal (Zone B); (ii) the AND of

the appropriate "H vector and all positions without a "Vhigh

output (Zone C); (iii) an OR combination of the preceding two

results and (iv) a shift of the locations one position to the right

for subsequent calculations.

Step 4: Zone D has only one output value, "Vmin. It is as-

signed to all remaining locations as well as the zero location if

gap penalty in the first column is being used.
Step 5: After the "V values are computed, all inputs are avail-

able and the new"H vectors for the current row can be computed

immediately. The Function Table for the new "H is the transpose

of the table for"V, i.e. the input labels are swapped. Each new"H

vector is obtained by the AND of appropriate ð"V;"HÞ input
pairs, which intersect along a common diagonal, collected to-

gether with ORs. Before this can proceed, though, the Match pos-

itionsmust be added to the previous row’s"Hmax vector (with OR)
and removed from all other previous row "H vectors. Also, all

previous row "Hlow locations must be converted to "Hmid.

3.2 BitPAl Packed

Data structure for BitPAl packed The number of logic oper-
ations in BitPAl scales linearly with the size of the function table.

Many of these are the AND and OR operations to compute

identical values along Zone B diagonals. These calculations can

be performed more efficiently with a new representation. The

idea is to store the input "H and "V values in such a way that

they can all be added simultaneously to give the appropriate

output values.
Rather than using bit-vectors to represent single "H or "V

values, we use them to represent binary digits (Fig. 8). We

map the "V values fmin; . . . ;maxg one-to-one onto the

positive values f0; . . . ;max�ming and store them in the vectors

"Vp0;"Vp1;"Vp2; etc. where pi is the place holder for the ith

power of 2. The mapping for "H is onto negative numbers, i.e.

fmin; . . . ;maxg are mapped to f0; . . . ;�ðmax�minÞg

and stored in vectors "Hp0;"Hp1;"Hp2; etc. After addition,

the sums will fall in f�ðmax�minÞ; . . . ;max�ming, so we

use dlog2ð2ðmax�minÞ+1Þe bit-vectors for "H and "V. For

our example, the "V values are mapped to f0; . . . ; 12g, the "H
values are mapped to f0; . . . ;�12g and the sums fall within

f�12; . . . ; 12g, so we use five vectors each for "H and "V.
BitPAl Packed does not change the computation of the "V

values in Zone A. The "H values are always maintained in the

packed representation, but some are unpacked into the original

representation for the Zone A computations. Once Steps 1 and 2

are completed, all locations without a "V value are set to mid, all

match locations are set to max, and the "V values are converted

into the packed representation.
Steps 3 and 4 are computed by ‘adding’ together the two sets

of packed vectors using a series of AND, OR and XOR operations

(Fig. 8) to produce the final encoded values for "V. Any negative

values (sign bit set) are converted to min (Zone D). For Step 5,

the new "H values are determined with a second addition.

Because all input "H in the range ½min;mid� give the same

result, we first re-encode that range to mid.

Packing and unpacking Packing "V vectors involves identifying
the locations where the binary representation of the encoded

Fig. 5. Finding "Vmax. Each line represents a computer word with low

order bit, corresponding to the first position in a sequence, on the left. 1s

are shown explicitly, 0s are shown only to fill runs of "Hmin and the

first position to the right of each run. Symbol44 indicates that the final

"Vmax values are shifted to the right one position. Bits erroneously set by

the ADDITION (+) are shown in bold. Sample code is from the com-

plete listing in Supplementary Information

Fig. 6. Carry through runs of "Hmin for remaining values in "Vhigh:

Symbol X marks a single position between runs which cannot be 1 in

the initial shifted values
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values all have a specific bit set. For example, the binary repre-

sentations for 1, 3, 5, 7, 9 and 11 all have the bit representing 20

set, and the binary representations for 2, 3, 6, 7, 10 and 11 all

have the bit representing 21 set. Effectively then,

"Vp0="V1 OR"V3 OR"V5 OR"V7 OR"V9 OR"V11

"Vp1="V2 OR"V3 OR"V6 OR"V7 OR"V10 OR"V11

etc:

where "Vi is the vector of locations with encoded value i.

However, as can be seen for these two examples, there are

common terms ("V3;"V7;"V11), so combining the terms as

above leads to inefficiencies.

Unpacking the "H vectors involves identifying locations of

specific encoded values from the binary representation vectors.

For example, the "H�1 locations are those (using two’s comple-

ment, –1=11111) that have all bits set and "H�2 locations are

those (using two’s complement, –2=11110) that have all but the

lowest bit set. Again, effectively

"H�1="Hp0 &"Hp1 &"Hp2 &"Hp3 &"Hp4

"H�2=�"Hp0 &"Hp1 &"Hp2 &"Hp3 &"Hp4

etc:

Again, there are common terms that can be combined to avoid

inefficiencies. For both packing and unpacking, we use a binary

tree structure in the code generator to guide creation of tempor-

ary intermediate vectors so that operations are not duplicated.

3.3 Other tasks

Determining matches As a preprocessing step, the position of
the matches are determined for each character � in the se-

quence alphabet. A bit vector Match� records those pos-

itions in sequence X where � occurs. Filling all the Match�
simultaneously can be accomplished efficiently in a single pass

through X.

Decoding the alignment score The score in the last column of

the last row of the alignment scoring matrix can be obtained by

calculating the score in the zero column (=m � G) and then

adding the number of 1 bits in each of the "H vectors multiplied

by the value of the vector. Using the method described in

(Kernighan and Ritchie, 1988), this takes Oðn+M� 2GÞ oper-

ations with a small constant:

S½m; n�=m � G+
XM�G
i=G

bitsi � i

where bitsi is the number of 1 bits set in "Hi.

Fig. 9. Comparison of the number of operations for BitPAl and BitPAl

packed for different alignment weights (M, I, G)

Fig. 8. Top: The BitPAl Packed mapping of "H and "V values for

the parameter set M=2; I=� 3;G=� 5. Middle: conversion from the

13 "Vi vectors at left to the five ‘packed’ vectors at right. Bottom: ex-

ample code for adding the packed representation

Fig. 7. Code for Zones B, C and D
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For BitPAl Packed, the alignment score can similarly be com-

puted in Oðn 	 kÞ operations

S½m; n�=m � G+
Xk�1
i=0

pbitsi � 2
i:

where pbitsi is the number of 1 bits set in "Hpi, and k is the

number of bit vectors in the packed representation.
Several straightforward methods can be used to efficiently find

all scores in the last row or last column.

3.4 Complexity and number of operations

The time complexity of our algorithms is Oðznm=wÞ where z de-
pends on the version. For BitPAl standard, z represents the

combined size of Zones A, B and C (the latter reduced to a

single row as in Fig. 3) in the Function Table. This in turn de-

pends on the alignment weights M, I and G:

z=
ðM� 2G+1Þ2 � ðI� 2GÞ2

2

and the constant hidden in the big O notation is �4 (dominated

by two operations per cell of Zones A, B and C for "V and

separately for "H). For the example weights used in this article,

the number of logic and addition operations, p, per word is 265,

yielding an efficiency of 64=265 � 0:24 cells per operation with

64 bit words.

For the packed version, z represents the size of Zone A, the

number of distinct "H and "V values for the packing and un-

packing steps, and the binary log of the number of distinct values

for the addition steps:

z=ðM� IÞ2+ðM� 2G+1Þ+log2ðM� 2G+1Þ:

Unlike the standard version, the term constants are not uni-

form (�2, 2 and 12, respectively). For the example weights used

in this article, the number of logic and addition operations, p, per
word is 166, yielding an efficiency of 64=166 � 0:38 cells per

operation for 64 bit words. See Figure 9 for a comparison of

the number of operations required by the two algorithms for

different alignment weights.

Implementation

Each unique set of weights M, I and G requires a uniquely

tailored program. To simplify usage, we have constructed a

Web site http://lobstah.bu.edu/BitPAl/BitPAl.html that gener-
ates C source code for download. The Web site takes as input

the user’s alignment weights, the algorithm version (standard or

packed), whether it will be used for short sequences (single word)

or long sequences (multiple word) and where the final score

should be found.

4 EXPERIMENTAL RESULTS

We compared running times for several bit-parallel algorithms

using different alignment weights: (i) BitPal, (ii) BitPAl Packed,

(iii) NW—the classical Needleman and Wunch (1970) dynamic

programming alignment algorithm, (iv) LCS—the bit-parallel
LCS algorithm of Hyyr€o (2004), (v) ED—our improved bit-par-

allel, unit-cost edit-distance algorithm from the method of Hyyr €o

et al. (2005) and Myers (1999), (vi) WM—the unit-cost (Wu and

Manber, 1992) approximate pattern matching algorithm and

(vii) N—the (Navarro, 2004) general integer scoring, approxi-

mate regular expression matching algorithm. We implemented

BitPAl, BitPAl Packed, NW, LCS, ED and WM. N was gra-
ciously provided by Gonzalo Navarro.

For all experiments, we used human DNA and ran 100 pattern

sequences against 250000 text sequences for a total of 25 million
alignments. (Pattern and text distinctions are irrelevant for

BitPAl, BitPAl Packed, NW, LCS and ED.) All sequences

Fig. 10. Running times. Each experiment involved 25 million alignments. For BitPAl and BitPAl Packed, alignment weights (M, I, G) are shown in

parenthesis. All times are averages of three runs. Left: unit-cost BitPAl, unit-cost WM, LCS and ED. k is the maximum number of errors allowed for

WM. k is not a parameter for the other algorithms and their times are shown as horizontal lines. LCS uses 4 bit operations per w cells, ED uses 15 bit

operations, BitPAl (0, –1, –1) uses 23 bit operations. For k=7, the times for BitPal andWM are nearly the same. By k=15, BitPAl runs approximately

twice as fast. Results for N are not shown on the graph. It was 118–304 times slower than BitPAl (0, –1, –1) even when optimal parameters were chosen.

Right: variants of BitPAl and NW (shown as a horizontal line). For BitPAl, time is approximately linearly proportional to one dimension of the function

table. For BitPAl packed, time is approximately linearly proportional to the area of the function tables. BitPAl packed (2, –3, –5) is �7.1 times faster

than NW and BitPAl (0, –1, –1) is �24.9 times faster
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were 63 characters long. For WM, we varied k, the maximum
number of allowed errors, from 1 to 15. For N, we varied k from

1 to 12. All programs were compiled with GCC using optimiza-
tion level O3 and were run on an Intel Core 2 Duo E8400
3.0GHz CPU running Ubuntu Linux 12.10. Results are shown

in Figure 10 and Table 1.

5 DISCUSSION

The BitPAl and BitPAl packed algorithms outlined above can be

extended in several ways. Computers now in common usage have
special 128 bit SIMD registers (Single Instruction, Multiple
Data). Using these, with the addition of several bookkeeping
operations, would essentially double the efficiency and the

speed of computation. Another extension derives from the unex-
ploited parallelism of the operations. There are no dependencies
on prior computations after the "V vectors in Zone A are com-

puted. This means that all the computations in Zones B, C and D
for "V and all the subsequent computations for "H can be done
simultaneously, an ideal situation for the use of general purpose

graphical processing units (GPGPU).
Another possible extension expands the types of scoring

schemes allowed. BLOSUM type scoring, which is useful for

protein alignments, eliminates match and mismatch scoring
and instead assigns different substitution weights to each pair
of characters. Affine-gap scoring replaces single character indel
scoring with gap initiation and gap extension weights.

Extension to local alignment is also possible. This is a different
class of problem in that the best final alignment score can occur
in any cell of the alignment matrix. If all the cells have to be

examined, then the time complexity shifts back to O(nm). Hyyr €o
and Navarro (2006) had some success with this problem using
unit cost weights and identifying columns in which the score of at

least one cell exceeds a predefined threshold k.

The BitPAl methods have already been used to accelerate soft-

ware for detecting tandem repeat variants in high-throughput

sequencing data (Gelfand et al., 2014) and are well-suited to

other DNA sequence comparison tasks that involve computing

many alignments.
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Table 1. Table of run times in minutes

Algorithm Parameters (M, I, G)

0, –1, –1 2, –3, 5 3, –4, –6 4, –5, –9 4, –7, –11

BitPAl 0.284000 1.903778 2.702000 5.408722 8.517500

BitPAl

Packed

0.390500 0.999945 1.126500 1.475222 1.755500

Note. Shown are averages over three trials for 25 million alignments. Needleman–

Wunsch has the same runtime for all parameters, 7.056056min.
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