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ABSTRACT

Summary: Non-targeted metabolomics technologies often yield data

in which abundance for any given metabolite is observed and quanti-

fied for some samples and reported as missing for other samples.

Apparent missingness can be due to true absence of the metabolite

in the sample or presence at a level below detectability. Mixture-model

analysis can formally account for metabolite ‘missingness’ due to ab-

sence or undetectability, but software for this type of analysis in the

high-throughput setting is limited. The R package metabomxtr has

been developed to facilitate mixture-model analysis of non-targeted

metabolomics data in which only a portion of samples have quantifi-

able abundance for certain metabolites.

Availability and implementation: metabomxtr is available through

Bioconductor. It is released under the GPL-2 license.

Contact: dscholtens@northwestern.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

High-throughput metabolomics profiling has surged in popular-

ity with non-targeted technologies in particular offering oppor-

tunity for discovery of new metabolite associations with

phenotypes or outcomes. A challenge to analyzing non-targeted

output is the frequent occurrence of missing data (Hrydziuszko

and Viant, 2012). These data are not ‘missing’ in the sense that

they were not collected; rather, metabolites may be detected and

their abundance quantified in some samples and not others.

Typically conducted using nuclear magnetic resonance, liquid

chromatography-mass spectrometry or gas chromatography-

mass spectrometry (Issaq et al., 2009; Moco and Vervoort,

2007), non-targeted assays typically have unknown lower detec-

tion thresholds. Thus, when a given metabolite is not detected, it

is unknown whether that metabolite was indeed absent or merely

undetectable.
Several approaches for handling missingness have been

described inmetabolomics literature, including complete case ana-

lysis, imputation and adaptations of classic dimension reduction

tools to allow formissing data. Formetabolite-by-metabolite ana-

lyses, imputation is common, with methods including minimum,

median andnearest neighbor imputation (Hrydziuszko andViant,

2012). Partial least squares discriminant analysis and principal

components analysis with missing data adaptations have been

used, although these methods identify regression-based linear

combinations of multiple correlated metabolites associated with

a phenotype or outcome, and, in general, results are less translat-

able for understanding individual metabolite contributions

(Andersson and Bro, 1998; Walczak and Massart, 2001).
An underused approach for metabolite-by-metabolite analysis

is the Bernoulli/lognormal mixture model proposed by Moulton

and Halsey (1995). This method simultaneously estimates par-

ameters modeling the probability of non-missing response and

the mean of observed values. Imputation is not required, and

instead ‘missingness’ is explicitly modeled as either true absence

or presence below detectability, consistent with non-targeted

metabolomics technology. We used mixture models to analyze

GC-MS metabolomics data (Scholtens et al., 2014), but, to our

knowledge, there is no available software to easily perform these

analyses that folds into existing high-throughput data analysis

pipelines.
Noting the elegance of the mixture-model approach and the

continued issue of missing data in metabolomics research, we

present metabomxtr, an R package that automates mixture-

model analysis. The core functions accept R objects typically

handled in Bioconductor-type analyses or basic data frames,

thus providing a flexible tool to complement existing user pipe-

lines and preferences for data preprocessing.

2 MAIN FEATURES

2.1 Model specification

Models in metabomxtr are specified as follows. For a unique

metabolite, y, with normally distributed values when present*To whom correspondence should be addressed.
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(generally following log transformation), the contribution of the

ith observation to the likelihood is:
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where pi represents the probability of metabolite detection in the

ith sample, T is the threshold of detectability and �i is an indica-

tor equal to 1 if the metabolite is detected and 0 otherwise. A

logistic model is specified for pi, log(pi/(1 – pi))=xi’�, where xi
and � are the covariate and parameter vectors, respectively.

A linear model is specified for the mean of the observed response,

mi, with mi= zi’�, where zi and � are the covariate and parameter

vectors, respectively.

2.2 Function descriptions

metabomxtr has two main functions: mxtrmod and

mxtrmodLRT. mxtrmod executes mixture models, taking as

inputs response variable names, a model formula and a data

object (a matrix of values with NA to indicate missingness or

an ExpressionSet R object). It returns optimized parameter esti-

mates and the corresponding negative log likelihood value.

Parameter vectors � and � are estimated using maximum likeli-

hood using the optimx package. By default, T is set to the min-

imum observed metabolite abundance. Use of mxtrmod on the

example dataset metabdata follows:

To evaluate the significance of specific covariates,

mxtrmodLRT implements nested model likelihood ratio �2

tests. Required arguments include mxtrmod output for full and

reduced models and, if desired, method of multiple comparisons

adjustment. mxtrmodLRT outputs a data frame of negative log

likelihoods, �2 statistics, degrees of freedom and P-values for

each metabolite.

2.3 Comparison with imputation

To illustrate mixture models, we re-analyzed a subset of GC-MS

data on 115 fasting serum samples from pregnant women

involved in the population-based Hyperglycemia and Adverse

Pregnancy Outcome (HAPO) Study, contained in the example

data (Scholtens et al., 2014). A total of 49 non-targeted metab-

olites with at least five missing values were analyzed using mix-

ture modeling as well as minimum imputation and five nearest

neighbors. The predictor of interest was high (490th percentile)

versus low (510th percentile) fasting plasma glucose (FPG).

Samples for this pilot study were selected such that 67 had

high FPG and 48 had low FPG. For minimum and nearest

neighbor imputation, FPG groups were compared after imput-
ation using linear models adjusted for study field center, parity,

maternal and gestational age and sample storage time. The con-

tinuous portion of the mixture model also included these covari-
ates, whereas the discrete portion included only FPG. FPG was

removed for reduced models in mixture-model analysis. Nominal

P50.01 were considered statistically significant.
Of 49 metabolites analyzed, there was complete agreement (all

significant or non-significant) among methods on 39 of them. Of

the remaining 10 (Supplementary Fig. and Supplementary
Table), mixture models detected significant effects for 7, nearest

neighbor 4 and minimum 4. Of the seven mixture-model identi-

fications, three were also detected by nearest neighbor, two also

by minimum imputation and two were unique identifications.
The mixture-model results were discussed from a biological per-

spective by Scholtens et al. (2014) and include leucine and pyru-

vic acid. One significant metabolite finding was unique to nearest

neighbor imputation, but the result is questionable because the
median of the imputed values exceeded the observed median,

inconsistent with the notion of low abundance. For the two sig-

nificant effects unique to minimum imputation, mixture-model

P-values approached significance (0.018, 0.011), suggesting ap-
proximate agreement between the two methods.

3 DISCUSSION

The R package metabomxtr facilitates mixture-model analysis of
non-targeted metabolomics data. Re-analysis of the HAPO pilot

metabolomics data indicates that mixture-model analysis detects

metabolites identified by other common imputation approaches

and additionally identifies associations that would otherwise be
missed. Rigorous testing of mixture models on a wider scale is

warranted. In summary, metabomxtr provides metabolomics re-

searchers a previously unavailable tool for handling non-targeted

metabolomics missingness.
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