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ABSTRACT

Motivation: The clonal theory of adaptive immunity proposes that

immunological responses are encoded by increases in the frequency

of lymphocytes carrying antigen-specific receptors. In this study, we

measure the frequency of different T-cell receptors (TcR) in CD4+T

cell populations of mice immunized with a complex antigen, killed

Mycobacterium tuberculosis, using high throughput parallel sequen-

cing of the TcR� chain. Our initial hypothesis that immunization would

induce repertoire convergence proved to be incorrect, and therefore

an alternative approach was developed that allows accurate stratifi-

cation of TcR repertoires and provides novel insights into the nature of

CD4+T-cell receptor recognition.

Results: To track the changes induced by immunization within this

heterogeneous repertoire, the sequence data were classified by

counting the frequency of different clusters of short (3 or 4) continuous

stretches of amino acids within the antigen binding complementarity

determining region 3 (CDR3) repertoire of different mice. Both un-

supervised (hierarchical clustering) and supervised (support vector

machine) analyses of these different distributions of sequence clusters

differentiated between immunized and unimmunized mice with 100%

efficiency. The CD4+TcR repertoires of mice 5 and 14 days post-

immunization were clearly different from that of unimmunized mice but

were not distinguishable from each other. However, the repertoires of

mice 60 days postimmunization were distinct both from naive mice

and the day 5/14 animals. Our results reinforce the remarkable diver-

sity of the TcR repertoire, resulting in many diverse private TcRs con-

tributing to the T-cell response even in genetically identical mice

responding to the same antigen. However, specific motifs defined

by short stretches of amino acids within the CDR3 region may deter-

mine TcR specificity and define a new approach to TcR sequence

classification.

Availability and implementation: The analysis was implemented in R

and Python, and source code can be found in Supplementary Data.
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1 INTRODUCTION

Adaptive immunity is carried out by populations of B and T

lymphocytes, which collectively express a large set of different

antigen-specific receptors created during haemopoesis by a

unique process of somatic cell gene rearrangements. The clonal

theory of immunity (Burnet, 1959) proposes that lymphocytes

carrying receptors that specifically bind an antigen to which

the immune system is exposed, for example, during infection or

vaccination, respond by proliferating and differentiating. This

population of expanded and differentiated cells then confer on

the system the ability to respond specifically to the antigen to

which they had previously been exposed. The clonal theory there-

fore explains the immune system properties of specificity and

memory. A prediction of this theory is that the frequency of

lymphocytes that have been exposed to antigen (i.e. memory or

effector cells) will be greater than the frequency of those that

have not (i.e. naive). This prediction has been verified for T

cells in a wide variety of models, using antigen-specific readouts

such as cytokine responses, and Major Histocompatibility

Complex (MHC) multimer binding to identify expanded

lymphocyte clones (Catron et al., 2004; Hataye et al., 2006;

Moon et al., 2007). The selective expansion of specific clones

has also been inferred from global measurements such as V

region usage (Reuther et al., 2013) or spectratyping (a technique

sometimes referred to as the immunoscope) (Russi et al., 2013).

Previous studies have distinguished between private T-cell recep-

tors (TcRs), found in one or a few individuals, and public TcRs

found within the responding repertoire of a majority of individ-

uals. The response to many antigens seems to consist of a mix-

ture of public and private specificities (Cibotti et al., 1994; Clute

et al., 2010; Day et al., 2011; Menezes et al., 2007).

The introduction of short read parallel high-throughput

sequencing (HTS) provides an alternative approach to measuring

lymphocyte receptor frequencies, allowing evaluation of the

global receptor repertoire of particular lymphocyte populations.

Rearranged receptor genes, or their mRNA products, are

expanded and then sequenced directly, and the number of

times each unique receptor sequence is found is simply counted.

This approach can in principle generate an accurate estimate of

the number of times each unique lymphocyte receptor is present

in a particular population, and this information should reflect

the prior antigen exposure of the individual. Several previous*To whom correspondence should be addressed
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studies have already used HTS to reveal interesting properties of
the BcR and TcR repertoire. Freeman et al. (2009) and Robins
et al. (2009) used HTS to show non-uniform V(D)J gene segment

usage in humans during recombination, which has been attrib-
uted to chromatin conformation (Ndifon et al., 2012).
Complementary work on antibody repertoire diversity has also

been conducted in the zebrafish, again showing non-uniform
V(D)J recombination that is qualitatively conserved between
individuals (Weinstein et al., 2009). Weinstein et al. (2009) also

show that this repertoire is shaped by maturity, with a greater
skew in V(D)J usage observed at 2 months compared with
2-week-old individuals. Other studies have used HTS to provide

unexpected insight into the naive and memory T-cell compart-
ments, revealing that the memory compartment may be far more
diverse than previously thought (Klarenbeek et al., 2010; Robins

et al., 2009; Venturi et al., 2011).
A major goal is to use the HTS lymphocyte receptor sequence

data to identify antigen-specific changes in the repertoire at a
global level. There remain some major challenges, however.

First, HTS generates primary sequence data, which cannot be
easily mapped onto three-dimensional receptor conformation,
much less onto intrinsic antigen specificity. Second, current tech-

nologies do not yet provide easy ways to link the two chains of
the antigen-specific receptor (heavy and light for antibody, � and
� or � and � for T cells) at a single-cell level. The majority of

studies of T-cell repertoires using HTS have focused only on �
chains. The antigen specificity of the receptor will depend on the
pairing of a specific � and � chain, and therefore cannot be

inferred from � chains alone.
Despite these limitations, there are a number of indications

that local features of protein primary structure may contain

hidden information that reflects specific protein–protein inter-
actions occurring at the level of a fully folded tertiary or quater-
nary structure. One interesting example is the analysis of

conserved amino acid pairs within a family of homologous
proteins that has recently been used to predict with remarkable
accuracy the structure of the fully folded protein on the basis

of conserved protein–protein interactions (Schug et al., 2009).
Consequently, some success has also been achieved using a pri-
mary protein structure to predict antibody–antigen docking

(Brenke et al., 2012). From a machine learning perspective,
these approaches are reminiscent of algorithms that use local
low-level features, such as individual words or image fragments,

to produce remarkably efficient classification of complex large
datasets, such as sets of documents or images. Surprisingly, good
results can be achieved with little regard for the semantic content

or meaning of these types of data. We thought that local se-
quence features could be used to define antigen-specific changes
in the TcR repertoire following immunization, reflecting under-

lying information on the nature of interactions between TcR and
peptide-MHC complexes. In this study, we develop an approach
based on the well-studied bag-of-words (BOW) (Csurka et al.,

2004; Joachims, 1998; Lowe, 1999) algorithm to categorize and
classify sets of TcR sequences from immunized and unimmu-
nized mice at different times postimmunization.

Our data highlight the extraordinary diversity of the T-cell rep-
ertoire, which result in every individual mouse expressing amajor-
ityof receptors that areunique to that individual.Within thisocean

of diversity, conventional methods to identify the antigen-specific

component of the response by looking for shared expanded clones

are problematic. Surprisingly, however, localized sequence fea-

tures (similar short stretches of adjacent amino acids) can be

used to generate a high-dimensional feature space, in which the

distinct experimental groups can be readily distinguished with a

high degree of accuracy. Short motifs in complementarity deter-

mining region 3 (CDR3) primary sequence may therefore play an

important role in determining TcR specificity. Our results suggest

that the response to antigen may be an emergent property of the

repertoire, dominated by clones found only in that individual (pri-

vate specificities), and distributed over many low-frequency

lymphocytes each with different receptors.

2 METHODS

Details of immunizations and library preparation are given in the

Supplementary Information.

2.1 Low-level processing of Illumina sequence reads to

generate protein CDR3 sequences

Sequences obtained using this protocol were 55bp long, spanning the

highly diverse CDR3 region. Following the methodology described by

Thomas et al. (2013), we represent each distinct TcR sequence read in

terms of its constituent V and J gene segments, the number of V and J

germline nucleotide deletions and the string of nucleotides found between

the VJ junction, including any remnants of the D gene segment. Thus,

this approach classifies each TcR sequence in terms of five variables,

mitigates for sequencing error within V or J regions and determines the

correct reading frame to extract the translated CDR3 region.

The short length of the sequences made direct use of the Decombinator

(Thomas et al., 2013) problematic for unambiguous assignment of V and

J gene segments, as the optimal unique tags that recognize the distinct V

and J gene segments are located outside the sequenced window, and are

necessarily located far enough from the 30 and 50 ends of the V and J gene

segments, respectively, to ensure that the deletion of nucleotides from the

gene segment ends does not affect their detection. Additionally, the V�

region located between the primer and the VD junction is similar across

all 23 mouse V� genes, making creation and detection of unique tags

difficult, and the variability in the length of the CDR3 region means

the number of J gene nucleotides that are present in each read varies

significantly, making selection of a single identifying J keyword difficult.

Therefore, some modifications to the Decombinator (Thomas et al.,

2013) pipeline were introduced, which are described in detail in the

Supplementary Information.

2.2 The BOW approach

The basic strategy, used successfully in text, image and also protein

sequence classification, is to define a large set of low-level features

(code words) within the data, which is variously referred to as a code-

book, dictionary or vocabulary. These can be individual words of text,

image features or any other simple descriptive features [see e.g. (Csurka

et al., 2004; Joachims, 1998; Lowe, 1999)]. Individual data items are then

defined by how frequently each code word of the vocabulary is found

within that specific piece of data. Each data item is therefore converted

into a k-dimensional vector, where k is the size of the vocabulary. Finally,

the data is classified using a number of high-dimensional tools, either in a

model of two classes (comparing untreated with immunized mice) or four

classes (comparing untreated mice with day 5 immunized, day 14 immu-

nized and day 60 immunized). The pipeline is illustrated in Figure 1.

In the specific example examined here, the vocabulary is initially

defined as all possible sets of contiguous, short (length p, where p
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typically=3) stretches of amino acids (called p-tuples) within the set of

CDR3 regions. These represent the features within the data. The p-tuples

are then converted into a numeric vector of length 5 p by representing

each amino acid by its Atchley factors (Atchley et al., 2005) that represent

its physicochemical properties based on polarity, secondary structure,

molecular volume, codon diversity and electrostatic charge. To reduce

the size of the vocabulary to manageable size k (typically 100 ‘code

words’), the set of observed vectors is clustered. A sample of Atchley

vectors is first generated from a set of sequences selected randomly

from all experimental groups. This set is clustered into k clusters using

k-means clustering. These k clusters represent the codebook. Once the

codebook is defined, the repertoire of sequences from each mouse can be

mapped to this codebook. A new set of sequences is selected from each

mouse. The CDR3s from this set are converted into p-tuples and then

into Atchley vectors of length 5p as described above. Each Atchley vector

is allocated to the nearest cluster. Once all vectors are allocated, the

number of vectors within each cluster is counted and converted into

a proportion of the total number of Atchley vectors selected (q). In this

way, each repertoire is mapped into a single k-dimensional vector. The

code for p-tuplet extraction and conversion to numerical vectors is given

in the Supplementary Information.

These k-dimensional feature vectors are then classified using either

unsupervised (hierarchical clustering) or supervised learning algorithms.

For the latter, we focused on support vector machines (SVM), which

seek a linear hyperplane that separates observations from two

(or more) distinct classes. [reviewed in Cristianini and Shawe-Taylor

(2000)]. We have chosen SVM because it regularizes the weight vector

minimizing a combination of its 2-norm with the chosen loss function

(in this case, the hinge loss). This ensures that SVM can perform well even

when the feature space is high dimensional.

SVMwas performed by using the e1071 package in R, and models are

trained and tested using leave-one-out cross-validation. Multiclass dis-

crimination is carried out internally in e1071 using a ‘one-against-one’

model. Examples of source code are given in the Supplementary

Information.

3 RESULTS

3.1 Decombinator analysis of sequences from immunized

and unimmunized mice

A summary of the analysis of the HTS data by using the

modified Decombinator algorithm described in Section 2 is

given in Supplementary Table S1.
In total, we analysed 120 million raw sequence reads, of which

19% were classified as specific TcRs by the Decombinator.

This proportion is similar to that observed using conventional

pairwise alignment as described earlier (Ndifon et al., 2012). The

enormous diversity of the repertoire is emphasized by the fact

that 76% of the identifiers were unique to a single mouse spleen.

The proportion of unique, translated CDR3s was somewhat

smaller (62%), reflecting the degeneracy of the genetic code

and convergent recombination. A few ‘public’ sequences were

shared by all mice (Madi et al., 2014).
We first hypothesized that the repertoire of immunized mice

might contain several identical expanded antigen-specific clones,

and might therefore be more similar to each other than unim-

munized mice. We estimated the similarity between mice using

the Jaccard index, the ratio of the intersection to the union of the

set of unique sequences in each pair of samples.
The distribution of Jaccard indices for all possible pairs of

mice is shown in Figure 2. We carried out these analyses both

Fig. 1. The computational pipeline for classifying TcR repertoires. A

schematic of the computational pipeline is shown on the left, and a spe-

cific example for two arbitrary TcR � sequences is shown on the right

(with p=3). CDR3 sequences are preprocessed and represented as a

series of p-tuples (contiguous sequences of amino acids of length p).

The p-tuples are then converted into numeric vectors of length 5p by

representing each amino acid by its five Atchley factors. The codebook is

then generated—a sample of these vectors pooled from all experimental

groups is clustered to build a codebook of k code words via k-means

clustering. A new sample of q p-tuples from each mouse is then selected

and mapped to the nearest code word. The number of p-tuples within

each code word for that mouse is counted. The sequence data from each

mouse are therefore represented by a feature vector of length k, contain-

ing the frequency of each code word within the sample. These k length

vectors are then analysed by hierarchical clustering or SVM

Fig. 2. The similarity (Jaccard) index comparing all pairs of mice. Each

dot represents the Jaccard index comparing all CDR3 sequences from

two mice. CDR3 repertoires from pairs of untreated (U) mice, or pairs of

immunized (I) mice, display greater similarity (i.e. have a larger Jaccard

index) than repertoires from pairs of mice where one mouse is immunized

and one is not immunized. Horizontal black lines indicate mean of each

population
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by using the complete sequence sets for each mouse, and also by

subsampling equal numbers of sequences from each mouse, so as

to avoid any bias imposed by sample size. Both approaches gave

the same qualitative results, but only the former is shown.

Contrary to our prediction, this analysis did not demonstrate

any greater similarity between pairs of immunized mice than

between pairs of unimmunized mice. However, the Jaccard

index for pairs composed of one immunized and one unimmu-

nized mouse was significantly smaller than for pairs of two

immunized or two unimmunized mice (Fig. 2). Immunization

therefore altered the repertoire state but did not drive repertoire

convergence.
We looked next in more detail for individual CDR3s shared

between immunized mice. No CDR3s were present in all immu-

nized mice but absent from all unimmunized mice. However,

57 CDR3 were present in 75% of immunized mice but absent

from all unimmunized mice. In general, these CDR3s were pre-

sent at low frequencies (Fig. 3a) although a few CDR3s were

amplified in individual mice. Inspection of the CDR3 sequences

(Fig. 3b) suggested that the CDR3 sequences clustered into

families, defined by shared short amino acid sequence motifs.

To capture this impression quantitatively, the frequency of

each amino acid triplet (sequence of three consecutive amino

acids) within the 57 CDR3s was compared with their frequency

in a large sample of random CDR3s (Fig. 3c). A number of

triplets were over-represented in the shared CDR3 set, suggesting

they reflected functional similarity between related sets of

CDR3s. We therefore investigated in a more systematic way

whether CDR3s from immunized mice shared primary protein

sequence features that distinguished them from unimmunized

mice. For this purpose, we adapted the BOW approach

(also called the n-gram kernel) originally developed in the con-

text of document recognition (Joachims, 1998), together with a

clustering step to reduce the dimensionality of the vocabulary.

Details of the method are given above. The codebook used for

classification was initially chosen arbitrarily to be 100 clusters

each containing a subset of contiguous, short (length p, where p

typically=3) stretches of amino acids, from the set of contigu-

ous p-tuples found within the CDR3 dataset. The similarity

metric for clustering was based on individual amino acid

Atchley factors, reflecting similarities in physicochemical charac-

teristics of the amino acids. The contents of each cluster are

given in Supplementary Table S1 (SI), and the sizes of the 100

clusters are shown in Supplementary Figure S1.

Initially, we sampled 10 000 randomly selected amino acid trip-

lets (i.e. p=3) from the CDR3 region of each mouse, allocated

each triplet to its cluster within the codebook and then counted

the total number of triplets within each cluster for that mouse.

The set of primary sequences for each mouse was therefore

mapped into a numeric feature vector of length 100. The results

Fig. 4. Hierarchical clustering distinguishes between the code word

(clusters of triplets) distribution profiles of unimmunized and immunized

mice. Each mouse was categorized as described in the text, using k=100,

p=3 (triplets), q=10000. The heatmap shows the relative proportion of

sequences within each code word (rows) for each mouse (columns). A

small group of codewords appeared more frequently in untreated mice

compared with immunized (bottom left corner of heatmap), while con-

versely a larger group of codewords appear more frequently in immu-

nized mice (top right). The data are clustered along both axes using

Euclidean distances and complete linkage method in the R function

‘hclust’

Fig. 3. CDR3 sequences shared between immunized mice. (a) The fre-

quency (counts per million) of 57 CDR3s that are present in 75% of the

immunized mice, but absent from all unimmunized mice (not shown).

Each column represents one mouse, grouped according to time after im-

munization as shown below the x axis. (b) The amino acid sequences

of all 57 CDR3s, clustered according to Levenstein distance. (c) A plot

of the frequency of each individual amino acid triplet (i.e. sequence of

three consecutive amino acids, see Fig. 1) encoded by the 57 CDR3s,

measured within the 57 CDR3s themselves (x axis) versus the frequency

of the same triplets within a random sample of 1000 sets of 57 CDR3s

selected from the set of CDR3s from all immunized mice (y axis).

The diagonal line designates an equal frequency in the shared CDR3s

and in the random set. Those triplets that are overrepresented in the

shared CDR3s are found in the lower right area of the plot
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for all 24 mice are displayed in Figure 4, ordered by hierarchical

clustering along both dimensions. Unsupervised clustering

correctly separates all six unimmunized mice (on the left) from

the immunized mice. Some additional structure is evident, with

most (4 of 6) of the day 60 mice clustering between unimmunized

and day 5/14 mice. Several different patterns of code word dis-

tribution are observed. For example, code words at the top of the

heatmap become more highly represented in the repertoire of

immunized mice, while code words at the bottom are less

represented.

A summary of the data, in which code word cluster sizes

from all mice in each group are averaged and plotted as log

ratio relative to unimmunized mice, is shown in Figure 5.

A number of code words are over- or under-represented in the

immunized mice, reflecting changes in the frequency of sets

of amino acid triplets following exposure to antigen. These

code word frequency profiles were used to develop a multiclass

SVM with which we could explore the parameters of the BOW

algorithm.

Mice were classified as belonging to one of four classes: unim-

munized/control, day 5, day 14 and day 60 postimmunization.

Training and testing was performed using leave-one-out cross-

validation on each mouse in turn.

The results of varying several of the parameters of the classi-

fication algorithms are shown in Table 1. Using a radial basis

function for the SVM had little effect on classification efficiency,

probably reflecting the inherent high dimensionality of the data.

All further analysis was therefore carried out using linear SVM

kernels. Decreasing the codebook size to 10 code words compro-

mised the success rate, as did decreasing the number of p-tuples

sampled from 10 000 to 1000. Increasing the sample size above

10 000 had no further effect (not shown). Increasing p from 3 to 4

(i.e. quadruplets, rather than triplets) made little difference,

although it was difficult to know whether this was because effi-

ciency was already close to 100% or the additional information

carried in the longer amino acid stretches was not informative.

Interestingly, decreasing p to one (i.e. simply amino acid preva-

lence) retained some discriminative potential, albeit considerably

reduced from p=3 or 4.

We next examined classification efficiency retaining the separ-

ate time points postimmunization as distinct classes (Fig. 6). For

this purpose, we used k=100, p=3, and q=10, 000. A sub-

sample of q=10000 triplets (p=3) was taken from each mouse

to generate a frequency distribution over the code words and

train and test a leave-one-out linear SVM. This subsampling

was repeated 100 times for each mouse, and the proportion of

each of these 100 repetitions classified as each of the four classes

is shown in Figure 6. Similar results were obtained for p=4. As

discussed previously, immunized and unimmunized mice are dis-

tinguished with 100% efficiency. As we expected, the repertoire

of day 5 and day 14 mice cannot be efficiently distinguished from

each other, reflecting the fact that the T-cell response at these

two time points is likely to be similar. Interestingly, the repertoire

of day 60 mice was often distinct from that of the earlier time

points, although never returning to an unimmunized type. Thus,

the T-cell repertoire appears to show a time-dependent change

following immunization. The efficiency with which day 60 and

earlier time points could be distinguished varied between mice,

suggesting that the time course of this evolution was somewhat

variable between individuals.
We wondered whether the distinctive features of the immu-

nized repertoire were determined predominantly by a few abun-

dant T cells (i.e. highly expanded clones), or whether the

repertoire was determined by many rare T cells sharing similar

CDR3 sequence features. We therefore first ranked all the TcRs

from each mouse according to the number of times it occurred in

the sample, and then selected only CDR3 sequences from high

Fig. 5. Differences between code word (clusters of triplets) distribution

profiles between unimmunized and immunized mice. Each mouse was

categorized as described in text, using k=100, p=3 (triplets),

q=10000. The relative frequency of each code word cluster for each

group of six mice is averaged and shown relative to the average in the

unimmunized group for the corresponding code word. For clarity, the

data for only the first 34 code words are shown

Table 1. Efficient SVM classification using bag-of-words categorization

p q k Kernel False

positive

False

negative

3 1000 100 Linear 0.12 0.04

3 1000 100 RBF 0.1 0.02

3 10 000 100 Linear 0 510–3

3 10 000 100 RBF 0 510–3

3 1000 10 Linear 0.42 0.11

4 1000 100 Linear 0.04 0.01

4 10 000 100 Linear 0 0

1 1000 N/A Linear 0.3 0.08

1 10 000 N/A Linear 0.02 0.002

Note. Mice were classified as either immunized or unimmunized. False-positive rate

is the proportion of unimmunized mice classified as immunized. False-negative rate

is the proportion of immunized mice classified as unimmunized. k is number of code

words (clusters of Atchley vectors). q is number of p-tuples sampled from each

mouse. p is the length of contiguous amino acid sequence. SVM uses either a

linear or radial basis function (RBF) kernel.
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frequency (top 10 percentile in clone frequency) or low frequency

clones (bottom 10 percentile) and repeated the analysis shown in

Figure 6. Remarkably, equivalent classification efficiency was

obtained using either high or low frequency clones. In all,

100% correct classification was retained, even when the cutoff

was reduced to the lowest 1%. A potential confounder of this

analysis is sequencing error, which can result in contamination of

low frequency clones with rare ‘variants’ of high frequency clones

that arise purely during in vitro sample processing. To try and

mitigate this potential confounder, we reanalysed the dataset

using the protocol published in Ndifon et al. (2012). In this

protocol, additional steps are included in which low frequency

clones are first clustered with high frequency clones, to correct

for sequencing errors. The reanalysis of these data gives the same

pattern of results. Increasing the cut-off to use only those clones

in the top 1 percentile (on average, these appeared 40 times or

more in a sample) increased the false-positive rate to 16%. These

results imply that the enrichment of specific sequence features

in immunized mice reflects changes to many different T-cell

clones of both high and low frequency, rather than the dominant

expansion of a few dominating antigen-specific clones.
Although our analysis focused on CDR3s, because these

regions are known to interact with antigen peptides within the

antigen-binding cleft of MHC molecules, we also analysed V and

J usage (see Supplementary Fig. S2). Reproducible differences

were observed in the proportion of a number of specific V

regions but not J regions. The reasons for these differences

were not investigated further but could reflect the presence
of superantigen-like structures within M. tuberculosis (Ohmen
et al., 1994).

4 DISCUSSION

The computational pipeline presented above analyses the

global T-cell immune response to a complex antigen, killed
M. tuberculosis. This antigen contains many different proteins

and a large number of possible T-cell epitopes. Despite this com-
plexity, the results demonstrate a coherent but highly distributed
set of responses, emerging from the background of the remark-

able diversity and plasticity of the TcR-generating system.
HTS of the T-cell receptor repertoire of individual mice

emphasized the size of the potential repertoire, consistent with

previous reports (Ndifon et al., 2012). To simplify the computa-
tional aspects discussed in more detail below, we focus here
exclusively on the CDR3 regions of the receptor, which are

believed to contribute most to the interaction between TcR
and the antigenic target peptide lying within the MHC groove
(Garcia and Adams, 2005; Rudolph et al., 2006). The heterogen-

eity is highlighted by the observation that over 60% of the CDR3
repertoire is made up of unique sequences, and only a small
proportion are shared by all mice, even though all mice are

derived from a well-established in-bred strain, and are therefore
genetically similar. On the basis of the Jaccard index, this diver-

sity extends equally to unimmunized and immunized mice. Thus,
immunization, at least in this example, does not seem to result
in the emergence of a large pool of shared identical CDR3

sequences. In contrast, the Jaccard index when comparing immu-
nized and non-immunized mice is significantly lower than that
obtained by comparing within either immunized or unimmu-

nized groups. This suggests a model in which one heterogeneous
population of receptors changes as a result of immunization
to another equally heterogeneous, but nevertheless distinct,

population. This picture of an immune response made up of
frequency changes in many heterogeneous clones was confirmed
by the further investigations detailed below.

As we were unable to determine a clearly defined set of iden-
tical receptors that correlated with antigen response, we devised
a strategy to extract features that would reflect the similarities

and differences between different datasets. As a first step, we
adopted the simplest consecutive string kernel algorithm, the
BOW method (Joachims, 1998; Lodhi et al., 2002). To restrict

the size of the feature space (there are 8000 possible triplet amino
acid sequences, and 160000 quadruplets), we clustered the set of

k-tuples into a 100-word codebook of similar k-tuples. The code-
book was based on the set of k-tuples observed in our data, but
as further datasets become available it should be possible to de-

sign a universal codebook applicable to all datasets. The k-tuples
were classified as similar by transforming the amino acid
sequences into numerical vectors, using Atchley factors

(Atchley et al., 2005). Several alternative classification schemes
have been devised [e.g.(Kidera et al., 1985)] and have previously
been used to describe TcR properties (Epstein et al., 2014). It will

be of interest to see how these classification schemes compare
in the sequence classification problems investigated here.
Despite its simplicity, the feature space constructed from short

consecutive amino acid p-tuples revealed a remarkably consistent

Fig. 6. SVM can efficiently classify time-dependent changes in CDR3

repertoire following immunization. A subsample of q=10000 triplets

(p=3) was taken from each mouse to generate a frequency distribution

over the code words and train and test a leave-one-out linear SVM. This

was repeated 100 times, and the proportion of these repetitions classified

as each of the four classes is shown
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time-dependent response to immunization. Thus, while there was
little sharing of identical sequences between groups of mice,
shared patterns of sequences, defined by a particular distribution

of p-tuples, were easily observed using both supervised and
unsupervised classification methods. Although a few code
words (i.e. clusters of amino acid p-tuples) showed large differ-

ences between experimental groups, a substantial proportion of
the code words showed smaller but consistent changes. This sug-
gested a large number of TcRs contribute to the antigen-driven

changes in the composition of the repertoire, perhaps reflecting
the complex nature of the antigen used in these studies. Efficient
recognition of different experimental groups required analysis of

large numbers (q � 10000) of code words. Furthermore, the
TcRs that defined the antigen-specific repertoire were not con-
fined to high frequency clones but also included low frequency

clones. It should be noted that even ‘low frequency’ receptors
may represent amplified clones, as sample size limits the lowest
observable TcR frequency we can reliably see. Furthermore, a
proportion of low frequency sequences are likely to be derived

from sequencing errors of high frequency TcRs. Nevertheless,
the data suggest a model where recognition of M. tb in these
mice is distributed among many low and high frequency clones,

sharing characteristic amino acid triples or quadruplets. At a
molecular level, one might envisage that these selected subse-
quences may be directly interacting with specific features of anti-

genic processed peptides exposed at the surface of the MHC
binding groove (Garcia and Adams, 2005). In fact, a number
of distinct TcRs are likely to interact with a single peptide/

MHC complex, with a spectrum of different affinities
(Birnbaum et al., 2012). In such a model, although the overall
recognition between TcR and MHC/peptide is mediated at the

level of tertiary or quaternary structure, and therefore not redu-
cible to linear sequence features, the interaction between CDR3
and a specific peptide/MHC may impose constraints that are

observable at the level of short contiguous amino acid sequences.
Such an approach using the interactions of neighbouring amino
acids has been successfully used earlier in the context of antibo-

dies (Mora et al., 2010). Similar constraints have been demon-
strated to characterize conserved protein–protein interactions
(Schug et al., 2009) in large evolutionary-related protein families.

The majority of previous studies have measured individual
T-cell antigen-specific responses without reference to TcR
sequence (e.g. using MHC multimer binding or cytokine

responses). More global approaches to detecting and quantifying
receptor diversity have used spectratyping to obtain a profile
of CDR3 lengths or flow cytometry to quantify V region usage

(Ciupe et al., 2013; Faint et al., 1999; Pannetier et al., 1995). Both
techniques have given interesting insights into clonal expansions
associated with a variety of antigen-driven responses, although

the sensitivity limits the detection of small clones. Spectratyping
can be extended to give sequencing data, but this is a laborious
and low-throughput process. We predict that, as larger sequence

datasets become available from HTS approaches, the extent
of diversity in the antigen-driven TcR repertoire response will
increase dramatically. This study is confined to a single antigen,

in a single inbred strain of mice. Additional studies are in pro-
gress to extend the datasets to better defined model antigen sys-
tems, for example, focusing on one individual MHC/peptide

response. Preliminary results suggest the response to such

weaker and narrower antigen stimuli are more subtle, and will

require more sophisticated analysis. Many extensions of the

current approach are possible. For example, the feature space

can be extended, by including V and J region information,

positional information in the context of the p-tuple within the

CDR3 and the inclusion of non-continuous string kernels.
The results described above offer an intriguing insight into

the nature of an immune response. On the one hand, the success

of classification methods using fairly simple low-level features of

protein sequence offer hopeful indications for applying this sort

of approach to analysis of clinical samples for the prognosis,

diagnosis or stratification of patients in the context of both in-

fectious and non-infectious (e.g. cancer, autoimmunity or trans-

plantation) disease. On the other hand, if further studies

generalize our observation of a ‘distributed’ immune response,

in which a response is carried by large numbers of different low

frequency clones with shared features, this will pose some for-

midable computational challenges. Robust experimental pipe-

lines, improved HTS technology and application of the latest

advances in machine learning will all be required, but such com-

binations are likely to provide new insights into the function of

the adaptive immune system, and ultimately translational bene-

fits in the clinical context.
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