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Abstract

The protection of privacy of individual-level information in genome-wide association study 

(GWAS) databases has been a major concern of researchers following the publication of “an 

attack” on GWAS data by Homer et al. [1]. Traditional statistical methods for confidentiality and 

privacy protection of statistical databases do not scale well to deal with GWAS data, especially in 

terms of guarantees regarding protection from linkage to external information. The more recent 

concept of differential privacy, introduced by the cryptographic community, is an approach that 

provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of 

arbitrary external information, although the guarantees may come at a serious price in terms of 

data utility. Building on such notions, Uhler et al. [2] proposed new methods to release aggregate 

GWAS data without compromising an individual's privacy. We extend the methods developed in 

[2] for releasing differentially-private χ2-statistics by allowing for arbitrary number of cases and 

controls, and for releasing differentially-private allelic test statistics. We also provide a new 

interpretation by assuming the controls’ data are known, which is a realistic assumption because 

some GWAS use publicly available data as controls. We assess the performance of the proposed 

methods through a risk-utility analysis on a real data set consisting of DNA samples collected by 

the Wellcome Trust Case Control Consortium and compare the methods with the differentially-

private release mechanism proposed by Johnson and Shmatikov [3].
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1. Introduction

A genome-wide association study (GWAS) tries to identify genetic variations that are 

associated with a disease. A typical GWAS examines single-nucleotide polymorphisms 

(SNPs) from thousands of individuals and produces aggregate statistics, such as the χ2-

statistic and the corresponding p-value, to evaluate the association of a SNP with a disease.

For many years researchers have assumed that it is safe to publish aggregate statistics of 

SNPs that they found most relevant to the disease. Because these aggregate statistics were 

pooled from thousands of individuals, they believed that their release would not compromise 

the participants’ privacy. However, such belief was challenged when Homer et al. [1] 

demonstrated that, under certain conditions, given an individual's genotype, one only needs 

the minor allele frequencies (MAFs) in a study and other publicly available MAF 

information, such as SNP data from the HapMap1 project, in order to “accurately and 

robustly” determine whether the individual is in the test population or the reference 

population. Here, the test population can be the cases in a study, and the reference 

population can be the data from the HapMap project. Homer et al. [1] defined a distance 

metric that contrasts the similarity between an individual and the test population and that 

between the individual and the reference population, and constructed a t-test based on this 

distance metric. They then showed that their method of identifying an individual's 

membership status has almost zero false positive rate and zero false negative rate.

However, Braun et al. [4] argued that the key assumptions of the Homer et al. [1] attack are 

too stringent to be applicable in realistic settings. Most problematic are the assumptions that 

(i) the SNPs are in linkage equilibrium and (ii) that the individual, the reference population, 

and the test population are samples from the same underlying population. They presented a 

sensitivity analysis of the key assumptions and showed that violation of the first assumption 

results in a substantial increase in variance and violation of the second condition, together 

with the condition that the reference population and the test population have different sizes, 

results in the test statistic deviating considerably from the standard normal distribution.

Notwithstanding the apparent limitation of the Homer et al. [1] attack, the National Institute 

of Health (NIH) was cautious about the potential breach of privacy in genetic studies (see 

Couzin [5] and Zerhouni and Nabel [6]), and swiftly instituted an elaborate approval process 

that every researcher has to go through in order to gain access to aggregate genetic data.2,3 

This NIH policy remains in e ect today.

The paper by Homer et al. [1] attracted considerable attention within the genetics 

community and spurred interest in investigating the vulnerability of confidentiality 

protection of GWAS databases. The research efforts include modifications and extensions of 

the Homer et al. attack, alternative formulations of the identification problem, and different 

aspects of attacking and protecting the GWAS databases; e.g., see [7–17]. In partial response 

to this literature, Uhler et al. [2] proposed new methods for releasing aggregate GWAS data 

1http://hapmap.ncbi.nlm.nih.gov/
2http://gwas.nih.gov/pdf/Data%20Sharing%20Policy%20Modifications.pdf
3http://epi.grants.cancer.gov/dac/da_request.html
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without compromising an individual's privacy by focusing on the release of differentially-

private minor allele frequencies, χ2-statistics and p-values.

In this paper, we develop a differentially-private allelic test statistic and extend the results on 

differentially-private χ2-statistics in [2] to allow for an arbitrary number of cases and 

controls. We start with some main definitions and notation in Section 2. The new sensitivity 

results are presented in Section 3. Uhler et al. [2] proposed an algorithm based on the 

Laplace mechanism for releasing the M most relevant SNPs in a differentially-private way. 

In the same paper they also developed an alternative approach to differential privacy in the 

GWAS setting using what is known as the exponential mechanism linked to an objective 

function perturbation method by Chaudhuri et al. [18]. This was proposed as a way to 

achieve a differentially-private algorithm for detecting epistasis. But the exponential 

mechanism could in principle have also been used as a direct alternative to the Laplace 

mechanism of Uhler et al. [2]. This is in fact what Johnson and Shmatikov [3] proposed. 

Their method selects the top-ranked M SNPs using the exponential mechanism. In Section 4 

we review the algorithm based on the Laplace mechanism from [2] and propose a new 

algorithm based on the exponential mechanism by adapting the method by Johnson and 

Shmatikov [3]. Finally, in Section 5 we compare our two algorithms to the algorithm 

proposed in [3] by analyzing a data set consisting of DNA samples collected by the 

Wellcome Trust Consortium (WTCCC)4 and made available to us for reanalysis.

2. Main Definitions and Notation

The concept of differential privacy, recently introduced by the cryptographic community 

(e.g., Dwork et al. [19]), provides a notion of privacy guarantees that protect GWAS 

databases against arbitrary external information.

Definition 1. Let D denote the set of all data sets. Write D ~ D′ if D and D′ differ in one 

individual. A randomized mechanism K is ε-differentially private if, for all D ~ D′ and for 

any measurable set S ⊂ ,

Definition 2. The sensitivity of a function f : DN → Rd, where DN denotes the set of all 

databases with N individuals, is the smallest number S(f) such that

for all data sets D, D′ ∈ DN such that D ~ D′. Releasing f(D) + b, where b ~ Laplace , 

satisfies the definition of ε-differential privacy (e.g., see [19]). This type of release 

mechanism is often referred to as the Laplace mechanism. Here ε is the privacy budget; a 

smaller value of ε implies stronger privacy guarantees.

4http://www.wtccc.org.uk/
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2.1. SNP Summaries Using Contingency Tables

Following the notation in [20], we can summarize the data for a single SNP in a case-control 

study with R cases and S controls using a 2 × 3 genotype contingency table shown in Table 

1, or a 2×2 allelic contingency table shown in Table 2. We require that margins of the 

contingency table be positive.

Definition 3. The (Pearson) χ2-statistic based on a genotype contingency table (Table 1) is

Definition 4. The allelic test is also known as the Cochran-Armitage trend test for the 

additive model. The allelic test statistic based on a genotype contingency table (Table 1) is 

equivalent to the χ2-statistic based on the corresponding allelic contingency table (Table 2). 

The allelic test statistic can be written as

The Pearson χ2-test for genotype data and the allelic test for allele data are among the most 

commonly used statistical tests for association in GWAS. Zheng et al. [21] suggest using the 

allelic test when the genetic model of the phenotype is additive, and the Pearson χ2-test 

when the genetic model is unknown.

3. Sensitivity Results

Under the assumption that there are an equal number of cases and controls, Uhler et al. [2] 

found the sensitivities of the χ2-statistic, the corresponding p-value and the projected p-

value. For completeness, we briefly review these results here.

Theorem 3.1 (Uhler et al. [2]). The sensitivity of the χ2-statistic based on a 3×2 contingency 

table with positive margins and N/2 cases and N/2 controls is .

Theorem 3.2. (Uhler et al. [2]). The sensitivity of the p-values of the χ2-statistic based on a 

3 × 2 contingency table with positive margins and N/2 cases and N/2 controls is exp(−2/3), 

when the null distribution is a χ2-distribution with 2 degrees of freedom.

Corollary 3.3 (Uhler et al. [2]). Projecting all p-values larger than p* = exp(−N/c) onto p* 

results in a sensitivity of exp(−N/c) −exp  for any fixed constant c ≥ 3, 

which is a factor of N/2.

In the remainder of this section, we generalize these results to allow for an arbitrary number 

of cases and controls. This makes the proposed methods applicable in a typical GWAS 
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setting, in which there are more controls than cases, as researchers often use data pertaining 

to other diseases as controls to increase the statistical power.

3.1. Sensitivity Results for the Pearson χ2-Statistic

We first consider the situation in which the adversary has complete information about the 

controls. This situation arises when a GWAS uses publicly available data for the controls, 

such as those from the HapMap project. In this scenario, it is only necessary to protect 

information about the cases.

Theorem 3.4. Let D denote the set of all 2 × 3 contingency tables with positive margins, R 

cases and S controls. Suppose the numbers of controls of all three genotypes are known. Let 

N = R + S, and smax = max{s0, s1, s2}. The sensitivity of the χ2-statistic based on tables in D 

is bounded above by .

Proof. See Appendix A.

Theorem 3.4 gives an upper bound for the sensitivity of the χ2-statistic based on 2 × 3 

contingency tables with positive margins and known numbers of controls for all three 

genotypes. In Corollary 3.5 we show that, assuming r0 ≥ r2 and s0 ≥ s2, which reflects the 

definition of a major and minor allele, the upper bound for the sensitivity is attained.

Corollary 3.5. Let D denote the set of all 2 × 3 contingency tables with positive margins, R 

cases and S controls. We further assume that for tables in D, r0 ≥ r2 and s0 ≥ s2; i.e., in the 

case and control populations the number of individuals having two minor alleles is no 

greater than the number of individuals having two major alleles. The sensitivity of the χ2-

statistic based on tables in  is , where N = R + S.

Proof. For a change that occurs in the cases, we first treat s0, s1, and s2 as fixed, and get the 

result in Theorem 3.4. By taking (r0, r1, r2, s0, s1, s2) = (r0, 1, r2, 0, S, 0), r0 ≥ r2 > 0, and 

changing the table in the direction of u = (1, −1, 0, 0, 0, 0), we attain the upper bound 

. The same analysis for a change that occurs in the controls shows that the 

maximum change of the Pearson χ2-statistic (i.e., Y in Appendix A) is .

If we have no knowledge of either the cases or the controls, we get the sensitivity result 

presented in Corollary 3.5. On the other hand, when the controls are known, we can use 

Theorem 3.4 to reduce the sensitivity assigned to each set of SNPs grouped by the maximum 

number of controls among the three genotypes. However, in most GWAS the number of 

controls, S, is large and smax = max{s0, s1, s2} ≥ S/3. In this case, the following computation 

shows that the reduction in sensitivity obtained by Theorem 3.4 is insignificant:
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In order to improve on statistical utility, Uhler et al. [2] proposed projecting the p-values that 

are larger than a threshold value onto the threshold value itself to reduce the sensitivity. In 

Theorem 3.6 we generalize this result to nonnegative score functions, showing how to 

incorporate projections into the Laplace mechanism.

Theorem 3.6. Given a nonnegative function f(d), define hC(d) = max{C, f(d)}, with C > 0; 

i.e., we project values of f(d) that are smaller than C onto C. Let s denote the sensitivity of 

hC(d), and suppose Y ~ Laplace , then W (d) = max{C, Z(d)}, with Z(d) = hC(d) + Y , 

is ε-differentially private.

Proof. From the definition of W (d), we know that W (d) ≥ C for all d. For t > C,

For t = C,

For example, when we apply this result to χ2-statistics in a differentially-private mechanism, 

we set C to be the χ2-statistic that corresponds to a small p-value and use an upper bound for 

the sensitivity of the projection function as sC, namely

3.2. Sensitivity Results for the Allelic Test Statistic

Theorem 3.7. The sensitivity of the allelic test statistic based on a 2 × 3 contingency table 

with positive margins, R cases and S controls is given by the maximum of

Proof. See Appendix B.
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4. Privacy-Preserving Release of the Top M Statistics

In a GWAS setting, researchers usually assign to every SNP a score that reflects its 

association with a disease, but only release scores for the M most significant SNPs. Most 

commonly used scores are the Pearson χ2-statistic, the allelic test statistic, and the 

corresponding p-values. If those M SNPs were chosen according to a uniform distribution, ε-

differential privacy can be achieved by the Laplace mechanism with noise , where s 

denotes the sensitivity of the scoring statistic. Recall that ε is the privacy budget, so a 

smaller value of ε implies stronger privacy guarantees.

However, by releasing M SNPs according to their rankings, an attacker knows that the 

released SNPs have higher scores than all other SNPs regardless of the face value of the 

released scores. Therefore, we need a more sophisticated algorithm for releasing the M most 

significant SNPs.

Adapting from the differentially-private algorithm for releasing the most frequent patterns in 

Bhaskar et al. [22], Uhler et al. [2] suggested an algorithm (see Algorithm 1) for releasing 

the M most relevant SNPs ranked by their χ2- statistics or the corresponding p-values while 

satisfying differential privacy. They also showed that adding noise directly to the χ2-statistic 

achieves a better trade-off between privacy and utility than by adding noise to the p-values 

or cell entries themselves. Using the results from Section 3, we can now also apply this 

algorithm when the number of cases and controls differ.

While Algorithm 1 is based on the Laplace mechanism, in Algorithm 2 we propose a new 

algorithm based on the exponential mechanism by adopting and simplifying the ideas 

proposed by Johnson and Shmatikov [3]. The first application of the exponential mechanism 

in the GWAS setting was given in [2], which resulted in a di erentially private algorithm for 

detecting epistasis.

Theorem 4.1. Algorithm 2 is ε-differentially private.

Proof. See Appendix C.

5. Application of Differentially Private Release Mechanisms to Human 

GWAS Data

In this section we evaluate the trade-off between data utility and privacy risk by applying 

Algorithm 1 and Algorithm 2 with the new sensitivity results developed in Section 3 to a 

GWAS data set containing human DNA samples from WTCCC. We also compare the 

performance of Algorithm 1 and Algorithm 2 to that of the LocSig method developed by 

Johnson and Shmatikov [3]. Essential to the LocSig method is a scoring function based on 

the p-value of a statistical test. In this paper, we call the resulting scores the JS scores. In 

contrast to [3], which used the p-value of the G-test to construct the JS scores, we use the p-

value of the Pearson χ2-test instead.
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5.1. Data Set from WTCCC: Crohn's Disease

We use a real data set that was collected by the WTCCC and intended for genome-wide 

association studies of Crohn's disease. The data set consists of DNA samples from 3 cohorts, 

the subjects of which all lived within Great Britain and identified themselves as white 

Europeans: 1958 British Birth Cohort (58C), UK Blood Services (NBS), and Crohn's 

disease (CD). In the original study [23] the DNA samples from the 58C and NBS cohorts 

are treated as controls and those from the CD cohort as cases.

The data were sampled using the A ymetrix GeneChip 500K Mapping Array Set. The 

genotype data were called by an algorithm named CHIAMO (see [23]), which WTCCC 

developed and deemed more powerful than Affymetrix's BRLMM genotype calling 

algorithm. According to the WTCCC analysis, some DNA samples were contaminated or 

came from non-Caucasian ancestry. In addition, they indicated that some SNPs did not pass 

quality control filters. Finally, WTCCC [23] removed additional SNPs from their analysis 

by visually inspecting cluster plots.

5.2. Our Re-Analysis of the WTCCC Data

In [23], the authors mainly used the allelic test and the Pearson χ2-test to find SNPs with a 

strong association with Crohn's disease, and reported the relevant statistics and their p-

values for the most significant SNPs. In general, the Wellcome Trust Case Control 

Consortium [23] considered a SNP significant if its allelic test p-value or χ2-test p-value 

were smaller than 10−5. In the supplementary material of [23] they reported 26 significant 

SNPs, 6 of which were imputed. Per [23], imputing SNPs that do not exist in the WTCCC 

databases does not affect the calculation of the allelic test statistics or the Pearson χ2-

statistics of SNPs already in the WTCCC databases; therefore, we disregard the imputed 

SNPs in our analysis and retain 20 significant SNPs.

We followed the filtering process in [23] closely and removed DNA samples and SNPs that 

[23] deemed contaminated. However, we did not remove any further SNPs due to poor 

cluster plots. We verified that our processing of the raw genotype data leads to the same 

results as those published in the supplementary material of [23]: our calculations for 16 of 

the 20 reported significant SNPs match those in [23], deviating no more than 2% in allelic 

test statistic and χ2-statistic. However, we found that a number of significant SNPs were not 

reported by the WTCCC. We corresponded with one of the principal authors of [23] and 

received confirmation that the WTCCC also found those SNPs to be significant. However, 

Wellcome Trust Case Control Consortium [23] did not report these SNPs because they su 

ered from poor calling quality according to visual inspection of the cluster plot, a procedure 

that we did not implement. We excluded from our analysis these SNPs that have significant 

allelic test p-values or χ2-test p-values, but are not reported by the WTCCC.

In Figure 1 we plot the χ2-statistics resulting from our analysis in descending order. Note 

that there is a large gap between the 5th and the 6th largest χ2-statistics. This is an important 

observation for the risk-utility analysis of the perturbed statistics in Section 5.3. Because of 

the nature of the distribution of the top χ2-statistics in this data set, it is easier to recover all 
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top 5 SNPs as the top rated 5 SNPs in the perturbed data than it is to recover all top M SNPs 

for M < 5 or M > 5, as is evident in Figure 2, which we discuss in the next section.

To summarize, we were able to reproduce a high percentage of significant SNPs from [23]. 

Therefore, we are confident that our data processing procedure is sound and the χ2-statistics 

and allelic test statistics that we obtained from the data are comparable with those produced 

in a high quality GWAS.

5.3. Risk-Utility Analysis of Differentially Private Pearson χ2-statistics

In this section, we use the χ2-statistics obtained from the WTCCC dataset described in 

Section 5.1 and analyze the statistical utility of releasing di erentially private χ2-statistics for 

various privacy budgets, ε. With 1748 cases and 2938 controls in the WTCCC dataset, we 

use Corollary 3.5 to obtain a sensitivity of 4.27 for the χ2-statistic.

We define statistical utility as follows: let BS0 be the set of top M SNPs ordered according 

to their true χ2-statistics and let BS be the set of top M SNPs chosen after perturbation 

(either by Algorithm 1 using the Laplace mechanism or by Algorithm 2 using the 

exponential mechanism). Then the utility as a function of ε is

We perform the following procedure to approximate the expected utility  for 

Algorithm 1: (i) add Laplace noise with mean zero and scale  to the true χ2-statistics, 

where s is the sensitivity of the χ2-statistic; (ii) pick the top M SNPs with respect to the 

perturbed χ2-statistics; (iii) denote the set of SNPs chosen according to the true and 

perturbed χ2-statistics by S0 and S0, respectively; (iv) calculate . We repeat the 

aforementioned procedure 50 times for a fixed ε and report the average of the utility u(ε). To 

approximate  for Algorithm 2, we repeat 50 times the process of generating S by 

performing steps 1–5 in Algorithm 2 and report the average of the utility u(ε). In order to 

approximate  for the procedure LocSig from [3], we rank the SNPs by their χ2-

statistics but replace the scores in Step 1 by the JS scores.

The runtimes of the different algorithms vary considerably (see Table 3). The runtimes were 

obtained on a PC with an Intel i5-3570K CPU, 32 GB of RAM and the Ubuntu 13.04 

operating system. Calculating the χ2-statistics from genotype tables is a trivial task and takes 

very little time. Calculating the JS scores can be a daunting task, however, if one cannot find 

a clever simplification. The JS score is essentially the shortest Hamming distance between 

the original database and the set of databases at which the significance of the p-value 

changes. Thus without any simplifications, one would need to search the entire space of 

databases in order to find the table with the shortest Hamming distance. In our 

implementation for finding the JS score for a genotype table based on the p-value 

corresponding to the χ2-statistic, we simplify the calculation by greedily following the path 

of maximum change of the χ2-statistic until we find a table with altered significance.
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In Figure 2, we compare the performance of Algorithm 1 (based on the Laplace mechanism) 

and Algorithm 2 (based on the exponential mechanism) to LocSig ([3]). It is clear that when 

ε = 1, the LocSig method outperforms the other methods with respect to utility. 

Nevertheless, we note a few features regarding the performance of LocSig.

• When M = 3, the utility of the LocSig method cannot exceed 0.67 even as ε 

continues to increase. This artifact is due to the fact that the ranking of SNPs based 

on the JS scores is di erent from the ranking based on the χ2-statistics.

• Table 4 gives the top 6 SNPs ranked by their χ2-statistics and the corresponding JS 

scores. For all threshold p-values, the JS score of the 4th SNP is larger than that of 

the 2nd SNP and that of the ith SNP for i ≥ 5. Thus, when ε is sufficiently large, the 

LocSig method will almost always output the 1st, 3rd, and 4th SNPs. 

Consequently, the utility for the LocSig method will not increase when ε increases.

• The LocSig method is sensitive to the choice of p-value. This becomes apparent in 

the plots for M = 15 in Figure 2. The risk-utility curves of the LocSig method tend 

to have lower utility for the same ε when the threshold p-value is smaller.

• Even though Algorithm 1 and Algorithm 2 do not perform as well as the LocSig 
method for small values of ε, they do not suffer from the aforementioned issues. 

Furthermore, we can see from Figure 2 that the exponential mechanism always 

outperforms the Laplace mechanism, i.e., it achieves a higher utility for each value 

of ε.

To summarize, in this application Algorithm 2 outperforms Algorithm 1. The method based 

on LocSig improves on Algorithm 2 for small values of ε, but shows some problematic 

behavior when ε increases. Finally, the LocSig method comes at a much higher 

computational cost than the other two algorithms and might not be computationally feasible 

for some data sets.

6. Conclusions

A number of authors have argued that it is possible to use aggregate data to compromise the 

privacy of individual-level information collected in GWAS databases. We have used the 

concept of differential privacy and built on the approach in Uhler et al. [2] to propose new 

methods to release aggregate GWAS data without compromising an individual's privacy. A 

key component of the differential privacy approach involves the sensitivity of a released 

statistic when we remove an observation. In this paper, we have obtained sensitivity results 

for the Pearson χ2-statistic when there are arbitrary number of cases and controls. 

Furthermore, we showed that the sensitivity can be reduced in the situation where data for 

the cases (or the controls) are known to the attacker. Nevertheless, we also showed that the 

reduction in sensitivity is insignificant in typical GWAS, in which the number of cases is 

large.

By incorporating the two-step differentially-private mechanism for releasing the top M SNPs 

(Algorithm 1) with the projected Laplace perturbation mechanism (Theorem 3.6), we have 

created an algorithm that outputs significant SNPs while preserving di erential privacy. We 
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demonstrated that the algorithm works effectively in human GWAS datasets, and that it 

produces outputs that resemble the outputs of regular GWAS. We also showed that the 

performance of Algorithm 1, which is based on the Laplace mechanism, can be improved by 

using Algorithm 2, which is based on the exponential mechanism. Furthermore, Algorithm 2 

is computationally more efficient than the LocSig method of Johnson and Shmatikov [3], 

and it performs better for increasing values of ε.

Finally, we showed that a risk-utility analysis of the algorithm allows us to understand the 

trade-off between privacy budget and statistical utility, and therefore helps us decide on the 

appropriate level of privacy guarantee for the released data. We hope that approaches such 

as those that we demonstrate in this paper will allow the release of more information from 

GWAS going forward and allay the privacy concerns that others have voiced over the past 

decade.
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Appendices

Appendix A. Proof of Theorem 3.4

Proof. The Pearson χ2-statistic can be written as

(A.

1a)

(A.1b)

We denote a contingency table and its column sums by v = (r0, r1, r2, s0, s1, s2, n0, n1, n2). 

Let v′ = v + u, with v′ and v differing by Hamming distance 1. Finding the sensitivity of Y 

boils down to finding v and u that maximize .

Suppose r0 > 0 and consider u = (−1, 1, 0, 0, 0, 0, −1, 1, 0). As a conse quence of (A.1b) we 

find that
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Because r0 > 0, we get that n0 = r0 + s0 ≥ 1 + s0, and

Similarly,

Therefore,

A similar analysis for all possible directions u and scenarios in which r1 > 0 or r2 > 0 reveals 

that the sensitivity of Y is bounded above by .

Appendix B. Proof of Theorem 3.7

Proof. We denote a contingency table and its column sums by v = (r0, r1, r2, s0, s1, s2, n0, n1, 

n2). With the number of cases, R, and the number of controls, S, fixed, we can simply write 

vs = (s1, s2, n1, n2) or vr= (r1, r2, r1, r2). Then the allelic test statistic can be written as

Let v′ = v+u, with v′ and v differing by Hamming distance 1. Finding the sensitivity of YA 

boils down to finding v and v′ that maximize . This is equivalent to 

maximizing  and , with us and ur defined as 

follows:
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In other words, when r0 > 0, we search for tables that maximize  or 

; when s0 > 0, we search for tables that maximize  and 

.

Let's first consider the case r0 > 0. We have  and 

. Denote by

then

Therefore, tables that maximize  also maximize . 

Furthermore, for the same table vs, the change of YAA(vs) in the direction of  is no less 

than that in the direction of 

Fixing n1 and n2,  depends only on s1 and s2. So maximizing  is 

equivalent to maximizine the absolute value of

where . Note that the term D not 

depend on s1 or S2. There are three scenarios:

i. when n0 = n2,  is maximized when s1 + 

2s2 is minimized or maximized;
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ii. when n0 > n2,  is maximized when  is maximized or 

minimized, which occurs when s1 + 2s2 is minimized or maximized;

iii. when n0 < n2,  is maximized when  is maximized or 

minimized as well. Because

 is maximized when (s1+2s2) is minimized, and it is minimized when (s1 

+ 2s2) is maximized.

The preceding analysis shows that for any given n1 and n2,  is maximized when 

(s1 + 2s2) is maximized or minimized; in other words, to maximized , we only 

need to consider tables for which (s1, s2) = (0, 0) or (s1, s2) = (n1 n2).

Given (s1, s2) = (0, 0), we have , and

So  is maximized when 2n0 + n1 is minimized. Because (r0 > 0, s1 = s2 = 0) =⇒ 

(r0 ≥ 1, r1 = n1, r2 = n2, s0 = S) =⇒ (s0 ≥ S + 1, n1 ≥ 1), the minimum occurs at vs = (0, 0, 1, 

R − 2), i.e.,

Given (s1, s2) = (n1, n), we have , and
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Because (s1 = n1, s2 = n2) =⇒ (r1 = r2 = 0) =⇒ (r0 = R) =⇒ (n0 ≥ R), we have 

. So  is maximized when when 2n0+n1 

is minimized, which is occurs at vs = (1, S − 1, 1, S − 1), i.e.,

To summarize, when r0 > 0, for any table vs, the change of YA(vs) in the direction of  is no 

less than that in the direction of . The maximum change of YA in the direction of 

 occurs

The same analysis for s0 > 0 reveals that , 

and the maximum change of YA in the direction of 

Appendix C. Proof of Theorem 4.1

Proof. To show that Algorithm 2 is ε-differentially private, it suffices to show that choosing 

S is ε/2-differentially private. The rest of the proof follows from the proof of Algorithm 1 in 

Uhler et al. [2].

Following the notation in McSherry and Talwar [24], we define the random variable of 

sampling a single SNP, , by
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where q(D, i) is the score for SNPi, s is the sensitivity for the scoring function q(D, i), and 

μ(I) = 1/M′ is constant. We also define

where B is a set of SNPs and qB denotes the scoring function given that the SNPs in B have 

been sampled and thus have 0 sampling probability in subsequent sampling steps. Note that

Let σ denote a permutation of BS.
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Figure 1. 
Unperturbed top χ-statistics in descending order.
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Figure 2. 
Performance comparison of Algorithm 1 (“Laplace”), Algorithm 2 with χ2-statistics as 

scores (“Exponential”), and the LocSig method in Johnson and Shmatikov [3] (“JS”) based 

on the p-value of the χ2-statistic. Each row corresponds to a fixed M, the number of top 

SNPs to release. Each column corresponds to a fixed threshold p-value, which is relevant to 

the LocSig method only; it is irrelevant to the other methods. Data used to generate this 

figure consist of SNPs with p-values smaller than 10−5 and a randomly chosen 1% sample of 

SNPs with p-values larger than 10−5; the total number of SNPs used for calculation is 3882.
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Table 1

Genotype distribution

# of minor alleles

0 1 2 Total

Case r 0 r 1 r 2 R

Control s 0 s 1 s 2 S

Total n 0 n 1 n 2 N
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Table 2

Allelic distribution

Allele type

Minor Major Total

Case r1 + 2r2 2r0 + r1 2R

Control s1 + 2s2 2s0 + s1 2S

Total n1 + 2n2 2n0 + n1 2N
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Algorithm 1

The ε-differentially private algorithm for releasing the M most relevant SNPs using the Laplace mechanism.

Input: The score (e.g., χ2-statistic or allelic test statistic) used to rank all M′ SNPs, the number of SNPs, M, that we want to release, the 
sensitivity, s, of the statistic, and ε, the privacy budget.

Output: M noisy statistics.

1. Add Laplace noise with mean zero and scale 
4Ms
∊  to the true statistics.

2. Pick the top M SNPs with respect to the perturbed statistics. Denote the corresponding set of SNPs by S.

3. Add new Laplace noise with mean zero and scale 
2Ms
∊  to the true statistics in S.
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Algorithm 2

The ε-differentially private algorithm for releasing the M most relevant SNPs using the exponential 

mechanism.

Input: The score (e.g., χ2-statistic or allelic test statistic) used to rank all M′ SNPs, the number of SNPs, M, that we want to release, the 
sensitivity, s, of the statistic, and ε, the privacy budget.

Output: M noisy statistics.

1. Let S = ∅ and qi = score of SNPi.

2. For i ∈ {1, . . ., M′}, set wi = exp( ∊qi
4Ms

).

3. Set pi = wi ∕ ∑ j=1
M ′

wj, i ∈ {1, . . ., M′}, the probability of sampling the ith SNP.

4. Sample k ∈ {1, . . ., M′} with probability {p1, . . ., pM′}. Add SNPk to S. Set qk = –∞.

5. If the size of S is less than M, return to Step 2.

6. Add new Laplace noise with mean zero and scale 
2Ms
∊  to the true statistics in S.
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Table 3

Comparison of runtime for the simulations in Section.5.3 The number of repetitions is 50, the number of 

different values for M is 4, the number of different values for ε is 15, and the number of SNPs is around 4000. 

 is the set of SNPs to be released after the perturbation.

Method Time spent on generating S (in minutes) Time spent on calculating the scores (in minutes)

Algorithm 1 (Laplace) 0.04 ≈ 0

Algorithm 2 (Exponential) 1.53 ≈ 0

LocSig (JS) 2.00 3.50
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Table 4

Ranking of the top 6 SNPs by χ2-statistics and the corresponding JS scores. K denotes the total number of 

SNPs.

Scoring scheme Threshold p-value Score (nearest integer)

1st 2nd 3rd 4th 5th 6th

χ2-statistic - 61 54 54 52 48 34

JS score 0.001/K 51 31 37 33 25 6

JS score 0.01/K 61 38 47 41 33 13

JS score 0.05/K 69 43 55 48 38 18
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