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We used three different mouse glioma models to evaluate 
therapeutic effects and underlying mechanisms of a combi-
nation regimen with an agonist CD40 mAb and the COX-2 
inhibitor celecoxib. Treatment of glioma-bearing mice with 
the combination therapy significantly prolonged survival 
compared with either anti-CD40 mAb or celecoxib alone. 
The combination regimen promoted maturation of CD11b+ 
cells in both spleen and brain, and enhanced Cxcl10 while 
suppressing Arg1 in CD11b+Gr-1+ cells in the brain. Anti-
glioma activity of the combination regimen was T-cell 
dependent because depletion of CD4+ and CD8+ cells in 
vivo abrogated the anti-glioma effects. Furthermore, the 
combination therapy significantly increased the frequency 
of CD8+ T-cells, enhanced IFN-γ-production and reduced 
CD4+CD25+Foxp3+ T regulatory cells in the brain, and 
induced tumor-antigen-specific T-cell responses in lymph 
nodes. Our findings suggest that the combination therapy 
of anti-CD40 mAb with celecoxib enhances anti-glioma 
activities via promotion of type-1 immunity both in mye-
loid cells and T-cells.
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APCs	�A ntigen-presenting cells
Arg1	�A rginase 1
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Cxcl10	� C-X-C motif chemokine 10
COX-2	� Cyclooxygenase-2
Foxp3	� Forkhead box P3
gp100	�G lycoprotein 100
IFN-γ	� Interferon-gamma
IgG	� Immunoglobulin G

Abstract  Malignant gliomas are heavily infiltrated by 
immature myeloid cells that mediate immunosuppres-
sion. Agonistic CD40 monoclonal antibody (mAb) has 
been shown to activate myeloid cells and promote antitu-
mor immunity. Our previous study has also demonstrated 
blockade of cyclooxygenase-2 (COX-2) reduces immu-
nosuppressive myeloid cells, thereby suppressing glioma 
development in mice. We therefore hypothesized that a 
combinatory strategy to modulate myeloid cells via two 
distinct pathways, i.e., CD40/CD40L stimulation and 
COX-2 blockade, would enhance anti-glioma immunity. 
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IL	� Interleukin
i.p.	� Intraperitoneally
mAb	� Monoclonal antibody
MDSCs	� Myeloid-derived suppressor cells
MHC	� Major histocompatibility complex
NO	�N itric oxide
OVA	� Ovalbumin
PGE2	� Prostaglandin E2
SB	� Sleeping Beauty
TAMs	�T umor-associated macrophages
TNF	�T umor necrosis factor
WT	� Wild-type

Introduction

Gliomas account for approximately 30  % of all primary 
central nervous system tumors and 80 % of malignant brain 
tumors [1]. The current standard treatment for patients with 
malignant gliomas is surgery, followed by chemotherapy 
and radiation therapy [2]. Despite recent advances in cancer 
therapy, prognosis is dismal; especially for patients with 
the most aggressive and common malignant glioma (i.e., 
glioblastoma), the median survival is less than 15 months 
[1]. Hence, we seek to develop more effective treatments.

Myeloid cells often infiltrate intensively in cancer 
[i.e., tumor-associated macrophages (TAMs)]. Similar to 
Th1/Th2 polarization of T-cells, macrophages are also 
categorized into 2 groups according to the functional phe-
notypes: M1 and M2 cells [3]. TAMs are typically char-
acterized as M2-like phenotype, which play a role in pro-
moting tumor growth and suppressing type-1 immunity 
[3], and the degree of TAM accumulation correlates with 
a poor prognosis in a variety of cancer types [4]. Myeloid-
derived suppressor cells (MDSCs) are a cancer-associated 
heterogeneous population of immature myeloid cells and 
also critical mediators of immune suppression and tumor 
progression [5]. In contrast, M1 macrophages contribute to 
type-1 immune responses and demonstrate direct tumori-
cidal activities [3].

CD40 is a member of the tumor necrosis factor (TNF) 
receptor superfamily and expressed on antigen-presenting 
cells (APCs), such as macrophages and dendritic cells [6]. 
Signaling via CD40 on APCs initiates M1 polarization, 
including production of cytokines such as IL-12, TNF-α and 
nitric oxide (NO), and up-regulation of costimulatory mol-
ecules [7–10]. Agonistic CD40 mAb has been shown to acti-
vate myeloid cells, promote their M1 polarization and induce 
antitumor responses both in mice and humans [11–13].

Recent studies have demonstrated that TAMs fre-
quently up-regulate COX-2 expression, thereby enhanc-
ing prostaglandin E2 (PGE2) production [14, 15]. PGE2 
is one of the key factors in development and accumulation 

of MDSCs [16–18]. Inhibition of PGE2 biosynthesis in 
tumor-bearing mice retards tumor progression and reverts 
immunosuppressive functions of MDSCs [16, 17], and we 
have recently reported that COX-2 blockade delays glioma 
development in mice through reduction of MDSCs [18].

In this study, we investigated whether a combination of 
an agonistic anti-CD40 mAb combined with the COX-2 
inhibitor celecoxib induces potent anti-glioma activity 
in preclinical glioma models through modulation of two 
independent pathways related to myeloid cell functions. 
Our findings demonstrate that the combination therapy 
enhances anti-glioma effects through activation of both 
myeloid cells and T-cells.

Materials and methods

Mice

C57BL/6 background wild-type (WT) and B6.129S2-
Cd8atm1Mak/J (CD8-deficient) mice (female, 6–8 week old) 
were purchased from The Jackson Laboratory (Bar Harbor, 
ME). All mice were maintained and handled in accordance 
with the Animal Facility at the University of Pittsburgh per 
an Institutional Animal Care and Use Committee-approved 
protocol.

Antibodies

Rat anti-mouse CD40 mAb (FGK4.5), rat IgG2a (2A3) and 
rat IgG2b (LTF-2) isotype controls were purchased from 
BioXcell (West Lebanon, NH). Rat anti-CD4 mAb (GK1.5) 
was purchased from Taconic (Hudson, NY). The following 
antibodies were purchased from BD Biosciences (San Jose, 
CA): anti-CD80 (16-10A1), anti-CD86 (GL1), anti-CD45 
(30-F11), anti-CD11b (M1/70), anti-Gr-1 (RB6-8C5) and 
anti-CD25 (PC61). The following antibodies were pur-
chased from eBioscience (San Diego, CA): anti-CD3 (145-
2C11), anti-CD4 (GK1.5), anti-CD8 (53-6.7), anti-IFN-γ 
(XMG1.2) and anti-Foxp3 (NRRF-30).

Induction of de novo gliomas by intraventricular 
transfection of Sleeping Beauty  transposon‑flanked 
proto‑oncogenes

The procedure has been described previously [19]. Briefly, 
the following DNA plasmids were mixed with in vivo com-
patible DNA transfection reagent, in vivo-JetPEI (Poly-
plus Transfection, New York, NY): pT2/C-Luc//PGK-
SB100 (0.06  μg/mouse), Sleeping Beauty transposon 
(SB)-flanked pT2/CAG-NRasV12 (0.12  μg/mouse) and 
pT2/shp53/mPDGF (0.12 μg/mouse), and injected into the 
right lateral ventricle of neonates.
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Glioma cells

GL261 cells were kindly provided by Dr. Robert M. Prins 
(University of California Los Angeles, Los Angeles, CA). 
Quad-GL261 cells stably expressing human gp10025–33, 
OVA257–264, OVA323–339 and mouse I-Eα52–68 were gen-
erated [20] and kindly provided by Dr. John R. Ohlfest 
(University of Minnesota, Minneapolis, MN). For estab-
lishment of the SB28 glioma cell line, de novo glioma 
was induced as described above in a neonatal C57BL/6 
mouse in our laboratory. The brain tissue was harvested at 
7 weeks following the glioma induction, minced and then 
seeded on 100  mm dish in Dulbecco’s modification of 
Eagle’s medium [DMEM, Cellgro (#10-013), Mediatech, 
Inc., Manassas, VA] containing 50 U/ml penicillin, 50 μg/
ml streptomycin, 10 mM HEPES, 1 mM sodium pyruvate, 
100 μM 2-mercaptoethanol and 10 % heat-inactivated fetal 
bovine serum. The medium was changed once a week until 
glioma cells grew as monolayers. Subsequently, the cells 
were subcultured and cloned by limiting dilution. A clone 
with the highest luciferase activity (i.e., transgene expres-
sion) was selected and grown as the SB28 cell line.

Live animal imaging

The bioluminescence imaging (BLI) was performed by 
Xenogen IVIS200 Imaging System (Caliper, A Perki-
nElmer, Waltham, MA) after 10  min of intraperitoneal 
injection of D-Luciferin (Gold Biotechnology, Inc., St. 
Louis, MO, 4.5 mg in 150 μl of PBS/mouse) under isoflu-
rane anesthesia at the In Vivo Imaging Facility of the Uni-
versity of Pittsburgh Cancer Institute.

Therapeutic studies in mouse models

C57BL/6 mice were intracranially inoculated with Quad-
GL261 (1 × 105) or SB28 (5 × 104) cells in 2 μl of PBS 
at the bregma 3 mm to the right side of sagittal suture and 
3.5 mm below the surface of skull using stereotactic frame 
(David Kopf Instruments, Tujunga, CA), stereotaxic injec-
tor (Stoelting Co., Wood Dale, IL) and 10  μl Hamilton 
syringe (Hamilton, Nero, NV) under anesthesia on day 0. 
The therapy started on day 13: anti-CD40 mAb (100  μg 
in 100  μl of PBS/mouse) on day 13 or days 13 and 23 
intraperitoneally (i.p.), and/or celecoxib (Celebrex, Pfizer, 
150 ppm in powdered diet) through days 13–33 via diet. In 
de novo glioma model, after establishment of gliomas was 
confirmed using BLI between days 30 and 40 following the 
glioma induction, mice received anti-CD40 mAb (100 μg 
in 100  μl of PBS/mouse) on days T0 and T10 i.p. and 
celecoxib (150 ppm in powdered diet) through days T0 to 
T15 via diet (day T0 was defined as the first day of therapy 
following the confirmation of glioma establishment). Rat 

IgG2a isotype control and powdered diet without celecoxib 
were used for mock treatment. Mice were sacrificed when 
they showed any of following signs: hunchback, seizures, 
hemiparesis or weight loss of greater than 20 %.

In vivo cell depletion

C57BL/6 mice bearing Quad-GL261 glioma received i.p. 
injection of anti-CD4 mAb or rat IgG2b isotype control 
(each 50 μg in 100 μl of PBS/mouse) twice a week from 
days 12 to 33 after tumor inoculation.

Isolation of brain‑infiltrating leukocytes (BILs)

The procedure to isolate brain-infiltrating leukocytes 
(BILs) using Percoll (GE Healthcare Life Sciences, Pitts-
burgh, PA) has been described previously by us [21]. BILs 
from each individual were used for flow cytometry analy-
sis. For cell sorting of CD11b+Gr-1+ and CD11b+Gr-1− 
cells, BILs were pooled from 3 to 4 mice in each therapy 
group.

Flow cytometry

Cell surface, intracellular cytokine and Foxp3 were stained 
with fluorescein isothiocyanate (FITC)-, phycoeryth-
rin (PE)-, PE combined with a cyanine dye (PE-Cy7)- or 
allophycocyanin (APC)-conjugated mAbs. Intracellular 
cytokine staining Cytofix/Cytoperm™ Kit and Foxp3/
Transcription Factor Staining Buffer Set were purchased 
from BD Biosciences (San Jose, CA) and eBioscience (San 
Diego, CA), respectively, and analyses were performed 
according to the manufacturer’s instructions. The sam-
ples were collected, and the data were analyzed using BD 
Accuri C6 flow cytometer and software (BD Biosciences, 
San Jose, CA).

Cell sorting, RNA isolation and quantification of gene 
expression

CD11b+Gr-1+ and CD11b+Gr-1− cells from BILs har-
vested on day 5 after therapy were sorted by MoFlo (Beck-
man Coulter, Inc., Brea, CA) at the Cytometry Facility of 
the University of Pittsburgh Cancer Institute. Total RNA 
was extracted from the sorted cells using RNeasy Mini 
Kit (Qiagen Inc., Valencia, CA), reverse-transcribed by 
qScript™ cDNA SuperMix (Quanta BioSciences, Gaithers-
burg, MD), and then amplified with PerfeCTa qPCR Super-
Mix, ROX™ (Quanta BioSciences, Gaithersburg, MD) 
and each probe according to the manufacturer’s instruc-
tions. The following probes were purchased from Applied 
Biosystems (Life Technologies, Grand Island, NY): 
Cxcl10 (Mm00445235_m1), Agr1 (Mm00475988_m1) 
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and glyceraldehyde 3-phosphate dehydrogenase (Gapdh, 
Mm03302249_g1). Quantitative real-time PCR analysis 
was performed by StepOne™ Real-Time PCR Systems 
and Software (v2.3) (Life Technologies, Grand Island, 
NY). Gapdh was used as an internal control and to normal-
ize each mRNA expression level. Relative expression of 
mRNAs compared with control samples was calculated by 
the ddCt method.

CTL analysis

In vitro cytotoxicity was conducted using 6h  51Cr-release 
assay as described previously [21]. In brief, inguinal lymph 
node cells were harvested at 8 days after therapy and incu-
bated with GL261 cells loaded with or without synthetic 
peptide at an E:T ratio of 50:1. OVA257-264 (SIINFEKL) 
and human gp10025-33 (KVPRNQDWL) peptides were syn-
thesized by the University of Pittsburgh Peptide Synthesis 
Facility.

Statistical analyses

Log-rank test by GraphPad Prism software (GraphPad 
Software, Inc., La Jolla, CA) was used to determine signifi-
cant differences in the survival of mice on Kaplan–Meier 
plots among the groups. Mean values between two groups 
were compared using Student’s t test.

Results

Combination therapy of an agonistic anti‑CD40 mAb 
and the COX‑2 inhibitor celecoxib results in significantly 
improved survival of glioma‑bearing mice

We first determined whether a combination of an agonist 
anti-CD40 mAb and celecoxib induces effective anti-gli-
oma responses. C57BL/6 mice bearing Quad-GL261 cells 
were treated with i.p. administration of anti-CD40 mAb on 
day 13 and/or celecoxib via powdered diet through days 
13–33 after tumor inoculation. Rat IgG2a isotype was used 
as a control for anti-CD40 mAb. The combination of the 
two agents significantly prolonged survival in comparison 
with control mice (P = 0.023; Fig. 1a), while monotherapy 
with anti-CD40 mAb or celecoxib alone failed to improve 
survival. While the initial experiment used only one dose of 
anti-CD40 mAb, we then investigated the effect of adding 
secondary anti-CD40 mAb injection on day 23 using the 
same mouse model and schedule as previous experiments 
demonstrated in Fig. 1a, and found that the therapeutic effi-
cacy of the combined treatment, but not anti-CD40 mAb 
without celecoxib, was enhanced compared with the con-
trol group (P = 0.008; Fig. 1b).

To further evaluate the anti-glioma effects of the com-
bination regimen in a more clinically relevant setting, 
we employed de novo gliomas, which were induced by 
Sleeping Beauty (SB) transposon-mediated intraven-
tricular transfection of the oncogenes, NRas, PDGF and 
short hairpin P53 in neonatal C57BL/6 mice. These mice 
received anti-CD40 mAb or control IgG2a on days T0 and 
T10 and powdered diet with or without celecoxib through 
days T0 to T15 after we confirmed the establishment of 
gliomas using BLI. The relative change in tumor vol-
ume from day -T1 (baseline) to T15 was determined by 
BLI. As shown in Fig.  1c, the combination therapy sup-
pressed the growth of de novo gliomas compared with 
mock treatment (P  =  0.024). Moreover, using de novo 
glioma-derived SB28 cells, we confirmed that the combi-
nation regimen conferred significantly extended survival 
of SB28-bearing mice using the same treatment sched-
ule as used in experiments shown in Fig. 1b (P = 0.003; 
Fig.  1d). Taken together, these results demonstrate that 
the combined therapy with anti-CD40 mAb and celecoxib 
induces potent anti-glioma activity in multiple mouse 
models of glioma.

The combination therapy induces maturation and M1‑type 
polarization of CD11b+ cells

CD40 is a cell-surface molecule expressed on APCs such 
as dendritic cells and macrophages [6]. To elucidate the 
effects of the combination therapy on APCs, we evalu-
ated expression levels of maturation markers on CD11b+ 
cells in splenocytes and BILs on day 2 following the treat-
ment. In splenocytes, anti-CD40 mAb monotherapy and 
the combination therapy up-regulated CD80 and CD86 
(P < 0.001; Fig. 2a) at similar degrees, as well as MHC 
class I (H-2  Kb) and class II (I-Ab) expression (data not 
shown). On the other hand, in BILs, the combination 
therapy, but not anti-CD40 mAb monotherapy, signifi-
cantly enhanced CD80 expression on CD11b+ cells com-
pared with control and celecoxib treatment (P  =  0.021 
and P  =  0.026, respectively; Fig.  2b). However, none 
of these treatment groups changed expression levels of 
CD86 (Fig. 2b), MHC class I or class II in BILs (data not 
shown).

We have previously reported that COX-2 blockade 
suppresses gliomagenesis by inhibiting development and 
accumulation of CD11b+Gr-1+ immature myeloid cells 
in the brain using the SB  transposon-mediated de novo 
murine glioma [18]. Hence, we investigated whether 
anti-CD40 mAb in combination with celecoxib would 
effectively reduce CD11b+Gr-1+ cells in BILs using the 
Quad-GL261 glioma model. Unexpectedly, we observed 
no differences in the frequency of CD11b+Gr-1+ cells 
among the treatment groups (Fig.  2c, g). However, 
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CD11b+Gr-1+ cells in mice receiving the combination 
treatment showed significantly higher expression lev-
els of Cxcl10 mRNA compared with those cells in mice 
receiving control, anti-CD40 mAb or celecoxib alone 
(P  =  0.005, P  =  0.003 and P  =  0.007, respectively; 
Fig. 2e). Furthermore, the combination therapy markedly 
decreased expression of Arg1 mRNA in CD11b+Gr-1+ 
cells compared with mock and anti-CD40 mAb mono-
therapy (P < 0.001 and P = 0.041, respectively; Fig. 2f). 
On the other hand, when we evaluated CD11b+Gr-1− 
macrophages/microglia in BILs [22], although the per-
centage of CD11b+Gr-1− BILs was reduced by the 
combination regimen (Fig.  2d, g), we observed only 
background levels of Cxcl10 and Arg1 expression in 
CD11b+Gr-1− BILs isolated from mice with all treat-
ment groups (Fig. 2e, f). Because M1-like macrophages 
produce CXCL10 [23], which is induced by IFN-γ [24, 
25], and arginase-1 expression in mouse macrophages 
suppresses type-1 immunity [26], these data demon-
strate that anti-CD40 mAb in combination with celecoxib 
reverts the M2-polarized microenvironment of glioma 
and promotes the M1/type-1 milleau.

T‑cells play a major role in the observed anti‑glioma 
activity of the combination regimen

To investigate the possible involvement of T-cells in the 
observed anti-glioma activity of the combination regimen, 
we inoculated Quad-GL261 glioma cells in wild-type (WT) 
and CD8-deficient mice in which CD4+ cells were depleted 
(T-cell-depleted), and treated them with the combina-
tion of anti-CD40 mAb and celecoxib or mock treatment 
(Fig. 3a). Consistent with Fig. 1b, the combination regimen 
prolonged the survival of WT mice (P = 0.024). However, 
in T-cell-depleted mice, the combination treatment did not 
show improved survival of mice compared to mock treat-
ment (P  =  0.578), suggesting that the anti-glioma effect 
of the regimen is T-cell dependent. We found that the pro-
portion of CD8+ T-cells in BILs significantly increased by 
anti-CD40 mAb alone or the combination regimen in com-
parison with control (P  =  0.008 and P  =  0.026, respec-
tively), whereas the percentage of CD4+ T-cells was not 
different among the treatment groups (Fig.  3b) on day 5 
posttreatment. Similarly, in de novo gliomas, the combina-
tion therapy increased the frequency of glioma-infiltrating 
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CD8+ T-cells, but not CD4+ T-cells, compared with mock 
treatment on day 5 posttreatment (P = 0.034; Fig. 3c).

The combination therapy promotes effector functions 
and enhances antigen‑specific cytotoxic activity

To gain better understanding in functional effects of the 
combined treatment on T-cells, we analyzed IFN-γ produc-
tion by T-cells and the frequency of CD4+CD25+Foxp3+ 
regulatory T-cells in BILs derived from Quad-GL261 glio-
mas on day 5 following the treatment. As demonstrated 
in Fig.  4a, b, the combination regimen enhanced IFN-γ 
secretion by CD4+ T-cells and decreased the proportion of 
CD25+Foxp3+ in CD4+ T-cells in BILs compared to the 
mock treatment group (P = 0.002 and P = 0.040, respec-
tively). There were no significant changes in IFN-γ produc-
tion by CD8+ T-cells, although the combination therapy 
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celecoxib. BILs were harvested on day 5 after treatment and analyzed 
by flow cytometry. Bars and error bars indicate the mean and SD, 
respectively, from three independent experiments (b n =  8 for con-
trol, n =  6 for each of anti-CD40 and celecoxib groups, n =  7 for 
anti-CD40+ celecoxib, c n =  5 and 6 for control and anti-CD40+ 
celecoxib, respectively; *P < 0.05, **P < 0.01, t test)

Fig. 2   The combination therapy promoted maturation and M1-like 
polarization of CD11b+ cells. C57BL/6 mice bearing Quad-GL261 
glioma received the combination therapy, monotherapy with anti-
CD40 mAb or celecoxib, or mock therapy on day 13 following 
tumor inoculation. a Spleens and b BILs were harvested on day 
15 from individual mice. Expression levels of CD80 and CD86 
were evaluated by flow cytometry (n  =  5 for control, anti-CD40 
and celecoxib groups; n  =  4 for the anti-CD40+ celecoxib group; 
*P < 0.05, ***P < 0.001, t test). c, d Frequencies of CD11b+Gr-1+ 
and CD11b+Gr-1− cells in the brain were evaluated by flow cytom-
etry on day 5 after therapy (n = 8 for control, n = 6 for monother-
apy with anti-CD40 or celecoxib, in each group; n  =  7 for anti-
CD40+ celecoxib; *P < 0.05, **P < 0.01, ***P < 0.001, t test). e, 
f BILs were harvested on day 5 posttreatment. CD11b+Gr-1+ and 
CD11b+Gr-1− BILs were purified from pooled BILs (n  =  3–4 in 
each group) by cell sorting, and mRNA expression levels for Cxcl10 
and Arg1 were determined by real-time PCR. Bars and error bars 
indicate the mean and SD, respectively, from two independent experi-
ments (N.D. not detected; *P  <  0.05, **P  <  0.01, ***P  <  0.001, 
t test). g Representative flow data of BILs on CD11b+Gr-1+ and 
CD11b+Gr-1− cells on day 5 posttreatment

◂
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increased the percentage of CD8+ T-cells in BILs. Taken 
together, these data strongly suggest that anti-CD40 mAb in 
combination with celecoxib promotes effector functions, but 
reduces regulatory function of glioma-infiltrating T-cells.

We next evaluated whether the combination regimen 
would enhance tumor-antigen-specific immune responses. 
C57BL/6 mice bearing Quad-GL261 glioma, which sta-
bly express MHC class I epitopes of OVA and gp100 [20], 
received the combination or mock treatment on day 13 after 
tumor inoculation, and inguinal lymph node cells were iso-
lated on day 21 for evaluation of cytotoxic activities. We 
used GL261 cells loaded with OVA257-264 or gp10025-33  
peptide as target cells, as well as non-peptide-loaded 
GL261 cells as control target cells. As shown in Fig. 4c, the 
combination therapy enhanced antigen-specific cytotoxic 
activities against each of OVA257-264 and gp10025-33 peptide 
epitopes compared with mock treatment (P  =  0.004 and 
P  =  0.008, respectively), but we observed no significant 
cytotoxicity against parental GL261 cells.

Discussion

In this study, we demonstrate that the combined strategy 
aimed at modulation of myeloid cell functions through two 

distinct pathways, CD40 signaling and COX-2 blockade, 
promotes M1-like phenotype of myeloid cells, enhances 
effector functions, such as IFN-γ production and cytotox-
icity, of T-cells and prolongs survival of glioma-bearing 
mice. Interestingly, the observed efficacy of the combina-
tion regimen was dependent on T-cells.

Anti-CD40 mAb directly targets CD40+ tumors, such 
as B-cell lymphomas, melanomas and carcinomas [27–29]; 
however, monotherapy with anti-CD40 mAb also shows 
the potent therapeutic effects in CD40− tumors [28, 30, 
31]. There have been mixed observations regarding CD40 
expression in gliomas [32, 33]. In our hands, murine Quad-
GL261 and SB28 glioma cells do not express detectable 
CD40 (data not shown). CD40 ligation with an agonistic 
mAb can trigger both T-cell-dependent and T-cell-inde-
pendent antitumor responses in mice and patients [34]. 
While there are several studies with CD40 mAb mono-
therapy describing the induction of antitumor effects via 
activation of CD8+ T-cells, NK cells and macrophages [12, 
13, 30, 31, 35], we were not able to observe the therapeutic 
efficacy by anti-CD40 mAb monotherapy in mouse glioma 
models. Both anti-CD40 mAb monotherapy and its com-
bination with celecoxib enhanced the expression levels of 
CD80 on CD11b+ BILs and splenocytes at similar levels. 
However, only splenocytes, but not BILs, demonstrated the 

Fig. 4   The combination of 
anti-CD40 mAb and celecoxib 
improved IFN-γ response, 
reduced regulatory T-cells 
and induced antigen-specific 
cytotoxic activities. C57BL/6 
mice bearing day 13 Quad-
GL261 glioma received the 
combination, monotherapy with 
anti-CD40 mAb or celecoxib, 
or mock treatment. a IFN-γ 
production and b Foxp3 expres-
sion in BILs were determined 
by flow cytometry on day 18 
(a n = 8 for control, n = 6 
for each of anti-CD40 and the 
combination groups; b n = 5 
for control, n = 4 for each of 
anti-CD40 and the combination 
groups; *P < 0.05, **P < 0.01, 
t test). c Inguinal lymph node 
cells were harvested on day 
21, and specific cytotoxicity 
was evaluated against unpulsed 
GL261 or GL261 cells loaded 
with OVA257–264 or gp10025–33 
peptide by a 6-h 51Cr-release 
assay at an E:T ratio of 
50:1. Data are presented as 
mean ± SD. (n = 6 per group; 
**P < 0.01, t test)
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up-regulation of CD86, MHC class I and class II (Fig.  2 
and data not shown). Although anti-CD40 mAb (with or 
without celecoxib) significantly increased the proportion 
of CD8+ T-cells in BILs, only the combination regimen 
up-regulated IFN-γ production from CD4+ T-cells and 
reduced the percentage of CD4+CD25+Foxp3+ regulatory 
T-cells (Figs.  3b, 4b). Taken together, these data suggest 
that the addition of celecoxib reverses the balance of regu-
latory T-cells versus helper T-cells toward a more favorable 
Th1-polarized response.

Blockade of the COX-2 signaling pathway results in 
reduction of PGE2 biosynthesis, thereby inhibiting inflam-
mation [36], tumor progression and MDSC development 
in tumor-bearing mice [16–18]. In the current study, how-
ever, monotherapy with the COX-2-selective inhibitor 
celecoxib had no effect on survival and the proportion of 
CD11b+Gr-1+ cells in BILs (Figs.  1, 2). These contrast 
with our previous study with de novo mouse gliomas 
showing that celecoxib delays glioma growth through 
inhibiting MDSC development and their accumulation in 
the brain [18]. The main difference between these stud-
ies is the selection of mouse glioma models. We think that 
the effect of celecoxib monotherapy is sufficient to inhibit 
the growth of de novo gliomas, which are relatively slow 
growing and poorly immunogenic, but perhaps insufficient 
for controlling the rapid progression of gliomas estab-
lished by inoculation of cultured glioma cells in the cur-
rent study.

CXCL10 is secreted by multiple types of cells includ-
ing both myeloid cells and lymphocytes in response to 
IFN-γ and TNF-α [24, 25, 37], and induces chemotaxis, 
apoptosis, regulation of cell growth and angiogenesis [38, 
39]. CXCL10 also plays a critical role in the accumula-
tion of the leukocytes into inflammatory sites [38–40]. 
Several groups have shown that injection of plasmid vec-
tors expressing CXCL10 inhibits the glioma growth [41, 
42], and we have previously demonstrated a critical role 
of CXCL10 in homing of antigen-specific CD8+ T-cells to 
brain tumor lesions and survival [18, 21, 43, 44]. Consist-
ent with these previous findings, the combination therapy 
of anti-CD40 mAb and celecoxib remarkably enhanced 
Cxcl10 expression in CD11b+Gr-1+ cells (Fig. 2e) as well 
as CD8+ T-cell infiltration in the brain (Fig. 3b). Although 
anti-CD40 mAb monotherapy also increased the accumula-
tion of CD8+ T-cells compared with control treatment, it 
did not induce therapeutic effect. One possible interpreta-
tion for these observations is that functions of glioma-infil-
trating CD8+ T-cells in mice treated with anti-CD40 mAb 
alone may be impaired due to high Arg1 expression levels 
in CD11b+Gr-1+ cells. Arginase I is induced by COX-2 
through the PGE2-EP4 receptor signaling and depletes 
arginine in the tumor microenvironment, thereby suppress-
ing the function of infiltrating T-cells [16, 45]. COX-2 

inhibitors, such as celecoxib, block arginase I via inhibition 
of PGE2 [45]. Hence, the combination of celecoxib may 
play an important role in the activation of glioma-infiltrat-
ing CD8+ T-cells.

GL261 cells express T-cell epitopes derived from mela-
noma antigens gp100, tyrosinase-related protein 2 (TRP-2), 
EphA2 and GARC-1 [46–48]. However, in our data, the 
combination therapy did not induce detectable responses 
against these endogenously expressed antigen epitopes 
in parental GL261 cells (Fig.  4c). Hence, to evaluate the 
induction of adaptive immune responses against tumor-spe-
cific antigens, we used Quad-GL261 cells which expressed 
transgene-derived MHC class I-binding T-cell epitopes 
from OVA and human gp100 [26]. While we recognize the 
highly immunogenic nature of these epitopes, we were also 
able to demonstrate prolonged survival in mice bearing de 
novo and SB28 gliomas (Fig. 1c, d), which do not express 
xenogeneic epitopes, indicating that the combination regi-
men is also effective in weakly immunogenic glioma 
models.

Although cervical lymph nodes have been shown to be 
draining lymph nodes in murine gliomas [50], we detected 
a significant enhancement of tumor-specific T-cell response 
in the inguinal lymph nodes (Fig.  4c), but not in cervical 
lymph nodes (data not shown). One possible reason for this 
observation may be a more profound tumor-induced immu-
nosuppression in draining lymph nodes compared with dis-
tal lymph nodes [49] in the GL261 glioma model.

Our findings demonstrate that modulation of two dis-
tinct pathways, CD40 signaling and COX-2 blockade, 
activates not only innate immune response arms, such as 
myeloid cells, but also T-cell-mediated antitumor functions. 
Although it may be necessary to extend the duration and/or 
cycles of treatment regimen to further improve the survival 
of glioma-bearing mice, the combination therapy induces 
anti-glioma activity without combining with tumor-anti-
gen-specific immunotherapies, such as antigen-pulsed DC 
vaccination. Further investigations are warranted to evalu-
ate the addition of antigen-specific vaccines or T-cell adop-
tive transfer in the current combination regimen to develop 
more potent immunotherapeutic modalities. Considering 
the dismal prognosis of malignant glioma, the combination 
regimen of agonistic anti-CD40 mAb with celecoxib may 
be a useful strategy for treatment of patients with malignant 
gliomas.
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