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Abstract

Recent decision-making work has focused on a distinction between a habitual, model-free neural 

system that is motivated toward actions that lead directly to reward, and a more computationally 

demanding goal-directed, model-based system that is motivated toward actions that improve one’s 

future state. In this paper we examine how aging affects motivation toward reward-based versus 

state-based decision-making. Participants performed tasks in which one type of option provided 

larger immediate rewards, but the alternative type of option led to larger rewards on future trials, 

or improvements in state. We predicted that older adults would show a reduced preference for 

choices that led to improvements in state and a greater preference for choices that maximized 

immediate reward. We also predicted that fits from a HYBRID reinforcement-learning model 

would indicate greater model-based strategy use in younger than in older adults. In line with these 

predictions, older adults selected the options that maximized reward more often than younger 

adults in three of the four tasks and modeling results suggested reduced model-based strategy-use. 

In the task where older adults showed similar behavior to younger adults our model-fitting results 

suggested that this was due to the utilization of a win-stay-lose-shift heuristic rather than a more 

complex model-based strategy. Additionally, within older adults we found that model-based 

strategy use was positively correlated with memory measures from our neuropsychological test 

battery. We suggest that this shift from state-based to reward-based motivation may be due to age 

related declines in the neural structures needed for more computationally demanding model-based 

decision-making.

Individuals of all ages must regularly make important decisions and a central component of 

decision-making is motivation. Individuals are motivated to make decisions that are more 

likely to lead to positive outcomes and less likely to lead to negative ones. Recently, there 

has been a surge of work aimed at examining the distinction between model-free versus 

model-based decision-making strategies (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; 

Gershman, Markman, & Otto, 2012; Gläscher, Daw, Dayan, & O’Doherty, 2010; Otto, 

Gershman, Markman, & Daw, 2013; Otto, Raio, Chiang, Phelps, & Daw, 2013). Motivation 

plays a prominent role in distinguishing these two approaches to decision-making situations. 

Model-free decision-making is habitual and the motivational focus is centered on 
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performing actions that lead to reward or avoid punishment. Actions that lead to reward are 

reinforced and actions that lead to either punishment or no reward are not. By contrast, 

model-based decision-making is goal-directed and the motivational focus is on performing 

actions that improve one’s future state. Model-based decision-making requires individuals to 

utilize a model of the environment and consider how each action can affect both immediate 

and future outcomes. Model-free decision-making is reward-based because individuals are 

primarily motivated to perform actions that are followed by reward, while model-based 

decision-making is state-based because individuals are primarily motivated to perform 

actions that improve their future state (Gläscher et al., 2010).

Model-based and model-free decision-making processes are thought to be mediated by 

separate neural systems, with the weight given to each system varying across individuals 

and under different circumstances. Areas of the ventral striatum and medial prefrontal cortex 

(mPFC) are thought be critical for model-free decision-making (Hare, O’Doherty, Camerer, 

Schultz, & Rangel, 2008; O’Doherty, 2004). In addition to ventral striatal regions, the 

intraparietal sulcus and lateral regions of the PFC, particularly the dorsolateral PFC 

(DLPFC) have been implicated in model-based decision-making (Gläscher et al., 2010; 

Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013). For example, Smittenaar and 

colleagues showed that impairment of right DLPFC via transcranial magnetic stimulation 

(TMS) reduced model-based responding (Smittenaar et al., 2013). However, one study 

found that the model-based and model-free systems may utilize some of the same neural 

structures to compute state and reward-based information, particularly the ventral striatum 

(Daw et al., 2011).

In addition to neural dissociations of model-based and model-free systems, another 

distinction is that model-based decision-making is more computationally demanding as it 

requires a representation of the environment as well as internal goal states. Several recent 

studies have found an association between model-based decision-making and working 

memory processes (Gershman et al., 2012; Otto, Gershman, et al., 2013; Otto, Raio, et al., 

2013). In one study Otto and colleagues found that a stress manipulation shifted the balance 

from model-based to model-free decision-making and that individuals who were lower in 

working memory capacity were more likely to utilize model-free strategies when placed 

under stress (Otto, Raio, et al., 2013).

One important issue to consider is how aging affects this balance between model-based and 

model-free decision-making. Another way of framing this issue is whether healthy aging 

affects the degree to which individuals are motivated by habitual, reward-based processes 

versus goal-directed, state-based processes. One possibility is that older adults will show 

reduced model-based learning compared to younger adults due it being more 

computationally demanding. There is extensive evidence that aging is associated with 

declines in attention, working memory, and executive control (Salthouse, 2004, 2009). 

Given the increased cognitive demand for model-based compared to model-free decision-

making a clear prediction is that older adults will be less likely to engage in model-based 

decision-making. Eppinger and colleagues recently found support for this hypothesis 

(Eppinger, Walter, Heekeren, & Li, 2013). They utilized a two-stage Markov decision-

making task and found that younger adults were more likely to use a model-based strategy 
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than older adult who showed more evidence of model-free strategy-use. Compared to 

younger adults, older adults were more influenced by rewards and showed less strategic 

exploration of the task structure. The reduced reliance on model-based responding also led 

to poorer performance in terms of overall payoffs accumulated in the task. These results are 

consistent with other work that has found decision-making deficits in older adults (Denburg, 

Tranel, & Bechara, 2005; Denburg et al., 2009; Samanez-Larkin, Kuhnen, Yoo, & Knutson, 

2010).

However, in a recent paper from our lab we obtained results that we then interpreted as 

evidence for enhanced model-based responding in older adults (Worthy, Gorlick, Pacheco, 

Schnyer, & Maddox, 2011). In this study, older adults were more likely than younger adults 

to forego an option that led to larger immediate payoffs on each trial, and instead select an 

option that led to smaller immediate payoffs on each trial but also led to larger rewards on 

future trials, which made it the best choice. We concluded that this result was due to older 

adults engaging in a more model-based decision-making strategy where the future outcomes 

of their actions were given greater weight than the immediate outcomes.

One potential way to reconcile our findings with the recent results from Eppinger and 

colleagues (Eppinger, Walter, et al., 2013), that showed reduced model-based decision-

making in older adults, comes from another study in which we found that older adults are 

more likely to employ a heuristic-based win-stay-lose-shift (WSLS) strategy than younger 

adults (Worthy & Maddox, 2012). WSLS is a simple heuristic-based strategy where 

participants show a certain propensity to “stayby picking the same option following 

improvements in reward, or “shift” to a different option following declines in reward (Otto, 

Taylor, & Markman, 2011; Worthy, Hawthorne, & Otto, 2013; Worthy, Otto, & Maddox, 

2012). A WSLS strategy is distinct from both model-based and model-free strategies which 

are both reinforcement learning (RL) strategies that assume that participants 

probabilistically select options with higher expected values (Otto et al., 2011; Sutton & 

Barto, 1998; Worthy et al., 2013; Worthy et al., 2012). Older adults may show behavior that 

suggests that they are utilizing a complex model-based strategy, when in fact they are 

employing a simple heuristic-based WSLS strategy that is less computationally demanding.

In the current work we examine the degree to which older and younger adults utilize model-

free versus model-based reinforcement learning strategies as well as a heuristic-based WSLS 

strategy. We examine this issue in different tasks for which the optimal strategy is to either 

forego more immediately rewarding options in favor of options that provide larger rewards 

on future trials (Increasing-optimal task), or to select the larger immediately rewarding 

options because the gain from selecting the other options which increase rewards on future 

trials is so small that selecting the options that provide larger immediate rewards is the 

optimal strategy (Decreasing-optimal task). For each task, participants perform either a two 

or four-choice variant. The two-choice tasks in each of these experiments are direct 

replications of our prior work where older adults outperformed younger adults (Worthy et 

al., 2011). The four-choice variants extend these findings as they explore more 

computationally demanding decisions. Additionally, while prior work suggests that a WSLS 

strategy can account for performance in the two choice tasks (Worthy et al., 2012), as we 
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detail below, it will likely be less efficient when deciding from amongst four alternatives 

compared to model-free or model-based reinforcement-learning strategies.

Recent work has demonstrated that older adults actually prefer fewer decision options in a 

variety of contexts (Reed, Mikels, & Simon, 2008). While more options may seem like a 

beneficial or preferable aspect of many decision-making situations it can also unnecessarily 

increase the difficulty in obtaining and processing information about the various alternatives 

(Schwartz, 2000, 2009). While older adults have shown reduced preference for more 

decision options (Reed et al., 2008), and the number of choice options is a fairly pervasive 

variable in many important decision-making situations, to our knowledge, no studies have 

directly examined how the number of decision options affects decision-making behavior in 

older and younger adults.

In the remainder of the paper we first present our experiment and the behavioral results. We 

then fit the data with a simple WSLS model and a sophisticated HYBRID RL model that 

allows us to infer the degree to which older and younger adults are relying on model-free 

versus model-based processes. We predict that the RL model will fit the data best overall, 

particularly in the four-choice conditions, and that older adults will show less evidence of 

model-based responding than younger adults. However, we also predict that older adults will 

show more evidence of utilizing a WSLS strategy than younger adult in the two-choice 

Increasing optimal task which should lead to equal or better performance in the task, despite 

differences in strategy use.

Experiment

Participants completed a dynamic decision-making task that differed based on the 

combination of two task types (Increasing or Decreasing optimal) and two different numbers 

of choice alternatives (two-choices versus four-choices). These types of dynamic decision-

making tasks have been used in much recent work to examine how people learn to forego 

larger immediate rewards in favor of options that improve future rewards (Byrne & Worthy, 

2013; Cooper, Worthy, Gorlick, & Maddox, 2013; Gureckis & Love, 2009a, 2009b; 

Maddox, Gorlick, Worthy, & Beevers, 2012; Otto, Gureckis, Markman, & Love, 2009; 

Worthy et al., 2011). Figure 1 shows the reward structure for each task. In the two-choice 

variant there are two options: a decreasing option and an increasing option. The decreasing 

option always provides a larger reward on any given trial; however, the rewards possible for 

both options increase as the increasing option is chosen more frequently over a span of 10 

trials. As participants select the increasing option more often, rewards increase, whereas as 

participants selected the decreasing option more often, rewards decreased. Thus, selecting 

the decreasing option results in greater immediate reward, but selecting the increasing option 

improves one’s future state by leading to larger rewards for both options. The four-choice 

tasks were identical to the two-choice tasks except there were two increasing and two 

decreasing options, rather than just one of each type.

In the “Increasing-optimal” task shown in Figure 1a the optimal strategy was to consistently 

select the increasing option which improved participants’ state by increasing rewards on 

future trials for both options as it was selected more often. If participants selected the 
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increasing option on each trial then they would eventually reach the highest state (10) and 

earn 80 units of oxygen on each trial throughout the task, however, if they selected the 

decreasing option on each trial then they would reach the lowest state (0) and earn only 40 

units of oxygen on each trial. A model-based strategy should lead to better performance in 

the Increasing-optimal tasks compared to a model-free strategy because participants using a 

model-based strategy should be more likely to select the increasing option which improves 

their state on future trials. However, participants may select the Increasing option more 

frequently if they are utilizing a WSLS strategy, particularly in the two choice variant, 

where declines in successive rewards from selecting the Decreasing option may make them 

more likely to shift to the Increasing option.

In contrast, in the “Decreasing-optimal” task in Figure 1b the optimal strategy is to 

repeatedly select the decreasing option because the maximum value that could be obtained 

from repeatedly selecting the increasing option (55 units of oxygen) is smaller than the 

minimum value that could be obtained from simply selecting the decreasing optimal task on 

each trial (65 units of oxygen). A model-based strategy may actually lead to poorer 

performance in the Decreasing optimal task because attempting to improve one’s future state 

is counterproductive, and the optimal strategy is to instead select the option that leads to the 

largest reward on each trial.

If older adults are more likely to utilize a model-free strategy, compared to younger adults, 

then they should perform better on the Decreasing optimal tasks, but worse on the Increasing 

optimal tasks. However, our previous work suggests that older adults are able to perform as 

well as younger adults in the two-choice variant of the Increasing-optimal task and this may 

be due to their utilization of a WSLS strategy (Worthy et al., 2011; Worthy & Maddox, 

2012). Fits of our HYBRID RL and WSLS models should help distinguish between model-

based and model-free RL strategies and WSLS heuristic-based strategies.

Method

Participants

Ninety-one older adults (average age 67.63) from the greater Austin and College Station, 

Texas communities and 91 younger adults (average age 22.51) from the University of Texas 

and Texas A&M University communities were paid $10 per hour for their participation. 

Informed consent was obtained from all participants and the experiment was approved for 

ethics procedures using human participants.

Neuropsychological Testing Procedures

Older adults were given a series of standardized neuropsychological tests designed to assess 

general intellectual ability across attention (WAIS-III Digit Span, (Wechsler, 1997)), 

executive functioning (Trail Making Test A&B (TMT), FAS (Lezak, 1995); Wisconsin Card 

Sorting Task (WCST(Heaton, 1981), and memory (California Verbal Learning Test (CVLT, 

(Fridlund & Delis, 1987). The tests were administered in one two-hour session.

Normative scores for each subject were calculated for each neuropsychological test using 

the standard age-appropriate published norms. Tables 1 and 2 show the means, standard 
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deviations, and ranges of standardized z-scores on each test for older adults in both the 

Increasing and Decreasing-optimal tasks. All WAIS subtest percentiles were calculated 

according to the testing instructions and then converted to standardized z-scores. The CVLT 

and WCST standardized t-scores were calculated according to testing directions then 

converted to standardized z-scores, and the TMT standard z-scores were calculated 

according to the testing instructions. Subjects were excluded from participation if they 

scored more than two standard deviations below the standardized mean on more than one 

neuropsychological test in the same area (memory, executive functioning, or attention). We 

did not have to exclude any subjects based on this criterion.

Materials and Procedure

As described above, participants completed either the two or four-choice variant of either 

the Increasing or Decreasing optimal task. Figure 2 shows a sample screen shot for the two-

choice (Figure 2a) and four-choice (Figure 2b) conditions. On each trial, participants 

selected from one of the options and the narrow bar labeled “Current” would fill up to 

represent the amount of oxygen that had just been extracted (colored blue). The oxygen 

would then appear to be transferred to the larger tank labeled “Cumulative” which would 

indicate the amount of oxygen the participant had gained up to that point. Participants were 

given a goal of extracting a certain amount of oxygen by the end of the experiment, 

represented by the line near the top of the Cumulative tank. The goal could be achieved by 

selecting the optimal option on 80% of trials.

Figure 1 shows the reward structure for each task. In the two-choice task there were two 

options: a decreasing option and an increasing option. In the Increasing optimal task the 

optimal strategy was to select the increasing option on each trial, and in the Decreasing 

optimal task the optimal strategy was to select the Decreasing option on each trial. The four-

choice task variants were identical to the two-choice variants except there were two 

increasing and two decreasing options, rather than just one of each type. The increasing and 

decreasing options were yoked so that the participant’s location on the x-axis in Figures 1a 

and 1b, or their state, on each trial was determined from the number of times they had 

selected either increasing option over the ten previous trials. Participants were told nothing 

about the reward structure of the task and had to learn the immediate and delayed effects of 

selecting each option from experience. They performed a total of 250 trials and were told 

whether or not they reached their goal at the end of the experiment.

Results

We first examined the proportion of trials where participants selected the increasing option 

in 50-trial blocks of the task. Selecting this option should increase participants’ state on 

future trials and is the optimal choice for the Increasing optimal task but the sub-optimal 

choice for the Decreasing optimal task. Figure 3 shows the proportion of increasing option 

selections separately for each task. A 2 (Age: older versus younger adults) X 2 (Task-type: 

Increasing versus Decreasing optimal) X 2 (Choice options: two versus four) X 5 (50-trial 

block) repeated measures ANOVA revealed a significant effect of block, F(4, 696)=26.51, 

p<.001, partial η2=.13. There was also a significant Age X Block interaction, F(4,696)=2.59, 
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p<.05, partial η2=.02. To examine this interaction we looked at the effect of block within 

each age group. There was a significant effect of block for both older adults, F(4,360)=6.96, 

p<.001, partial η2=.07, and younger adults, F(4,360)=20.91, p<.001, partial η2=.19. Notably, 

the effect size was substantially larger for younger than for older adults. Visual inspection of 

Figure 3 suggests that younger adults selected the increasing option more frequently as the 

task progressed than older adults. There was also a significant task type X block interaction, 

F(4, 696)=7.57, p<.001, partial η2=.05. To determine the locus of this interaction we 

examined the effect of block within each task type. The effect of block was significant in 

both the Increasing, F(4,340)=25.95, p<.001, partial η2=.23, and Decreasing optimal tasks, 

F(4,380)=4.94, p<.01, partial η2=.05, but the effect was substantially larger in the Increasing 

optimal task. No other interactions reached significance.

We also observed a significant between-subjects main effect of age, F(1,174)=13.42, p<.

001, partial η2=.07, where older adults (M=.35, SD=.24) selected the Increasing option less 

than younger adults overall (M=.47, SD=.26), and a significant main effect of task type, 

F(1,174)=43.48, p<.001, partial η2=.20, where participants selected the increasing option 

more often in the Increasing optimal task (Increasing optimal, M=.52, SD=.26; Decreasing 

optimal, M=.32, SD=.20). In addition to a significant two-way interaction between age and 

choice options, F(1,174)=5.13, p<.05, partial η2=.03, there was also a significant three-way 

age X task type X choice options interaction, F(1,174)=4.74, p<.05, partial η2=.03.

To decompose the three-way interaction we examined effects of age and choice options 

within each task type condition. In the Increasing optimal task the effects of age, 

F(1,82)=2.74, p=.10, and choice options did not reach significance, F(1,82)=1.52, p=.22, but 

there was a significant age X choice option interaction, F(1,82)=7.32, p<.01, partial η2=.08. 

Within the two choice condition older adults (M=.52, SD=.21) selected the Increasing option 

more than younger adults (M=.45, SD=.30) over all trials, but the difference was not 

significant, F(1,37)<1, p=.39. In contrast, within the four-choice condition there was a 

significant main effect of age, F(1,45)=10.92, p<.01, partial η2=.20, where younger adults 

(M=.68, SD=.22) selected the increasing option more frequently than older adults (M=.44, 

SD=.26).

In the Decreasing optimal task there was a strong effect of age, F(1,92)=14.97, p<.001, 

partial η2=.14, where older adults (M=.23, SD=.16) selected the increasing option much less 

often than younger adults (M=.39, SD=.21). The effect of choice options, F(1,92)=1.73, p=.

19 and the age X choice option interaction were both non-significant (F<1, p=.94). Thus 

older adults performed better on both versions of the task than younger adults.

Model-based Analyses

We fit a WSLS model as well as a HYBRID RL model similar to that recently used by 

Eppinger and colleagues to examine the degree to which decisions are model-free versus 

model-based (Eppinger, Walter, et al., 2013). In addition we also fit a Baseline or null model 

that assumes a stochastic response process (Worthy & Maddox, 2012; Worthy et al., 2012; 

Yechiam & Busemeyer, 2005).
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The WSLS model is identical to the model we used in a previous paper (Worthy & Maddox, 

2012) The model has two free parameters. The first parameter represents the probability of 

staying with the same option on the next trial if the reward received on the current trial is 

equal to or greater than the reward received on the previous trial:

(1)

In Equation 1 r represents the reward received on a given trial. The probability of switching 

to another option following a win trial is 1-P(stay|win). In the four choice tasks, to determine 

the probability of selecting each of the other three options this value is divided by three so 

that the probabilities for selecting each option sum to one. This is important as it makes the 

WSLS strategy less effective in the four-choice task than in the two choice task because the 

model assumes that one of the other three alternatives is selected randomly.

The second parameter represents the probability of shifting to the other option on the next 

trial if the reward received on the current trial is less than the reward received on the 

previous trial:

(2)

In the four choice task variants this probability is divided by three and assigned to each of 

the other three options. The probability of staying with an option following a “loss” is 1-

P(shift|loss). Thus, this model assumes a simple, heuristic-based strategy that requires only 

the reward received on the previous trial to be maintained in working memory e.g. (Otto et 

al., 2011; Worthy et al., 2012).

The HYBRID RL model assumes that participants observed the hidden state (s) on each 

trial, which was equivalent to the number of times the increasing option had been selected 

over the previous ten trials. The model values options based on both the probability of 

reaching a given state on the next trial (s′) by selecting action a (the model-based 

component), and on the rewards experienced in each state (the model-free component). This 

model is similar to other models that have assumed that subjects use state-based information 

to determine behavior (Daw et al., 2011; Eppinger, Walter, et al., 2013; Gläscher et al., 

2010; Gureckis & Love, 2009a). Following each trial in state s and arriving in state s’ after 

having taken action a the model computes a state prediction error (SPE):

(3)

Next, the model updates the state transition probability:

(4)
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Here η is a free parameter that controls the learning rate for the state-transition probabilities. 

The state-transition probabilities for all other states not arrived at (denoted as s″) are reduced 

according to:

(5)

This ensures that all transition probabilities at a given state sum to 1.

The model also tracks the model-free expected reward values for each action in each state 

(QMF(s,a)) using a SARSA learner (State-Action-Reward-State-Action(Gläscher et al., 

2010; Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006). On each trial the model computes 

the reward prediction error (δRPE):

(6)

The prediction error is then used to update the expected value for the current state action 

pair:

(7)

Here α is a free parameter that represents the learning rate for state-action pairs on each trial. 

The model also has the ability to allow reward information gained for actions in a specific 

state to be generalized across states which has been shown to improve model fits in the same 

task (Gureckis & Love, 2009a). For each state other than the state on the current trial 

(denoted as s*) the QMF value for the same action selected on the current trial is updated:

(8)

Here θ represents the degree to which the rewards received on each trial are generalized to 

the same action in different states.

After updating state-transition probabilities and expected reward value information the 

model then computes a model-based value for each action in each state (QMB(s,a)) using a 

FORWARD learner that incorporates the state-transition probabilities and the Bellman 

equation to determine the future value of each action (Eppinger, Walter, et al., 2013; 

Gläscher et al., 2010). In this task there are three possible states that participants will 

transition to on the next trial (s’) following action a on the current trial (they can stay in the 

same state or move up or down one state). We estimated the QMB value for each state-action 

pair by the following equation:

(9)

Worthy et al. Page 9

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



This function multiplies the probability of transitioning to each possible state on the next 

trial, having taken action a in trial t, by the maximum expected reward in state s’ for either 

action.

The model then determines a net value for each action (QNet(s,a)) by taking a weighted 

average of the model-based and model-free expected values:

(10)

Where ω is a free parameter that determines the degree to which choices are based on the 

model-based versus model free components of the model.

Finally, the probability of selecting each action is determined using the Softmax rule:

(11)

Here β is an inverse temperature parameter that determines the degree to which participants 

exploit the option with the highest expected value. Larger β estimates are indicative of more 

consistently selecting the highest valued option, and as β approaches 0 each option is 

selected randomly. The autocorrelation, or perseveration parameter, π accounts for 

tendencies to perseverate (π>0) or switch (π<0) regardless of the outcome on the last trial. 

For the option that was selected on the prior trial rep(a) is set to 1, and for all other options 

rep(a)=0 (Daw et al., 2011; Eppinger, Walter, et al., 2013; Lau & Glimcher, 2005). In total 

the RL model included six free parameters: η, α, θ, ω, β, and π.

Finally, the Baseline model had one free parameter for the two choice task which represents 

the probability of selecting option a. This parameter is subtracted from 1 to determine the 

probability of selecting the other option. For the four-choice task the Baseline model had 

three free parameters representing the probability of selecting three of the four options on 

any given trial. The probability of selecting the fourth option is 1 minus the sum of the 

probabilities of the three other options.

Modeling Results—We fit each participant’s data individually with the WSLS, RL, and 

Baseline models detailed above. The models were fit to the choice data from each trial by 

maximizing log-likelihood. We used Akaike weights to compare the relative fit of each 

model (Akaike, 1974; Wagenmakers & Farrell, 2004). Akaike weights are derived from 

Akaike’s Information Criterion (AIC), which is used to compare models with different 

numbers of free parameters. AIC penalizes models with more free parameters. For each 

model, i, AIC is defined as:

(12)

where Li is the maximum likelihood for model i, and Vi is the number of free parameters in 

the model. Smaller AIC values indicate a better fit to the data. We first computed AIC 

values for each model and for each participant’s data. Akaike weights were then calculated 
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to obtain a continuous measure of goodness-of-fit. A difference score is computed by 

subtracting the AIC of the best fitting model for each data set from the AIC of each model 

for the same data set:

(13)

From the differences in AIC we then computed the relative likelihood, L, of each model, i, 

with the transform:

(14)

Finally, the relative model likelihoods are normalized by dividing the likelihood for each 

model by the sum of the likelihoods for all models. This yields Akaike weights:

(15)

These weights can be interpreted as the probability that the model is the best model given 

the data set and the set of candidate models (Wagenmakers & Farrell, 2004).

We computed the Akaike weights for each model for each participant. Table 1 shows the 

average Akaike weights for participants in each condition. Akaike weights were highest for 

the RL model for both younger and older adults in every condition, except for the two-

choice Increasing optimal task condition where older adults’ data were best fit by the WSLS 

model. Akaike weights for the WSLS model were significantly higher for older than for 

younger adults in this condition, t(37)=2.15, p<.05, while Akaike weights for the RL model 

were significantly lower for older adults compared to younger adults, t(37)=−2.11, p<.05 

This suggests that one potential reason why older adults performed as well as younger adults 

in this task was because they were using a WSLS strategy, whereas younger adults may 

have been using a more sophisticated model-based RL strategy.

To examine our hypothesis that younger adults would give greater weight to the model-

based system than older adults we examined the best-fitting values for the ω parameter, 

which estimated the weight given to the model-based component of the model. A 2 (Age) X 

2 (Task type) X 2 (Choice options) ANOVA revealed a significant effect of age, 

F(1,174)=9.13, p<.01, partial η2=.05, where older adults’ data (M=.68, SD=.32) were best 

fit by lower ω parameter values than data from younger adults (M=.82, SD=.27). There was 

also a significant main effect of task-type, F(1,174)=5.16, p<.05, partial η2=.03, and a 

significant task type X choice-option interaction, F(1,174)=5.58, p<.05, partial η2=.03. 

Within the Increasing-optimal task ω parameter values were significantly higher for the 

four-choice variant than for the two choice variant, t(84)= −2.20, p<.05, but there was no 

effect of choice options within the Decreasing optimal task, t(94)=1.04, p=.30. No other 

effects or interaction were significant.
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We also examined the correlation between estimated ω parameter values and the proportion 

of trials participants selected the Increasing option over the course of the task. There was a 

strong positive association in both the Increasing-optimal (r=.63, p<.001) and the 

Decreasing-optimal task (r=.55, p<.001).

Association with Neuropsychological Measures

Finally, we examined whether any of the scores from the neuropsychological measures that 

we collected from our older adult participants were correlated with the proportion of 

increasing option selections and with the average ω parameter estimates that indicated the 

extent to which participants were using a model-based decision-making strategy. There were 

no significant associations between any of the neuropsychological measures and the 

proportion of increasing option selections. However, we observed strong positive 

associations between ω parameter estimates and CVLT immediate cued recall (r=.32, p<.

01), delayed free recall (r=.34, p<.01), delayed cued recall (r=.40, p<.001), and recognition 

for true positives (r=.44, p<.001) which suggests that higher scores on these measures were 

associated with greater weight to the model-based component of the model.

Discussion

We examined whether older and younger adults would be more motivated to maximize the 

rewards they receive following each action or whether they would be motivated to take 

actions that improved their future state. These motivational tendencies reflect distinct 

decision-making strategies and are mediated by separate neural systems. Our results provide 

strong support for our hypothesis that older adults rely less on a goal-directed model-based 

system compared to younger adults. Older adults selected the option that maximized 

immediate reward more often than younger adults in three of the four conditions. In the only 

condition where they selected the Increasing option at a greater rate than younger adults, 

model-fits suggested that their data were better fit by a WSLS heuristic-based strategy and 

that they were not utilizing a model-based strategy at a greater rate than younger adults.

The examination of the best-fitting ω parameter values, which weighed the output of the 

model-based versus model-free components of the RL model, showed that these parameter 

estimates were consistently higher for younger adults than for older adults. This offers 

support for the hypothesis that younger adults are more likely to utilize complex model-

based strategies than older adults and is in line with the findings of Eppinger and colleagues 

where they showed that older adults used model-based strategies to a lesser extent than 

younger adults in a two-stage Markov task (Eppinger, Walter, et al., 2013). This parameter 

was also strongly associated with the proportion of trials participants selected the increasing 

option, which led to improvements in the participant’s state on future trials.

Our analysis of the association between the neuropsychological measures we administered 

to our older adult participants and the estimated ω parameter values showed robust positive 

associations between four measures from the CVLT and the weight given to the model-

based component of the model. This is in line with work that suggests that model-based 

decision-making is reliant on working memory and executive function (Gershman et al., 

2012; Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013). It also aligns with work that 
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suggests that the model-based system is reliant on DLPFC (Smittenaar et al., 2013), an area 

that plays a critical role in working memory (Curtis & D’Esposito, 2003). However, it is 

important to note that Eppinger and colleagues found a link between working memory and 

model-based decision-making for younger adults, but not for older adults (Eppinger, Walter, 

et al., 2013). This discrepancy could be due to differences in the decision-making tasks and 

measures of working memory between the two studies. Additionally, it’s also important to 

note that we did not observe any link between model-based responding and other measures 

of working memory or executive attention aside from the four measures from the CVLT, 

which might have been expected. However, we did observe weak but positive associations 

between best-fitting ω parameter values and performance on the Digit Span (r=.16, p=.10), 

and the FAS (r=.19, p=.06). Future work should further examine the link between model-

based learning and measures of working memory and executive function in both younger 

and older adults. An additional question is whether reduced model-based responding 

predicts more severe age-related cognitive decline.

It is important to note that in the Decreasing optimal tasks younger adults showed a strong 

tendency to value improving their state over maximizing reward, even when doing so was 

disadvantageous. Younger adults even selected the sub-optimal Increasing option more 

frequently as the task progressed, while older adults selected the Increasing option at the 

same rate across the four-choice variant of the task and at a slightly higher rate toward the 

end of the two-choice variant of the task. This suggests that younger adults are less likely to 

be satisfied with simply obtaining greater reward and are instead motivated by the goal of 

improving their future state, even when doing so is counterproductive. The fact that younger 

adults showed a strong tendency to select the poorer, increasing option more over course of 

the task might be surprising in that one could reasonably assume that if participants 

understood the contingencies of the task and sufficiently engaged then we would observe a 

higher proportion of optimal choices by the end of the task. We believe our results support 

our assertion that younger adults are more motivated to improve their future state than to 

maximize reward, and that the higher proportions of increasing option selections in both 

tasks is due to their learning the state-transition probabilities over time and selecting the 

Increasing option which has a higher probability of improving their future state.

Additionally, it is also important to note that younger adults selected the increasing option 

more frequently in the four-choice variant of the Increasing-optimal task than in the two-

choice variant. While speculative, one possibility is that younger adults viewed the four-

choice task as more challenging and were more motivated to take actions that improved their 

future state. Younger adults, who we argue have a motivational bias toward improving their 

future state, may have felt more motivated by a more challenging four-choice task and this 

may have enhanced their default motivation to attempt to improve their state. However, we 

acknowledge that we did not predict, a priori, an advantage for younger adults performing 

the four-choice task over those performing the two-choice task. Future work should further 

examine this issue.

Overall, the results from the two-choice tasks in the current study replicate those from our 

previous paper (Worthy et al., 2011). However, one subtle difference is that in the previous 

paper older adults selected the increasing option less over time in the Decreasing-optimal 
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task, but in the current paper older adults selected the increasing option slightly more over 

time. However, a repeated measures ANOVA showed no interaction between block and the 

study that the data came from, F(4,192)=1.20, p=.31. Thus, the data from the present study 

are consistent with our previously published paper (Worthy et al., 2011).

The results of our study are also consistent with a previous meta-analysis by Mata and 

colleagues that suggests that older adults tend to stick with behaviors that are initially 

beneficial to a greater extent that younger adults, but they must learn to avoid these options 

if they prove detrimental over time (Mata, Josef, Samanez-Larkin, & Hertwig, 2011). In our 

tasks the decreasing option may appear more initially rewarding than the increasing option 

in the Decreasing-optimal task, where it provides 60 more points on each trial, than in the 

Increasing-optimal task, where it provides only 10 more points on each trial. Because of this, 

older adults may have a stronger tendency to stick with the decreasing option in the 

Decreasing-optimal task, but they may be more willing to engage in heuristic-based WSLS 

strategies in the Increasing optimal task in order to improve their rewards on future trials. 

Additionally, this interpretation is also consistent with the association between memory 

measures and model-based decision-making in older adults where older adults with greater 

memory ability may be more capable of overcoming the initial bias toward model-free 

strategy use in favor of model-based strategy use.

One important question regarding our results is whether they suggest that older adults are 

more motivated to pursue immediate rewards than to improve their future state, per se, or 

whether they lack sufficient cognitive resources to engage in the model-based decision-

making that is required to improve one’s future state. In other words, are our findings due to 

a difference in motivation or in cognitive resources? It’s very likely that older adults would 

want to improve their future state if they had knowledge that it was productive to do so, but 

in our tasks they may have been unable to assess the degree to which each action improved 

their future state due to declines in cognitive resources. The association between model-

based strategy-use and four measures of the CVLT support the assertion that our results may 

have been due to differences in cognitive ability than in motivational orientation. However, 

one thing that seems clear, particularly from the Decreasing-optimal task results, is that 

younger adults are more motivated than older adults to improve their future state rather than 

maximize immediate reward even when doing so is counter-productive. Presumably younger 

adults have the cognitive resources necessary to engage in either model-free or model-based 

decision-making and they appear inclined to engage in model-based decision-making even 

when doing so is sub-optimal.

An additional point to note is that there is much overlap between the neural circuits that 

mediate motivation and cognition which make it difficult to determine the extent to which 

our results are uniquely attributable to motivation versus cognitive ability (Berridge & 

Robinson, 2003). It is also entirely possible that cognitive and motivational processes 

interact. For example, people may be less motivated to try to improve their future state if 

they do not have the necessary cognitive capacity to do so. Given declines in cognitive 

resources older adults may reorient their decision-making goals and strategies to suit what 

they are more capable of doing, like maximizing immediate reward rather than attempting to 

improve their future state. However, we acknowledge that this hypothesis is speculative, and 
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focusing on the degree to which age related differences in decision-making are due to 

cognitive versus motivational differences is a key direction for future work. One possible 

avenue might be to incorporate the use of alternative methods like collecting self-report data 

that might better assess participants’ motivation and goals during decision-making.

Another key direction for future work is to more precisely identify the links between age-

related neurobiological changes in striatal and prefrontal areas that are critical for model-

free and model-based decision-making. Aging has been associated with declines in these 

regions (Raz et al., 2005; West, 1996) and with reduced integrity of the dopaminergic 

system that is thought to be critical for both model-based and model-free reinforcement 

learning (Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006; Li, Lindenberger, & 

Sikström, 2001). Additionally, older adults have shown reduced striatal responses to reward 

prediction errors (Chowdhury et al., 2013; Eppinger, Schuck, Nystrom, & Cohen, 2013). 

This could affect both model-based and model-free decision-making as prediction errors for 

both reward and state-based representations are tracked by the striatum (Daw et al., 2011). 

One possibility is that age-related declines in striatal regions are at least partially responsible 

for the older adults’ reduced ability to update state-transition probabilities, which are critical 

for model-based decision-making. Declines in prefrontal regions like DLPFC may also hurt 

model-based decision-making as this regions may be critical for computing model-based 

expected values which incorporate both state-transition probabilities and model-free reward 

values (Smittenaar et al., 2013). Our analysis of the neuropsychological memory measures 

suggest that preserved memory ability may be linked to preserved model-based decision-

making.

One important theoretical question that our study only partially addresses is how heuristic-

based WSLS strategies fit in model-free versus model-based RL strategies. Prior work 

suggests that older adults show stronger tendencies than younger adults to use heuristics 

(Castel, Rossi, & McGillivray, 2012; Worthy & Maddox, 2012). In the current work we only 

found strong evidence for older adults utilizing a heuristic-based WSLS strategy in the two-

choice variant of the Increasing optimal task. One possibility, which we admit is speculative, 

is that in decision-making situations older adults have a default tendency to utilize a WSLS 

heuristic to choose amongst alternatives. If the WSLS strategy is perceived to be working 

well then it is utilized further, but if it appears inadequate, as in the Decreasing-optimal task 

where the increasing option provides much smaller rewards than the decreasing option, then 

older adults may abandon it and switch to a model-free RL strategy. Future work should be 

done using tasks that might more precisely distinguish between RL and heuristic-based 

strategies.

Conclusion

Motivation is central to action and it can shape how we think about and approach decision-

making situations. A useful avenue for research on the motivation-cognition interface is to 

examine differences between motivation that is state-based versus reward-based. State-based 

motivation is goal-directed and centered on developing a model of the environment and 

taking actions that improve future states. Reward-based motivation is habitual and centered 

on taking actions that directly lead to reward. Our results suggest that aging may shift the 
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balance between these two motivational foci to where older adults are motivated more by 

the habitual tendency to obtain reward and younger adults are motivated by the goal-directed 

tendency to improve their state. The association between model-based strategy use and the 

memory measures from our neuropsychological test battery suggest that this shift may be 

due to age-related declines in fluid intelligence (Salthouse, 2004) that prevent older adults 

from engaging in more computationally demanding model-based decision-making. Future 

work is needed to more precisely delineate factors that influence state-based and reward-

based motivation including work aimed at dissociating the distinct neural processes 

involved.
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Figure 1. 
(a.) Reward structure for Increasing-optimal task. The amount of oxygen provided when 

each option was selected depended on the number of times participants had selected from 

the increasing options over the past ten trials. In the two-choice task there was one 

increasing and one decreasing option. In the four-choice task there were two of each type of 

option. The optimal strategy was to repeatedly select the increasing option. (b.) Reward 

structure for Decreasing-optimal task. The optimal strategy was to repeatedly select the 

decreasing option because the maximum that could be given by the increasing option was 

less than the minimum given by repeatedly selecting the decreasing option.
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Figure 2. 
(a.) Sample screen shot for the two-choice tasks. On each trial participants would select one 

of the systems to use to extract oxygen. The amount of oxygen extracted on each trial would 

be indicated in the “Current” tank and then transferred to the “Cumulative” tank. (b.) 

Sample screen shot for the four-choice tasks.
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Figure 3. 
Proportion of times participants selected the increasing option in each task in 50-trial blocks. 

The increasing option was the optimal choice in the Increasing optimal task (a), but the sub-

optimal choice in the Decreasing-optimal task (b). Error bars represent standard errors of the 

mean.
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Table 1

Z-scores Summary for each Neuropsychological Exam for Participants in the Increasing Optimal Task

Neuropsychological Test Two-Choice Four-Choice

Mean (SD) Range Mean (SD) Range

Digit Span 0.16 (0.86) −1.3–2.3 0.76 (1.11) −1.0–3.0

CVLT Delayed Recall (Free) 0.50 (0.86) −1.0–2.0 0.98 (0.92) −1.0–2.5

CVLT Immediate Recall (Free) 0.77 (0.74) −0.5–2.0 0.96 (1.14) −2.0–2.5

CVLT Delayed Recall (Cued) 0.43 (0.82) −1.0–2.0 0.76 (0.79) −0.5–2.0

CVLT Immediate Recall (Cued) 0.50 (0.77) −0.5–1.5 0.78 (0.83) −1.0–2.5

CVLT Recognition False Positives −0.11 (1.23) −1.0–3.0 −0.28 (0.88) −1.0–2.0

CVLT Recognition True Positives −0.09 (1.00) −1.0–3.0 0.28 (0.93) −2.5–1.0

FAS −0.34 (1.17) −3.0–1.6 0.22 (1.15) −1.8–2.5

Trails A −0.24 (0.88) −1.3–1.9 −0.74 (0.53) −1.4–0.8

Trails B −0.31 (0.94) −1.1–1.2 −0.71 (0.28) −1.2–0.1

WCST Errors 0.41 (0.96) −1.5–2.1 0.63 (0.60) −0.4–1.8

WCST Perseveration 0.69 (1.00) −0.8–3.0 0.43 (0.43) −0.3–1.3

Demographic Information Two-Choice Four-Choice

Age 67.59 (6.31) 60–88 67.66 (5.04) 61–81

Years of Education 16.09 (2.65) 10–20 18.04 (2.24) 16–24

Note: Mean z-scores for each exam with standard deviation in parenthesis and z-score range. Scores are separated by condition (two-choice or four-
choice).
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Table 2

Z-scores Summary for each Neuropsychological Exam for Participants in the Decreasing Optimal Task

Neuropsychological Test Two-Choice Four-Choice

Mean (SD) Range Mean (SD) Range

Digit Span 0.17 (0.74) −1.3–1.7 0.31 (0.59) −0.3–2.0

CVLT Delayed Recall (Free) 0.37 (1.12) −3.0–2.0 0.55 (0.94) −1.0–2.5

CVLT Immediate Recall (Free) 0.89 (1.06) −1.5–2.5 0.65 (0.81) −0.5–2.0

CVLT Delayed Recall (Cued) 0.74 (0.88) −2.0–2.0 0.55 (0.84) −1.0–2.0

CVLT Immediate Recall (Cued) 0.87 (1.07) −2.5–2.5 0.70 (0.78) −1.0–2.5

CVLT Recognition False Positives −0.54 (0.54) −1.0–1.0 −0.40 (0.80) −1.0–2.5

CVLT Recognition True Positives −0.17 (0.91) −2.5–1.0 0.05 (0.83) −2.0–1.0

FAS −0.21 (0.92) −1.8–2.1 0.32 (1.07) −1.2–2.5

Trails A −0.15 (0.88) −1.7–1.6 −0.52 (0.51) −1.4–0.9

Trails B −0.18 (0.94) −1.5–3.0 −0.66 (0.55) −2.1–0.5

WCST Errors 0.83 (1.52) −2.3–2.5 0.32 (0.91) −1.6–2.5

WCST Perseveration 0.87 (1.19) −1.9–2.5 0.38 (0.84) −1.3–2.5

Demographic Information Two-Choice Four-Choice

Age 67.65 (5.30) 61–78 67.25 (6.28) 61–83

Years of Education 17.67 (4.29) 12–27 17.75 (1.68) 13–20

Note: Mean z-scores for each exam with standard deviation in parenthesis and z-score range. Scores are separated by condition (two-choice or four-
choice).
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Table 3

Akaike Weights for Each Model

WSLS RL Baseline

Increasing Optimal Task

Two-choice

Younger Adults .28 (.43) .72 (.43) .01 (.03)

Older Adults .59 (.47) .41 (.48) .00 (.00)

Four-choice

Younger Adults .07 (.22) .81 (.39) .11 (.31)

Older Adults .17 (.36) .59 (.48) .24 (.43)

Decreasing Optimal Task

Two-choice

Younger Adults .30 (.37) .67 (.37) .03 (.10)

Older Adults .09 (.23) .79 (.35) .30 (.06)

Four-choice

Younger Adults .07 (.22) .85 (.30) .07 (.23)

Older Adults .17 (.36) .73 (.43) .09 (.30)

Note: Standard deviations are listed in parentheses
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Table 4

Average Best-Fitting Parameter Estimates for the RL Model

Increasing Optimal Task

Two-choice Four-choice

Younger Older Younger Older

State learning rate (η) .69 (.38) .67 (.39) .39 (.38) .45 (.42)

Reward learning rate (α) .25 (.29) .51 (.38) .33 (.39) .65 (.41)

Reward generalization rate (θ) .15 (.26) .03 (.07) .19 (.31) .29 (.33)

Model-based weight (ω) .62 (.36) .61 (.31) .86 (.25) .68 (.32)

Inverse temperature (β) 1.84 (2.12) .78 (1.30) 2.17 (2.01) 1.70 (1.98)

Perseveration (π) 4.12 (5.89) 4.54 (5.25) .09 (4.48) 1.78 (5.37)

Decreasing Optimal Task

Two-choice Four-choice

Younger Older Younger Older

State learning rate (η) .52 (.38) .22 (.33) .30 (.38) .64 (.41)

Reward learning rate (α) .33 (.44) .38 (.42) .42 (.43) .25 (.39)

Reward generalization rate (θ) .28 (.42) .29 (.43) .40 (.48) .17 (.32)

Model-based weight (ω) .87 (.19) .77 (.32) .88 (.22) .65 (.34)

Inverse temperature β) 1.10 (1.57) 2.72 (2.36) 2.25 (2.16) 2.67 (2.27)

Perseveration (π) 3.51 (6.81) 2.95 (5.74) .84 (3.52) 3.49 (5.99)

Note: Standard deviations are listed in parentheses
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