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ABSTRACT

Anaplastic thyroid cancer (ATC), accounting for less than 2%
of all thyroid cancer, is responsible for the majority of death
from all thyroid malignancies and has a median survival of 6
months.The resistanceofATC to conventional thyroid cancer
therapies, including radioiodine and thyroid-stimulating hor-
mone suppression, contributes to the very poor prognosis
of this malignancy. This review will cover several cellular
signaling pathways and mechanisms, including RET/PTC,
RAS, BRAF, Notch, p53, and histone deacetylase, which are

identified to play roles in the transformation and dedifferen-
tiation process, and therapies that target these pathways.
Lastly, novel approaches and agents involving the Notch1
pathway, nuclear factor kB, Trk-fused gene, cancer stem-like
cells, mitochondrial mutation, and tumor immune microenvi-
ronment are discussed. With a better understanding of the
biological process and treatment modality, the hope is to
improve ATC outcome in the future. The Oncologist 2014;
19:1148–1155

Implications forPractice:Becauseof its aggressivephenotypeandpoorprognosis, anaplastic thyroid cancer (ATC) is automatically
classified as TNM stage IV regardless of tumor burden, and survival has shown minimal improvement in the last decades. The
purpose of this review is to summarize the promising preclinical and clinical studies in ATC treatment, as well as reveal new
preclinical studies with novel approaches at genetic, organelle, cellular, and microenvironment levels. Because of the poor
prognosis, all ATC patients should be referred to centers that participate in current clinical trials with new agents and delivery
systems.

INTRODUCTION

Anaplastic thyroid carcinoma (ATC), contrary to the well dif-
ferentiated thyroid cancer (DTC), is one of themost aggressive
human malignancies. This undifferentiated thyroid cancer is
responsible formorethanhalfofall thyroidcancerdeaths,with
an overall survival rate as low as 13%, despite only accounting
for,2%of thyroid cancer incidence [1–4]. Clinical presentation
is frequently characterized by a rapidly growing neckmass with
associated compressive symptoms [5]. ATC also displays highly
invasive behavior, with extrathyroid extension and lymph node
metastasis affecting 40% of ATC patients, whereas the re-
maining 60% of patients have distant metastases [6]. The ag-
gressive phenotype and poor prognosis associated with ATC
form the basis for its automatic classification as TNM stage IV
regardless of tumor burden [7].

Unlike DTC, which can often be cured by surgical resection,
radioiodine ablation, and thyrotropin (thyroid-stimulating hor-
mone[TSH])-suppressivetherapy,treatmentoptions forATCare
mainly palliative because of the aggressive and resilient nature
of the disease. Gross resection is recommended in nearly all

cases [8], and thyroidectomy can relieve airway compression,
but curative resection is often impossible [9]. Lacking the
sodium-iodide symporter (NIS), ATC is resistant to therapeutic
radioiodine, whereas radiotherapy and chemotherapy alone
have shown limited efficacy, contributing to the limited
survival improvement over the last decades [3, 10, 11]. Cur-
rent recommendations supportmultimodal interventions that
use adjuvant and neoadjuvant therapy in combination with
surgery to improve control of locoregional and metastatic
disease [8]. Despite these measures, ATC continues to carry
amedian survival of less than6months and a 1-year survival of
less than 20% [7, 12]. Therefore, investigation of novel anti-
proliferative, redifferentiation, immunological, and gene
therapies has been an ongoing interest [13].

MARKERS AND SIGNAL PATHWAYS

During the dedifferentiation process, the thyroid carcinoma
loses thyroid-specific gene expression, contributing to the
lack of response to radioiodine ablation therapy in ATC [14].
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Specifically, NIS, which mediates the active iodide uptake at
the basolateral membrane of the thyroid follicular cell, plays
a crucial role in the success of radioiodine therapy [15, 16]. In
addition to RAS, BRAF, RET/PTC, and p53, the Notch family
receptors and ligands were recently found to be involved in
the proliferation and differentiation of thyroid cancer [17, 18].
We will cover the main pathways to date that are known to
contribute to thyroid oncogenesis, tumorigenesis, and de-
differentiation, including RET-RAS-RAF, Notch1, and histone
deacetylase (HDAC).

Markers
Thegenemutations inDTCandATCwere found tobedifferent;
thus, the progression of indolent to aggressive thyroid cancer
was thought to be a multistep tumorigenesis [19, 20]. Inter-
estingly, ATC can develop from 1% of patients with DTC [14].
Normal thyrocytes initially undergo earlymutations of ret, ras,
BRAF, or a paired box homeotic gene 8 (PAX8)-peroxisome
proliferator activated receptor g (PPARg) to transform into
DTCs [21–24]. Further dedifferentiation into poorly differen-
tiated thyroid cancer (PDTC), andATCswere found tobedue to
inactivation mutation of p53 [25–27]. p53 tumor suppressor
gene is critical in regulating cell cycleandapoptosis in response
to DNA and is one of the most frequently found mutation in
human malignancy. In thyroid cancer, p53 mutation appeared
to be a late event responsible for transformation and dedif-
ferentiation into more aggressive types. This is evident by the
lowfrequencyofp53mutation inDTCbutahighdetection rate,
up to95%, inATC [11].The thyroid-specific transcription factor
(TTF-1) and PAX-8 expression levels are decreased in less-
differentiatedpapillaryand follicularcarcinomasandare lost in
ATC, with comparable level changes of thyroglobulin (Tg),
thyroperoxidase (TPO), thyrotropin receptor (TSH-R), and NIS
[28–31].

RET/PTC-RAS-RAF
RET/PTC is a chimeric oncogene between RET, located at
chromosome10q11.2, and thepromoterof anunrelatedgene,
resulting in constitutive activation of the RET gene [32, 33].To
date, 13 different types of RET/PTC rearrangements have been
reported [34]. RAS is the next direct downstream effector in
this cascade. RAS mutation, although most significant in the
diagnosis of follicular thyroid cancer (FTC), is also reported in
papillary thyroid cancer (PTC) andATC [35, 36]. Fromstudies of
different histological types of thyroid cancer, up to 60% of ATC
was found to harbor RASmutation [36–38]. In a stepwise pro-
cess, RAS appeared to be an “early-stage”mutation. Further-
more, RASmutationwasproposed to initiatededifferentiation
of DTC into ATC, because RASmutation predisposes the cell to
more genetic and molecular derangement, likely because of
chromosome instability [39, 40].

BRAF, amemberof theRAFserine/threonine-kinase family
and a downstream effector of RAS, has been shown to be an
important regulator in normal thyroid cell proliferation, ap-
optosis, and thyroid-specific gene expression [41, 42]. Liu et al.
[43] showed that BRAF mutation and the subsequent ac-
tivation of MAPK pathway in rat thyroid cells could silence
expression of NIS, and removal of BRAFwith siRNA restore the
expression of thyroid-specific genes. BRAF mutation, specifi-
cally BRAFV600Emutation,was demonstrated to impede both

NIS gene expression and NIS membrane localization, whereas
inhibition of BRAF by smad7 reversed NIS transcription re-
pression [44–46]. In addition to promoting dedifferentiation,
BRAF is also responsible in promoting migration and invasive
growth[41,47,48].BasedonthesignificanceofBRAFmutation
in PTC and the potential of PTC to transform into ATC, BRAF is
a target of investigation in treatment of ATC [49, 50].

Another translocation event underlying PTC involves a
fusionbetweenTrk-fusedgene (TFG)and the receptor tyrosine
kinase NTRK1 [51]. Analogous to chromosomal rearrange-
ments involving RET, several TFG fusion proteins have been
shown to result in the hyperactivation of MAPK kinase sig-
naling [52–55]. Endogenous TFG localizes to specialized sub-
domains of the endoplasmic reticulum that are responsible for
the biogenesis of vesicles that carry secretory cargoes out of
cells [55]. The TFG-NTRK1 fusion protein similarly localizes to
these sites, and this distribution is key to its transforming
activity [55]. Although direct targets of TFG-NTRK1 activity
have yet to be defined, these studies highlight the possibility
thatalterations in thesecretorypathwaymaycontribute tocell
transformation or oncogenesis in the thyroid.

Notch1
Notch receptors (Notch1–4) and ligands (d-like 1, 3, and 4 and
Jagged-1 and -2) were reported to regulate cell proliferation,
migration, adhesion, and differentiation in various situations
[56]. Depending on the cell type, Notch can function as either
an oncogene or a tumor suppressor [18, 57–62]. Ferretti et al.
[17] first demonstrated that the expression of Notch was de-
creased inDTCand further inATCwhencomparedwithnormal
thyroid tissue. The effect of Notch1 on cell growth and dif-
ferentiation is exerted via transcription regulation [63]. Al-
thoughNotch1was studied inmanyother tissues and cancers,
the role of Notch1 in thyroid cancer has only recently being
explored. As a downstream effector of Notch1, Hes1 plays a
central role in thyrocyte proliferation and differentiation,
evident by a 34%–65% decrease in thyroid surface area and
69% decrease in NIS protein expression in Hes12/2 mouse
embryo [64].

HDAC
Acetylation of histone lysine residue induces changes in the
nucleosomal conformation caused by decreased affinity for
the negatively charged DNA [65, 66]. Inhibition of HDAC was
shown to induce expression of NIS, TPO, and Tg in thyroid
carcinoma cell lines [67–69]. Thyroid-specific gene induction
resulted in increased radioiodine uptake, organification, and
intratumoral radioiodine accumulation. The HDAC inhibitor
induced re-expressionofNIS, but TPOor Tgwerenotmediated
by newly produced transcription factor [68]. Zhang et al. [70]
found that HDACwas the link between BRAFmutation andNIS
silencing. The BRAF mutation upregulates HDAC, causing an
epigeneticmodification via constitution histone acetylation at
the NIS promoter site. The significance of HDAC in thyroid
cancer resistance was demonstrated by Hou et al. [31] with
a potent HDAC inhibitor, suberanilohydroxamic (SAHA or
vorinostat), which restored thyroid-specific gene expression,
including NIS,TSH-R,TPO,Tg, and TTF-1, as well as radioiodine
uptake.Therefore, therapies thatcanmove thebalance toward
histone acetylation should be able to restore thyroid gene
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expression and ultimately induce radioiodine avidity to im-
prove the effectiveness of radioiodine therapy.

NF-kB
Nuclear factor kB (NF-kB) is a family of transcription factors
that is held inactive in the cytoplasm of resting cells, including
thyroid cancer cells, and its activation is induced by multiple
proinflammatory cytokines, chemotherapeutic agents, and
ionizing radiation [71].ManyNF-kB target genesareprosurvival
genes and are critical for intrinsic cancer cell resistance to
chemo-andradiation therapy, andtherefore inhibitionofNF-kB
activity could lead to apoptosis or sensitization to chemo- and
radiotherapy in various cancer cell, including thyroid cancer
cells, in vitro and in vivo [72–74]. Activation of NF-kB was
observed in PTC and FTC, as well as aggressive ATC [75–78].
Moreover, recent findings demonstrate that NF-kB significantly
contributes to the establishment and maintenance of protu-
morigenic microenvironment [79, 80]. Therefore, inhibition of
NF-kBactivationisthoughttoenforceantitumorigeniceffectsof
chemo- and radiation therapy through cancer cell-intrinsic and
-extrinsic mechanisms.

THERAPEUTIC APPROACH

Recent developments of treatment modalities in advance
thyroid cancers include investigation of kinase inhibitors,
redifferentiation therapy, statins, and gene transfer [81].

Kinase Inhibitors
Epidermal growth factor receptor (EGFR) mutation was de-
scribed in thyroid cancer and contributes to RET activation
[82].Therefore, gefitinib,anEGFR inhibitor, isadrugof interest.
Inaphase II trialwithamixedcohortof thyroidcancerpatients,
including 19% as ATC, gefitinib did not induce any tumor
response, but 12% of patients had stable disease at 12months
and median progression-free survival (PFS) was 16 weeks for
ATC patients [83]. Other receptors are also therapeutic targets
under investigation. Rugo et al. [84] established the safety and
clinical activity of axitinib, an inhibitor vascular endothelial
growth factor receptors 1, 2, and 3, in various advanced solid
tumor, including thyroid tumor. A subsequent phase II trial
from the University of Chicago with a mixed cohort of 60
patients, including 3 patients with ATC, showed that 1 ATC
patient had apartial response,whereas the rest of thepatients
hadstabledisease [85]. Sorafenib isamultikinase inhibitor that
targets BRAF, which showed growth inhibition in ATC xe-
nografts and improves survival in vivo [86–88]. An early phase
II trial with a mixed cohort with metastatic, radioiodine-
refractory disease, including one patient with PDTC and one
patientwithATC, showedanoverall clinical benefit rateof 77%
with a median PFS of 79 weeks and a 70% mean decrease of
serumTg level [89].However, bothpatientswithPDTCandATC
had progressive disease despite treatment, and the treatment
for the ATC patients was discontinued 4 days after initiation
because of medical complications. A randomized controlled
trial by Brose et al. [90], including 10% PDTC but no ATC
patients, demonstrated that sorafenib elicited 12.2% partial
response and was superior in prolonging PFS when compared
with placebo. A recent multi-institutional phase II clinical
trial with all ATC patients showed a 35% of partial response

or stable disease rate in 20 patients who failed previous
treatments with tolerable adverse events [91]. Because BRAF
mutation was shown to be partly responsible for dedifferen-
tiation and depressed expression of NIS [43], a combination
therapy of BRAF inhibition and radioiodine therapy provides
a potential future approach. Other phase II trials with various
BRAFinhibitors, includingvemurafenib(NCT01524978),dabrafenib
(NCT02034110), and LGX818 (NCT01981187), are underway [92].

Because BRAF mutation was shown to be partly
responsible for dedifferentiation and depressed ex-
pression of NIS, a combination therapy of BRAF in-
hibition and radioiodine therapyprovides apotential
future approach.

HDAC Inhibitors
Depsipeptidewasable to induce re-expressionofNIS,TPO,and
Tg in vitro and in vivo but had no effect on re-expression of
TSH-R [68]. Unfortunately, clinical experience in other cancers
showed that patients treated with depsipeptide experienced
severegastrointestinal, cardiac, and cutaneous adverseevents
[93]. On the other hand, SAHA was shown to restore NIS, TPO,
and Tg, as well as TSH-R in ATC cell lines [31]. Valproic acid
(VPA), a safe and widely used anticonvulsant and mood
stabilizer, was found to act as a HDAC inhibitor in addition to
enhancing the apoptotic activity of paclitaxel [94, 95]. A study
by Catalano et al. [96] found that when used in combination
with imatinib, VPA induced cell cycle arrest via G1 cell cycle
arrest by decreasing AKT phosphorylation without affecting
apoptosis. Although VPA showed promise in inducing ex-
pression of NIS gene, NIS membrane localization, and radio-
iodine accumulation in PDTC at a safe dose, it failed to show
effects in ATC beyond re-expression of NIS gene [97]. Another
novel molecule, LBH589, is under phase II clinical trial at
University of Wisconsin-Madison for patients with metastatic
MTC and radioiodine-resistant DTC [92]. The potential of
applying the results to ATC patients is promising with the
inclusion of radioiodine-resistant patients in the study.

Gene Therapy
There have been many types of promising gene therapies,
including correctivegene therapy, cytoreductive gene therapy,
and immunomodulatorygene therapy [11]. Spitzwegetal. [10]
first proposed the potential cytoreductive gene therapy to
transfer NIS gene followed by radioiodine therapy. Unfortu-
nately, transfection of the NIS gene alone does not appear
sufficient in cells lacking other thyroid-specific proteins, in-
cluding Tg, TPO, and TSH-R, because of efflux of radioiodine
that isnotorganifiedandretained inthecells [98,99].Meansto
increaseefficacyofNIS gene therapy include introducingother
thyroid-specific genes to enhance radioiodine retention by
organification, increasing NIS gene transduction efficiency to
maximize uptake, blocking iodide efflux to minimize lose, and
application of alternative radionuclides to maximize energy
deposit [11, 15, 100–102].

Another application for gene therapy is to allow the innate
immune system to recognize and destroy the tumors via
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immunomodulation. Cotransfection of human interleukin-2
and theHSV-tk gene in ATC cells, showing complete elimination
in ATC xenograft [103]. In a pilot study of combined suicide and
cytokine gene therapy in two patients with end-stage ATC,
Barzon et al. [104] discovered some promise in immune re-
sponse and local tumor destruction with application of the
therapy.

In a study with corrective gene therapy, Lee et al. [105]
showed that neither NIS gene nor wild-type p53 gene transfer
alone affect ATC cell survival in vitro or tumor growth in vivo
after radionuclide treatment but found a decrease in tumor
volume of 80% with NIS, wild-type p53, and radionuclide
treatment. Furthermore,wild-type p53 restoration in p53mu-
tant ATC was associated with redifferentiation and promotes
induction of thyroid-specific genes [104, 106].

Natural Compounds
Natural compounds often have relatively low toxicity andmay
eventually play a supporting role in drug treatments targeting
ATC. We have previously shown that the plant polyphenol
resveratrol suppresses ATC cell growth in a dose-dependent
manner for both HTh7 and 8505C cell lines via S-phase cell-
cycle arrest and apoptosis [63]. In vivo experiments showed
reduced growth of ATC tumors derived from both cell lines
whenadministered i.p. at 10mg/kg.The expression of thyroid-
specific genes including TTF1, TTF2, Pax8, and NIS was up-
regulated inbothATCcell lineswith resveratrol treatment, and
Notch1 siRNA interference abrogated the induction of someof
these genes. Thus, this study links resveratrol treatment, ac-
tivation of Notch1 signaling, and redifferentiation. We have
also shownthat chrysin (aplant flavone) treatmentofATCcells
leads to induction of messenger RNA levels of Notch1 and
a dose-dependent inhibition of cellular growth. Oral admin-
istrationofchrysin suppressed thegrowthofATCxenograftsby
an average of 59% compared with the vehicle control group
[107]. Recently, Kangetal. [108]have showngrowth-inhibiting
and redifferentiationeffectsof several plantphytochemicals in
thyroid cancer cell lines. Although the clinical experience with
natural compounds in thyroid cancer is limited, these animal
studies suggest potential benefits.

Other Agents and Approaches
Bortezomib, approved for treatment of advanced multiple
myeloma [109], can effectively control canonical and non-
canonical NF-kB signaling, and such effects are thought to
contribute toantimyelomaeffects [110].Althoughbortezomib
alone had a modest effect on advanced thyroid cancers [111],
when combined with other chemotherapy agent for thyroid
cancer in preclinical studies, there was some synergy, in-
dicating the promise of bortezomib in combination therapy
[112]. Inhibition of NF-kB activity in different thyroid cancer
contexts, including aggressive forms of thyroid cancers, is
uniformly reported to cause chemo- or radiosensitization
[73, 74, 76, 113–119] and is associated with reduced metas-
tatic potential [78]. These observations provide the scientific
rationale for targeting NF-kB for treatment in resistant, ag-
gressive thyroid malignancies.

Thiazolidinediones, known most commonly for antidia-
betic therapy, is a potent agonist for the PPARg, which is

a ligand-activated transcription factor responsible for cell
proliferationandgrowth [120–122].AlthoughATCcellhashigh
level of PPARg, troglitazone was unable to inhibit cell pro-
liferation of ATC cells until a concentration of 20 mM [121].
A later study by Antonelli et al. [123] showed that both
rosiglitazone and pioglitazone inhibited ATC cells at a level of
20 mM as early as 1 hour after administration, regardless of
BRAF mutation. Another study demonstrated that thiazolidi-
nediones, with troglitazone having the greater effect, not only
inhibited transformed thyroid cell proliferation but also in-
duced redifferentiation, evident by re-expression of NIS and
radioiodide uptake [122].

3-Hydroxy-3-methylglutaryl coenzyme A reductase inhib-
itors, antagonists of the rate-limiting step of cholesterol
production, are frequently used for treatment of hypercho-
lesterolemia and reducing cardiovascular morbidity and
mortalities [124–127]. The main effect of statin on ATC is pro-
liferation inhibition by apoptosis via different proposed
mechanisms, including inhibition of geranylgeranylation of
r, lamin B proteolysis, and cytochrome c release from mito-
chondria [128–131]. In an in vivo study,Wang et al. [132] de-
monstrated that lovastatin was able to decreased ATC tumor
growth rate in xenograft by 73% at a concentration of 10mg/kg
per day. Furthermore, lovastatin exerted either apoptotic or
cytomorphological differentiation effects on ATC cells at
concentration [130]. However, radioiodineuptakewas largely
unaffected [133].

In addition to focusing on the thyroid cancer as a whole,
the existence of subsets of cancer stem-like cells (CSCs) with
the ability for self-renewal and unlimited growth has been
postulated [134–137]. Higher percentages of CSCs may be
responsible for the resistance to radiation and chemother-
apy, as well as the aggressive behavior of ATC [136, 138]. The
inability to differentiate beyond CSC is due to genomic al-
terations in RET/PTC, PAX8-PPARg rearrangement, and BRAF
mutation [139]. Epithelial-mesenchymal transition is thought
tobe themechanismthatallows themorewell-differentiated
cancer cells to transform into CSCs [136, 140]. Further under-
standing of thismechanism and characterization of CSCsmay
lead to more effective therapies for more aggressive and
lethal thyroid cancers [139].

Finally, modifying the tumor immune microenvironment
from pro- to antitumorigenic has been an approach sought
after by many [141]. It has been recently shown that thyroid
inflammation affects thyroid cancer outcomes [142]. An in-
flammatory immune microenvironment seems to be protu-
morigenic,whereasanautoimmunemicroenvironment seems
to be antitumorigenic [142, 143]. T-cell progenitors present
in thyroid cancer inflammatory immune microenvironment
seem to facilitate tumor development [143]. Driving these
T-cell progenitors to maturity may become a therapeutic
strategy in itself or in combination with other approaches.

T-cell progenitors present in thyroid cancer inflam-
matory immunemicroenvironment seem to facilitate
tumor development. Driving these T-cell progenitors
to maturity may become a therapeutic strategy in
itself or in combination with other approaches.
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CONCLUSION
ATC is an aggressive malignancy with extremely poor prog-
nosis, partly because of the resistance to radioiodine uptake,
which is one of the mainstay therapies besides surgery for
thyroid cancer. The re-expression of thyroid-specific genes,
specifically NIS, has the potential to restore the radioiodine
uptake ability of the cancer. Furthermore, the ability of cells to
take up radioiodine can be enhanced by TSH, which neces-
sitates the re-expression of TSH-R. Many studies have de-
monstrated that redifferentiation canbeachievedbymodifying
various pathways, including Notch1, RET/PTC-RAS-RAF-MEK,
HDAC, and NF-kB with different agents or gene therapy.
Clinical trials so far have only shown no or slight improvement
in survival. Although a small case series from Mayo Clinic de-
monstrated the beneficial potential of aggressive multimodal
therapy [144], further prospective trials with multimodal or
multitarget approach should be performed in hopes of im-
proving the clinical outcome of ATC. Lastly, emerging targets

and approaches can not only provide better understanding of
the tumor biology but also more optimistic outcome in the
future.
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For Further Reading:
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2014;19:251–258.

Implications for Practice:
Thismeta-analysis of 219 patients treatedwith sorafenib formetastatic thyroid cancers demonstrated that 81%of patients
had either partial response or stable disease, and none had a complete response. The partial response rate was best for
medullary thyroid cancer, followed by differentiated thyroid cancer. Responses in anaplastic thyroid cancer were low. The
overall median progression-free survival was 18 months for all histologies. There were significant dose reductions and
discontinuations as a result of toxicities, which need to be considered when treating patients who may otherwise be
asymptomatic and have reasonable overall survival.
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