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Abstract

Background—SMO (the official symbol for “smoothened, frizzled family receptor”) is an 

important component of the hedgehog signaling pathway, which has been implicated in various 

human carcinomas. However, clinical, molecular, and prognostic associations of SMO expression 

in colorectal cancer remain unclear.

Methods—Using a database of 735 colon and rectal cancers in the Nurse’s Health Study and the 

Health Professionals Follow-up Study, we examined the relationship of tumor SMO expression 

(assessed by immunohistochemistry) to prognosis, and to clinical, pathological and tumor 

molecular features, including mutations of KRAS, BRAF and PIK3CA, microsatellite instability, 
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CpG island methylator phenotype (CIMP), LINE-1 methylation, and expression of phosphorylated 

AKT and CTNNB1.

Results—SMO expression was detected in 370 (50%) tumors. In multivariate logistic regression 

analysis, SMO expression was independently inversely associated with phosphorylated AKT 

expression [odds ratio (OR), 0.48; 95% confidence interval (CI), 0.34–0.67] and CTNNB1 nuclear 

localization (OR, 0.48; 95% CI, 0.35–0.67). SMO expression was not significantly associated with 

colorectal cancer-specific or overall survival. However, in CIMP-high tumors, but not CIMP-

low/0 tumors, SMO expression was significantly associated with better colorectal cancer-specific 

survival (log-rank P = 0.012; multivariate hazard ratio, 0.36; 95% CI, 0.13–0.95; Pinteraction = 

0.035, for SMO and CIMP status).

Conclusions—Our data reveal novel potential associations between the hedgehog, the WNT/

CTNNB1, and the PI3K (phosphatidylinositol-4,5-bisphosphonate 3-kinase)/AKT pathways, 

supporting pivotal roles of SMO and hedgehog signaling in pathway networking. SMO expression 

in colorectal cancer may interact with tumor CIMP status to affect patient prognosis, although 

confirmation by future studies is needed.

Keywords

colon carcinoma; rectal cancer; hedgehog; HH; molecular pathology; clinical outcome

INTRODUCTION

Colorectal cancers represent a heterogeneous group of complex multifactorial diseases, 

which are influenced by host and environmental factors.1 Molecular classification (e.g. by 

KRAS, BRAF, and MSI status) has become essential in both research and clinical practice to 

better predict tumor progression and behavior.2–5

The hedgehog signaling pathway plays a role in patterning, growth, and differentiation in 

various tissues, including the gastrointestinal tract.6–8 In mammals, hedgehog signaling is 

initiated through binding of one of three ligands [sonic hedgehog (SHH), indian hedgehog 

(IHH) and desert hedgehog (DHH)] to the trans-membrane receptor patched 1 (PTCH1), 

leading to release of the suppressed transmembrane protein smoothened, fizzled family 

receptor (SMO) and subsequent activation of GLI transcription factors.6 Hedgehog signaling 

has been implicated in the pathogenesis of various human cancers, either through hedgehog 

ligand-dependent activation, or through ligand-independent activation, i.e., by loss of 

function mutations in PTCH1, or gain of function mutations in the proto-oncogene 

SMO.9–11 Consequently, the hedgehog pathway is viewed as a potential therapeutic 

target.9,12

Although evidence supporting a role of the hedgehog pathway in colorectal neoplasia has 

tended to be inconsistent,13–21 accumulating experimental data demonstrate that the 

hedgehog signaling pathway cooperates with other molecular alternations and signaling 

pathways, such as WNT signaling,22,23 and phosphatidylinositol-4,5-biphosphonate 3-kinase 

(PI3K) /AKT,24–26 in multiple tumorigenic contexts, even in the absence of hedgehog 

ligand-dependent pathway activation.22,25
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Given evidence of cross-talk between hedgehog and other signaling pathways in human 

carcinogenesis, we hypothesized that SMO expression in colorectal cancer might be 

associated with other important tumor characteristics, such as CTNNB1 and phosphorylated 

AKT expression. We therefore utilized a molecular pathological epidemiology 

database,27,28 derived from colorectal cancers arising in two U.S. nationwide prospective 

cohort studies, to examine SMO expression status in colorectal cancer, and to assess the 

relationships between SMO expression and other important molecular features, including: 

microsatellite instability (MSI); CpG island methylation phenotype (CIMP); long 

interspersed nucleotide element-1 (LINE-1) methylation; and KRAS, BRAF, and PIK3CA 

mutations. We also sought to evaluate the prognostic association of SMO expression, and to 

explore the potential for its interaction with other tumor features in survival analyses.

MATERIALS AND METHODS

Study Group

We used the database of two prospective cohort studies, the Nurses’ Health Study (NHS, N 

= 121,700 women observed since 1976) and the Health Professionals Follow-Up Study 

(HPFS, N = 51,500 men observed since 1986).29 Participants were sent follow-up biennial 

questionnaires to update information on diet and lifestyle factors, and to identify newly 

diagnosed cancers and other diseases. In this population-based study, besides medications 

that a given patient took by themselves, treatment modality was chosen by treating 

physicians, and detailed treatment data were not available. After confirmation of colorectal 

cancer, we requested paraffin embedded tissue blocks from hospitals across the U.S., where 

participants had undergone resection of primary tumors. We were able to obtain colorectal 

cancer specimens for 1443 cases out of 3019 colorectal cancer cases recorded up to June 

2006. Diagnostic biopsy specimens from rectal cancer patients who received pre-operative 

therapy were collected in order to avoid treatment-related artifact. Tumor location was 

categorized [cecum; ascending colon (including hepatic flexure); transverse colon; 

descending colon (including splenic flexure); sigmoid colon; rectum] based on medical 

records.30 All colorectal cancer cases were confirmed through review of histology by a 

pathologist (S.O.) blinded to exposure data. Tumor grade was categorized as high (≤50% 

glandular area) or low (> 50% glandular area). Based on the availability of SMO expression 

data and survival data, a total of 735 colorectal cancer cases diagnosed up to 2006 were 

included in this study. Patients were observed until death, or January 2011, whichever came 

first. Death of a participant was ascertained through the National Death Index, or by 

reporting by family members or postal authorities. The cause of death was assigned by study 

physicians. Written informed consent was obtained from all study subjects. Human Subjects 

Committees at Harvard School of Public Health and Brigham and Women’s Hospital 

approved this study.

Immunohistochemistry for SMO, Phosphorylated AKT and CTNNB1

Tissue microarray blocks were constructed as previously described.31 Methods of 

immunohistochemical staining and interpretations for phosphorylated AKT (at amino acid 

position Ser 473) and CTNNB1 have been described previously.32–34 For SMO 

immunostaining, deparaffinized tissue sections were heated in a microwave for 15 minutes 
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in Antigen Retrieval Citra Solution, pH 6 (BioGenex Laboratories, San Ramon, CA). Tissue 

sections were incubated with Dual Endogenous Enzyme Block (DAKO, Carpinteria, CA), 

then Serum Free Protein Block (DAKO), each for 15 minutes. Slides were incubated at 

room temperature for one hour with a primary antibody against SMO (1:100, rabbit 

polyclonal; Santa Cruz, sc-13943, San Diego, CA). Envision™ anti-rabbit HRP-labeled 

polymer (DAKO) was applied to the sections for 30 minutes, followed by visualization 

using the chromogen 3,3-diaminobenzidine (DAKO), and hematoxylin counterstain. The 

specificity of the SMO antibody was confirmed by previous studies in different tissues and 

cells.35–37 Positive and negative controls were included in each panel of 

immunohistochemistry for all markers.33,34 Known positive prostate carcinoma was used as 

a positive control for SMO.38 Sections processed with replacement of primary antibody by 

Tris-buffered saline were used as a negative control.

For each case, cytoplasmic SMO status was recorded as absent, weak, moderate or intense 

staining. SMO expression was defined as the presence of weak to intense staining (Figure 

1). Immunostained tissue for each marker was scored by a single pathologist (SMO by X.L.; 

phosphorylated AKT by Y.B.; and CTNNB1 by T.M.) blinded to other data. A subset 

sample of over 100 cases for each marker was scored independently by a second pathologist 

(SMO by T.M.; phosphorylated AKT by K.S.; and CTNNB1 by S.O.) unaware of other data. 

The concordance between the two observers (all P < 0.0001) was 0.91 (κ = 0.79, N = 118) 

for SMO, 0.81 (κ = 0.59, N = 132) for phosphorylated AKT, and 0.90 (κ= 0.80, N = 292) 

for nuclear CTNNB1 localization, indicating good to substantial agreement.

Sequencing of KRAS, BRAF and PIK3CA Mutation, and Analysis for Microsatellite 
Instability

Genomic DNA was extracted from paraffin-embedded tissue. PCR and pyrosequencing 

targeted at KRAS [codons 12 and 13 (since 90% of KRAS mutations occur in these two 

codons)],32,39 BRAF (codon 600),40,41 and PIK3CA exons 9 and 20,42 were performed as 

previously described. Microsatellite instability was assessed using a panel of 10 

microsatellite markers (D2S123, D5S346, D17S250, BAT25, BAT26, BAT40, D18S55, 

D18S56, D18S67 and D18S487).41 MSI-high was defined as the presence of instability in 

30% or more of the markers, and MSI-low/microsatellite stability (MSS) as instability 0–

29% of the markers.41

Real-time PCR for CpG Island Methylation and Pyrosequencing to Measure LINE-1 
Methylation

Sodium bisulfite treatment of DNA, and real-time PCR assays (MethyLight) were 

performed as previously described.41,43,44 We quantified promoter methylation at eight 

CIMP-specific loci: CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, 

RUNX3, and SOCS1. CIMP-high was defined as ≥ 6 (of 8) methylated promoters, and 

CIMP-low/0 as 0–5 (of 8) methylated promoters. To accurately quantify methylation level in 

LINE-1, a PCR-pyrosequencing assay was employed.45,46
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Statistical Analysis

All statistical analyses were performed using SAS software (version 9.2; SAS Institute Inc, 

Cary, NC). All P values were two-sided. When multiple hypothesis testing was performed, 

the P value for significance was adjusted to P = 0.0033 (= 0.05/15) by Bonferroni 

correction. For categorical data, the chi-square test or Fisher’s exact test was performed. To 

compare mean age and mean LINE-1 methylation levels, a t-test, assuming equal variances, 

was performed.

The Kaplan-Meier method and the log-rank test were performed for survival analyses. 

Deaths from causes other than colorectal cancer were censored in colorectal cancer-specific 

mortality analyses. To control for confounding, we used Cox proportional hazards models to 

calculate hazard ratio (HR) of death according to tumor SMO expression status. The model 

initially included age at diagnosis (continuous), sex, year of diagnosis (continuous), body 

mass index, tumor location (proximal vs. distal colon vs. rectum), tumor grade, MSI (high 

vs. low/MSS), CIMP (high vs. low/0), LINE-1 methylation (continuous), BRAF mutation, 

KRAS mutation, and PIK3CA mutation, in addition to CTNNB1 and phosphorylated AKT 

expression. To minimize residual confounding and overfitting, disease stage (I, II, III, IV, or 

unknown) was used as a stratifying variable using the “strata” option in the SAS “proc 

phreg” command. To avoid overfitting, variables in the final model were selected using 

backward stepwise elimination with a threshold of P = 0.05. Interaction was assessed using 

the Wald test on the cross-product of SMO and another variable of interest (excluding cases 

missing data) in a multivariate Cox model. To improve efficiency of the models, cases with 

missing data in any of the categorical variables [CIMP (1.8%), MSI (2.0%), BRAF (1.3%), 

KRAS (1.1%), PIK3CA (9.8%), CTNNB1 (4.7%) and phosphorylated AKT (6.9%)], were 

included in the majority category for that variable. We confirmed that excluding cases with 

missing information in any of the covariates did not substantially alter the results (data not 

shown).

To assess whether associations between SMO expression and the variables in Table 1 were 

independent of other variables, a multivariate logistic regression analysis was conducted for 

cross sectional analyses. To calculate adjusted odds ratios (OR), the model initially included 

variables as in Cox proportional hazards models. To avoid overfitting, a backward stepwise 

elimination with a threshold of P = 0.05 was used to select variables in the final model. 

After the variables in the final logistic regression model were selected, we employed a 

missing indicator method for those cases with missing data in a given variable, to obtain a 

more accurate effect estimate in the given variable.

RESULTS

SMO Expression in Colorectal Cancer

Among 735 colorectal cancer cases diagnosed up to 2006 with SMO expression data, we 

observed SMO expression in 370 tumors (50%) by immunohistochemistry (Figure 1). SMO 

expression was positively associated with KRAS mutation (P = 0.0027), and inversely 

associated with phosphorylated AKT expression (P < 0.0001), BRAF mutation (P = 0.0026), 

CTNNB1 nuclear localization (P = 0.0005) and CIMP-high status (P = 0.0035) (Table 1).
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Multivariate Logistic Regression Analysis to Assess Associations with SMO Expression in 
Colorectal Cancer

Multivariate logistic regression analysis was performed to assess independent relationships 

between SMO expression and other factors. Phosphorylated AKT expression [multivariate 

OR = 0.48; 95% confidence interval (CI), 0.34–0.67; P < 0.0001] and CTNNB1 nuclear 

localization (OR = 0.48; 95% CI, 0.35–0.67; P < 0.0001) remained significantly associated 

with SMO expression in the final model.

In addition, BRAF-mutation/KRAS-wild-type (vs. BRAF-wild-type/KRAS-wild-type) and 

CIMP-high remained in the final model [(OR = 0.49; 95% CI, 0.28–0.85; P = 0.011) and 

(OR = 0.59; 95% CI, 0.35–0.98; P = 0.043), respectively], but these associations were not 

statistically significant given multiple hypothesis testing (Table 2).

SMO Expression and Patient Survival in Colorectal Cancer

During follow-up of 735 patients with survival data (median follow-up time 14.1 years for 

censored cases), there were 373 deaths, including 216 deaths due to colorectal cancer. In 

Kaplan-Meier analyses, SMO expression was not significantly associated with colorectal 

cancer-specific survival (log-rank P = 0.85) or overall survival (log-rank P = 0.72).

We performed Cox proportional hazards regression models to assess mortality according to 

SMO status, but did not observe a significant association between SMO expression and 

survival in univariate, stage-stratified, or multivariate stage-stratified analyses (data not 

shown).

Interactions between SMO Expression and other Variables in Colorectal Cancer Survival 
Analysis

We examined whether any clinical, pathological, or molecular variables significantly 

modified the association of SMO expression with patient survival. We observed a borderline 

significant interaction between SMO expression and CIMP status in colorectal cancer-

specific survival (Pinteraction = 0.035, given multiple testing significance level was adjusted 

to P = 0.0033). For patients with CIMP-high tumor, SMO positivity was significantly 

associated with better colorectal cancer-specific survival (multivariate HR, 0.36, 95% CI, 

0.13–0.95); whereas, for patients with CIMP-low/0 tumor, SMO positivity was not 

significantly associated with colorectal cancer-specific survival (Table 3). The differential 

effect of SMO expression on colorectal cancer-specific survival according to CIMP status 

was also evident in Kaplan-Meier analyses (Figure 2).

The association of SMO expression with cancer-specific mortality did not significantly 

differ according to any of the other variables.

DISCUSSION

In this study, the unique resource of a molecular pathological epidemiology database,27,28 

containing a large number of colorectal cancers, and prospectively collected data from two 

cohort studies, enabled us to comprehensively evaluate the associations of SMO expression 

with clinical, pathological and tumor molecular features. We observed that SMO was 
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expressed in around one half of colorectal cancers. In a multivariate logistic regression 

model, SMO expression was significantly inversely associated with phosphorylated AKT 

expression and CTNNB1 nuclear localization. An inverse association was also observed 

between SMO expression and BRAF-mutant/KRAS wild-type; however, the association was 

of borderline significance, when multiple testing was taken into account.

Recent studies have demonstrated that colorectal cancers constitute a group of 

heterogeneous tumors at the molecular level.47,48 The development and progression of 

colorectal neoplasia is attributable to the accumulation of genetic and epigenetic changes 

and the complex interaction of aberrations in various signaling pathways.49–52 Each tumor 

has its own unique characteristics in terms of molecular phenotype, tumor 

microenvironment, and interactomes within and between neoplastic and host cells.1,53 

Therefore, tumor biomarker testing contributes to personalized medicine research and, 

ultimately, to clinical practice.50,54–56

Experimental data suggest a link between SMO expression and the PI3K/AKT pathway. 

AKT is a major downstream effector of PI3K, and plays a crucial role in regulating a wide 

variety of cellular process, including cellular metabolism as well as cell proliferation and 

survival.57 Riobo et al. have previously shown that PI3K and AKT are essential for SHH 

signaling.24 Furthermore, SMO activity is required for cooperation between SHH and 

insulin-like growth factor in promoting myogenic proliferation and differentiation via the 

MAPK/ERK and PI3K/AKT pathways.25 In our dataset, SMO expression was inversely 

associated with phosphorylated AKT expression in colorectal cancer, suggesting that SMO 

activation may tend to be mutually exclusive with AKT activation in colorectal cancer 

development.

Crosstalk between the hedgehog and WNT signaling pathways in intestinal tumorigenesis 

remains controversial.7,20,22,50,58 Several groups have reported possible negative regulation 

of the WNT pathway by hedgehog signaling.7,58 In one study, overexpression of IHH 

resulted in down-regulation of intestinal CTNNB1.58 Nuclear expression of CTNNB1 has 

been found to be inversely associated with GLI1 staining in colorectal cancers, suggesting 

that GLI1 plays an inhibitory role in the development of colorectal cancer driven by WNT 

signaling.20 However, Arimura et al. have shown that reduced SMO expression inhibits 

WNT signaling by down-regulating nuclear CTNNB1 expression, independent of GLI-

mediated hedgehog signaling.22 Our current findings suggest that tumors with SMO 

expression are inversely associated with CTNNB1 nuclear expression, favoring a negative 

regulation of the WNT pathway by hedgehog signaling.

While SMO expression was not associated with colorectal cancer-specific survival or overall 

survival, our data suggest a possible interaction with CIMP status in patient prognosis. 

CIMP constitutes an epigenomic phenomenon characterized by widespread promoter 

methylation, which leads to tumor suppressor gene silencing.59 CIMP status has been 

extensively investigated in colorectal cancer.60–65 In our current study, we observed that 

SMO expression was inversely associated with CIMP-high status. Moreover, our data 

suggest that, within CIMP-high cancers (but not within CIMP-low/0 cancers), patients with 

SMO-expressing tumors may expect better cancer-specific survival compared to those with 
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SMO-nonexpression tumors. Given multiple hypotheses testing, and the exploratory nature 

of our interaction analyses, these findings need confirmation by additional independent 

studies.

Interestingly, we observed a possible inverse association between SMO expression and 

BRAF-mutation/KRAS-wild-type in colorectal cancers, independent of other molecular 

variables. BRAF mutation is present in 10–15% of colorectal cancers and associated with 

inferior prognosis.66–69 Nonetheless, our results need to be confirmed by independent 

studies.

There are also limitations in the present study. Firstly, data on treatment were limited. We 

speculated that chemotherapy administration did not substantially differ by tumor SMO 

expression, since the data were not available for treating physicians. Nevertheless, our 

regression analyses were adjusted for TNM stage, on which treatment decisions are largely 

based. Secondly, despite quite high agreement of readings of the two pathologists for SMO 

immunohistochemistry there was still a 9% discordance rate.

In conclusion, our large cohort study has shown that SMO expression in colorectal cancer is 

inversely associated with phosphorylated AKT expression and CTNNB1 nuclear 

localization. SMO expression in colorectal cancer may interact with tumor CIMP status to 

affect patient prognosis, although confirmation by future studies is needed. Our data are 

compatible with literature supporting a role for SMO in pathway networking in colorectal 

carcinogenesis.
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MSI microsatellite instability

MSS microsatellite stable
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Synopsis

Our data reveal novel potential associations between the hedgehog, the WNT/CTNNB1, 

and the PI3K/AKT pathways, supporting pivotal roles of SMO and hedgehog signaling in 

pathway networking. SMO expression in colorectal cancer may interact with tumor 

CIMP status to affect patient prognosis, although confirmation by future studies is 

needed.
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Figure 1. 
SMO expression in colorectal cancer. No expression (A), weak expression (B), moderate 

expression (C), and intense expression (D) in colorectal cancer cells.
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Figure 2. 
Colorectal cancer-specific and overall survival in patients with colorectal cancer according 

to SMO expression status in strata of CIMP status. CI, confidence interval; HR, hazard ratio.
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Table 2

Multivariate logistic regression analysis to calculate adjusted odds ratio (OR) for the association of a given 

variable (in the left column) with SMO expression (as an outcome variable)

Variable in the final multivariate model Multivariate OR (95% CI) P value

Phosphorylated AKT expression 0.48 (0.34–0.67) < 0.0001

CTNNB1 nuclear localization 0.48 (0.35–0.67) < 0.0001

BRAF/KRAS status

 BRAF-mutation/KRAS-wild-type (vs. BRAF-wild-type/KRAS-wild-type) 0.49 (0.28–0.85) 0.011

 BRAF-wild-type/KRAS-mutation (vs. BRAF-wild-type/KRAS-wild-type) 1.35 (0.96–1.89) 0.082

CIMP- high (vs. low/0) 0.59 (0.35–0.98) 0.043

The multivariate logistic regression model initially included age, sex, year of diagnosis, body mass index, tumor location, family history, 
microsatellite instability, CpG island methylator phenotype, KRAS, BRAF and PIK3CA mutation, LINE-1 methylation, CTNNB1 nuclear 
localization and phosphorylated AKT expression. A backward elimination with threshold of P = 0.05 was used to select variables in the final 
model. When multiple hypothesis testing was performed, the P value for significance was adjusted to P = 0.0033 (= 0.05/15) by Bonferroni 
correction.

CI, confidence interval; OR, odds ratio.
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