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Abstract

BACKGROUND—Age-period-cohort (APC) analysis can inform registry-based studies of 

cancer incidence and mortality, but concerns about statistical identifiability and interpretability, as 

well as the learning curves of statistical software packages, have limited its uptake.

METHODS—We implemented a panel of easy-to-interpret estimable APC functions and 

corresponding Wald tests in R code that can be accessed through a user-friendly web tool.

RESULTS—Input data for the web tool consist of age-specific numbers of events and person-

years over time, in the form of a rate matrix of paired columns. Output functions include model-

based estimators of cross-sectional and longitudinal age-specific rates; period and cohort rate 

ratios that incorporate the overall annual percentage change (net drift); and estimators of the age-

specific annual percentage change (local drifts). The web tool includes built-in examples for 

teaching and demonstration. User data can be input from a Microsoft Excel worksheet or by 

uploading a comma-separated-value (csv) file. Model outputs can be saved in a variety of formats 

including R and Excel.

CONCLUSIONS—APC methodology can now be carried out through a freely-available user-

friendly web tool. The tool can be accessed at http://analysistools.nci.nih.gov/apc/.

IMPACT—The web tool can help cancer surveillance researchers make important discoveries 

about emerging cancer trends and patterns.
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INTRODUCTION

Cancer rates are monitored world-wide to assess the burden of cancer and track cancer 

trends in populations (1–3). Standard statistical methods include examination of plots of 

disease rates over time (4, 5) and analysis of directly age-standardized rates (ASRs) and 
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estimated annual percentage changes (EAPCs) of the ASRs (6, 7). These approaches are 

descriptive, agnostic, and non-parametric.

Cancer rates are also examined to reveal clues about cancer etiology (8–17), natural history 

(18–21), and mortality (9, 22–27). Parametric statistical models often play a more prominent 

role in these studies, especially the age-period-cohort (APC) model (5, 28–33). Nonetheless, 

many studies have not taken advantage of the APC framework (34). One basic problem is 

concern about statistical identifiability and corresponding uncertainty about how to interpret 

APC parameters (especially the so-called deviations). However, we have suggested these 

issues reflect a fundamental uncertainty principle intrinsic to all cohort studies, rather than a 

problem specific to the APC model (34). We and others (5) have also pointed out close 

connections between estimable functions of APC parameters and standard plots of age-

standardized and age-specific disease rates over time. In this regard, estimable APC 

functions provide a useful parametric framework that complements standard non-parametric 

descriptive methods.

Several APC functions have proven useful in cancer applications. Anderson et al. (35) 

introduced the longitudinal age curve in their investigation of breast cancer Black-White 

racial disparity. The longitudinal age curve ‘stiches together’ observed cohort-specific age-

specific rates, thereby providing a smooth summary curve. Speaks et al. (36) considered 

testicular germ cell tumors and Yang et al. (37) studied ovary cancer using a period rate ratio 

curve. This function describes the relative rate of cancer in any given calendar period versus 

a referent period, adjusted for age and non-linear cohort effects. Jemal et al. (24) studied 

lung cancer mortality, Ma et al. (38) pancreas cancer mortality, and Rosenberg et al. (39) 

leukemia incidence using a cohort rate ratio curve. This function describes the relative rate 

of cancer in any given birth cohort versus a referent cohort, adjusted for age and non-linear 

period effects. Mbulaiteye et al. (40) investigated Burkitt lymphoma and Chaturvedi et al. 

(41)} examined oral cavity and oropharyngeal squamous cell carcinoma rates using a 

quantity that we call local drifts. Local drifts provide a model-based EAPC value for each 

age group. Anderson et al. used all of these functions in their study of breast cancer 

heterogeneity in Denmark (42).

Since each of these new functions has proven useful in recent studies, we were motivated to 

make them readily available. However, many investigators with interesting hypotheses 

about cancer rates are not experts in statistics or familiar with statistical software packages. 

Therefore, we developed a freely-available user-friendly web tool that be accessed at http://

analysistools.nci.nih.gov/apc/. The web tool provides all of the APC functions described 

above, along with associated statistical hypothesis tests. In this report we summarize the web 

tool and highlight how it can help identify interesting signals in cancer rates using three 

illustrative examples from the literature (29, 32, 43). The example data are available through 

the web tool, and we encourage potential users to work through the examples online.
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MATERIALS AND METHODS

Overview of the Web Tool

Online Help is available (click on Help in the web tool, or open http://

analysistools.nci.nih.gov/apc/help.html). Input data for the web tool consist of age-specific 

numbers of events and person-years over time, in the form of a rate matrix of paired 

columns. Three sample datasets that describe prostate (43), lung (29), and breast cancer (32) 

mortality are linked to the web tool (click on Help, then Sample Data, or open http://

analysistools.nci.nih.gov/apc/help.html#example). The input page is shown in Figure 1 for 

the prostate cancer mortality data (example 1). In general, user data can be input by copy-

and-paste from an Excel worksheet or file upload of a comma-separated-values (csv) file. As 

shown in Figure 1, age groups correspond to rows and calendar periods to columns. The 

rates are defined by adjacent pairs of columns: the first column of each pair lists the 

numbers of events by age for a given calendar period, and the second column lists the 

corresponding persons-years. The age and period intervals must all be equal (44), i.e. if 5-

year age groups are used then 5-year calendar periods must also be used. The intervals can 

range from 1 through 10 years inclusive. Data in this format can easily be obtained from 

publicly-available data resources with cancer case and population data, such as the 

Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer 

Institute (http://www.seer.cancer.gov) and Cancer Incidence in Five Continents (CI5) of the 

International Agency for Research on Cancer (http://ci5.iarc.fr).

The web tool fits the APC model and calculates parameters and estimable functions 

summarized in Table 1. On the web site, each function is presented in its own tab in 

graphical and tabular format, as illustrated in Figure 2. A number of key hypothesis tests are 

also provided in the ‘Wald Tests’ tab located in the sidebar on the left-hand side of the web 

page. These hypothesis tests are summarized in Table 2.

RESULTS

Interpretation of Estimable Functions

Using outputs from the web tool (Table 1), the user can interpret the observed rates as a 

product of age, period, and cohort effects. Different combinations of functions summarize 

the patterns longitudinally or prospectively and cross-sectionally. Longitudinally, the 

expected rate per 100,000 person years among persons born in year c and followed-up at age 

a equals R(a | c) = LongAge(a | c0) × CRR(c | c0) × ePD(c+a). Cross-sectionally, the expected 

rates by age conditional on period equal R(a | p) = CrossAge(a | p0) × PRR(p | p0) × eCD(p−a) 

and the expected rates by period conditional on age equal 

.

Formally, if we calculate the log-linear regressions of R(p | a) versus a (one regression for 

each age group), the Local Drifts are equal to the slopes of the regression lines βa expressed 

as an estimated annual percentage change 100% × (eβa − 1). From the expression for R(p | 

a), it follows that any differences between the Local Drifts and the Net Drift are a function 

of the cohort deviations CD(p − a).
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Illustrative Examples

The built-in examples represent qualitatively different rate patterns. For the prostate cancer 

example (Sample Data 1 online), the cohort rate ratio curve has a striking inverted-V shape. 

Consequently, the local drifts (Figure 2) are highly significant (Chi-Square = 137.5 on 6 

degrees of freedom, P 0); the local drift values increase from around 0 percent per year 

among men ages 50 – 54 years, to around 4 percent per year among men ages 80 – 84 years. 

In contrast, for the lung cancer example (Sample Data 2 online), the cohort deviations are 

not statistically significant; hence the cross-sectional age-specific rates over time are more 

or less proportional. Furthermore, because the period deviations are also not statistically 

significant, the common secular pattern is more or less log-linear.

For the breast cancer example (Sample Data 3 online), the overall net drift of −0.289 percent 

per year is quite modest. Nonetheless, the cohort rate ratio curve identifies a remarkable 

moderation in breast cancer mortality among women born after 1926. This cohort trend is 

responsible for the striking pattern of local drifts: mortality is stable or significantly 

decreasing over time among women ages 58 – 59 years and younger, but is significantly 

increasing over time, by as much as 1 percent per year, among women ages 60 – 61 years 

and older.

In the prostate and breast cancer examples, cohort deviations are substantially larger than 

period deviations. Hence, both sets of rates are well approximated by a multiplicative model 

in which the longitudinal age curve is modulated up or down according to the values of the 

cohort rate ratio curve.

Software

The computational methods for our web tool are implemented in R. The R package is freely 

available through the web tool (click on Help, then FAQ). The R code runs on a back-end 

server. Python and JavaScript are used on a front-end server to obtain the user’s input, 

communicate with the R server, and format the results for the user.

The web tool can save the outputs in a text file, Excel Workbook, or R Workspace. After 

fitting a model, select the desired output format from the drop-down menu (see Figure 2), 

then click on the Download button. The text output files were generated by the R package 

and are displayed in tabs in the browser window. Users can copy and paste this output to 

their own files. Many users may prefer to download the outputs in the form of an Excel 

Workbook. Each function tab on the web site appears as a function sheet in the workbook, 

which provides model outputs in tabular and graphical form, precisely as they appear on the 

web. The table of Wald tests is also included, along with the Net Drift and log-linear APC 

parameters. The inputs and outputs can also be saved as R Workspaces, which can be 

opened in R for downstream analyses in the R environment.

DISCUSSION

We developed a user-friendly web tool that makes age-period-cohort (APC) analysis broadly 

available without the need for any programming. Our R package is also freely available. The 

functions in the web tool have proven utility in registry-based studies of cancer incidence 
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and mortality. The tool includes three built-in examples for teaching and demonstration, and 

it can output all of the results in several formats, including Excel.

Net drift is perhaps the single most important parameter in the APC model, so the drift value 

is prominently displayed by our Web tool. One important yet perhaps under-appreciated 

etiological implication of drift is made clear by our Web tool: whenever there is drift, the 

cross-sectional and longitudinal age curves will diverge. The mathematical reason is that the 

cross-sectional age trend (CAT) in the former is always equal to the longitudinal age trend 

(LAT) in the latter minus the log-linear net drift coefficient (45) (Table 1). The intuitive 

reason is the cross-sectional age curve reflects the experience of older cohorts at older ages 

and younger cohorts at younger ages. When there is a progressive increase in rates from 

older to younger generations, the cross-sectional age curve gives the false impression of 

falling rates with advancing age at diagnosis (46), and conversely. Therefore, the cross-

sectional age curve should be interpreted cautiously as a surrogate for the longitudinal age-

associated natural history unless there is little net drift. The bias can be severe whenever 

there is substantial drift of say ±1% per year or more, as in the lung cancer example. We 

prefer to make inferences about age-associated natural history using the longitudinal age 

curve (35, 40, 47–51), which is now broadly available through our Web tool.

One of the most novel components of our Web tool is the local drifts and associated Wald 

test for heterogeneity. In our view, after net drift, the test for significance of the local drifts 

is the second most important number coming out of an APC analysis. It can be shown that 

the local drifts are determined from the slope (derivative) of the cohort rate ratio curve. In 

other words, local drifts are a consequence of trends in birth cohort effects. If the local drifts 

are significant (because of birth cohort effects), an important implication is a single 

summary age-standardized rate curve and EAPC value cannot adequately describe the time 

trends in every age group. The web tool for the first time allows the user to test for this 

situation. In our experience, local drifts are often quite heterogeneous, and striking local 

drift patterns such as those illustrated by the prostate and breast cancer examples are not 

uncommon.

Age, period, and cohort deviations are also provided by the web tool. These quantities 

measure curvature, which describes local changes in trends, independently of the magnitude 

or direction of the overall trend. There are situations where it is desirable to base inferences 

on these quantities (36, 38), especially in comparative analysis.

Various investigators have calculated cohort and period rate ratio curves by imposing 

different constraints on the parameters in the APC model (8, 9, 17, 52). In our web tool both 

the cohort rate ratio curve as well as the period rate ratio curve incorporate the entire value 

of the net drift. Importantly, in our software, the cohort deviations are constructed to be 

orthogonal to the linear trend in cohort over the entire set of observed rates. This definition 

ensures that various products of age, period, and cohort functions provided by our software 

are mathematically equivalent to the fitted rates. Since the fitted rates track the observed 

rates as closely as possible, the estimable functions provided by our software are most 

consistent with the observed data.
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An important caveat is the functions in our web tool were designed to highlight key signals 

in cancer rates, but it remains up to the investigator to propose plausible explanations. Also, 

the tool does not produce standard descriptive plots since these can be generated by 

numerous other software applications including Excel. In the future we hope to develop a 

companion web tool for comparative analysis of two sets of rates (45).

In summary, our web tool for age-period-cohort analysis provides a suite of age-period-

cohort functions and parameters that complement traditional descriptive approaches. It is 

very simple to cut and paste case and population data into our web tool or upload the data 

from a csv file. All of the outputs can be downloaded in a number of formats that enable 

further downstream analysis. Our hope is that our web tool will help cancer surveillance 

researchers make important discoveries about emerging cancer trends and patterns.
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Figure 1. 
screen shot of input page
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Figure 2. 
screen shot of local drifts tab
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