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Abstract

Purpose—To propose and evaluate a novel non-rigid image registration approach for improved 

myocardial T1 mapping.

Methods—Myocardial motion is estimated as global affine motion refined by a novel local non-

rigid motion estimation algorithm. A variational framework is proposed, which simultaneously 

estimates motion field and intensity variations, and uses an additional regularization term to 

constrain the deformation field using automatic feature tracking. The method was evaluated in 29 

patients by measuring the DICE similarity coefficient (DSC) and the myocardial boundary error 

(MBE) in short axis and four chamber data. Each image series was visually assessed as “no 

motion” or “with motion”. Overall T1 map quality and motion artifacts were assessed in the 85 T1 

maps acquired in short axis view using a 4-point scale (1-non diagnostic/severe motion artifact, 4-

excellent/no motion artifact).

Results—Increased DSC (0.78±0.14 to 0.87±0.03, p<0.001), reduced MBE (1.29±0.72mm to 

0.84±0.20mm, p<0.001), improved overall T1 map quality (2.86±1.04 to 3.49±0.77, p<0.001), and 

reduced T1 map motion artifacts (2.51±0.84 to 3.61±0.64, p<0.001) were obtained after motion 

correction of “with motion” data (~56% of data).

Conclusion—The proposed non-rigid registration approach reduces the respiratory-induced 

motion that occurs during breath-hold T1 mapping, and significantly improves T1 map quality.
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INTRODUCTION

Expansion of the myocardial extracellular space occurs in a variety of cardiovascular disease 

(1–3). Late gadolinium enhancement (LGE) is the gold standard technique for imaging of 

localized myocardial extracellular space expansion as typically encountered in the presence 

of focal fibrosis and scar (4,5). LGE imaging relies on the presence of intensity variation 

between fibrosis/scar and healthy myocardium. This technique may be limited for the 

assessment of more diffuse disease (6). Myocardial T1 mapping is an emerging technique 

for the assessment of diffuse interstitial fibrosis (7). Pre-contrast and post-contrast T1 

mapping can be acquired to quantify the extracellular volume (ECV) (8), which shows 

promise for the assessment of diffuse interstitial fibrosis (9,10).

Quantitative myocardial T1 mapping is commonly performed using a breath-hold ECG-

triggered acquisition over ~9–13 heart beats (11–14). One T1-weighted image is generally 

acquired per heart beat during the mid-diastolic cardiac period which corresponds to the 

more quiescent phase of the cardiac cycle. Pixel-wise T1 estimation is then performed by 

fitting T1-weighted images to the T1 recovery curve. To enable reliable pixel-wise T1 fitting, 

the pixel across different T1-weighted images should be aligned. However, despite breath-

hold instructions, motion is observed in 40–50% of patients due to diaphragmatic drift and 

their limited breath-holding capability (15,16), which leads to significant imaging artifacts in 

T1 maps. Respiratory motion correction techniques are thus required to improve the quality 

of T1 maps.

Image-based motion correction algorithms can be used to reduce in-plane motion among T1-

weighted images (15,16). Although a variety of motion estimation algorithms have been 

proposed for medical image registration (17) and specifically to cardiac image registration 

(18), few studies have addressed the motion problem in myocardial T1 mapping. Motion 

correction of T1-weighted image series is challenging due to the high contrast variation 

among T1-weighted images. Intensity-based approaches have been shown to fail due to the 

presence of high contrast variation and transient tissue nulling at certain inversion times 

(16).

A recent approach (16) used synthetic T1-weighted images to simplify the registration 

problem in Modified Look-Locker Inversion Recovery (MOLLI) data (12). Synthetic T1-

weighted images were created from T1 estimates to simulate motion corrected MOLLI data. 

The polarity of each acquired T1-weighted image is then restored using a multi-fitting 

approach (19) and each pair of T1-weighted images (acquired and simulated) is then 

registered together. This process is iterated to reduce the impact of initial T1 estimate errors. 

A proposed extension of this method uses an alternative approach for signal polarity 

restoration based on phase sensitive inversion recovery (PSIR) reconstruction (15). The 

PSIR reconstruction used the phase information of the T1-weighted image acquired with the 

longest recovery period of each Look-Locker experiment (20) to restore the polarity. This 

method was found more efficient than the multi-fitting approach for the restoration of the 

signal polarity (15). However, the efficiency of such algorithms could be suboptimal in the 

presence of large motion where large bias and artifacts are generally observed in the initial 
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T1 estimates. In addition the PSIR reconstruction may also fail to accurately restore the 

signal polarity in the presence of large motion within each Look Locker experiment (15).

In this study, we propose and evaluate a novel motion correction algorithm for T1 mapping 

which directly relies on the acquired T1-weighted images and does not require the 

restoration of the signal polarity.

METHODS

We propose a novel image-based approach for Adaptive Registration of varying Contrast-

weighted images for improved TIssue Characterization (ARCTIC) and evaluate its 

performance for myocardial T1 mapping applications. Figure 1 shows the general scheme of 

the algorithm. Each T1-weighted image is individually registered to a common reference T1-

weighted image using a two-step approach. In the proposed approach, a region of interest 

(ROI) is first manually drawn around the left ventricle (LV) of the reference image (LV-

ROI). All subsequent steps are performed automatically. The global affine motion of the LV 

is first estimated using a region-matching algorithm. The motion estimates are then refined 

using a novel local non-rigid motion estimation approach based on an extended optical flow 

formulation.

Step I: Global Motion Estimation

The coarse LV motion is first estimated using a region-matching approach (21) where a 

unique set of affine motion parameters is estimated to represent the LV motion. A sign 

gradient-descent with fixed steps (22,23) is employed to obtain the affine motion 

parameters, which maximize a similarity criterion between the reference image and the 

registered image within the LV-ROI. The similarity criterion was defined for each image to 

register as the inter-correlation or the mutual information. This choice was based on the 

intensity/contrast similarity (C) between the reference image and the image to register. C 

was computed using the following heuristic:

[1]

where Iref is the reference image, I2reg is the image to register, and M is the reference binary 

mask set to 1 inside the LV-ROI and 0 elsewhere. For T1-weighted images with similar 

intensity/contrast as the reference image (empirically defined as C ≤ 0.8), the similarity 

criterion is defined as the inter-correlation coefficient (EInt):

[2]

where S is the number of pixels set to 1 in M, and ( ; σIref), ( , σI2reg) are the 

(averaged; standard deviation) of Iref and I2reg over all pixels satisfying M(x,y) = 1, 

respectively. For T1-weighted images depicting different intensity/contrast than the 

reference image (C > 0.8), the mutual information (EMut) is used as similarity criterion as 

follows:
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[3]

where ρ is the joint probability distribution function of the image intensity of Iref and I2reg 

and (ρIref, ρI2reg) are the marginal probability distribution functions of the image intensity of 

Iref and I2reg, respectively. N (empirically set to 100) is the bin number of the histograms 

used for the calculation of ρIref, ρI2reg and ρ. Note that, when using the mutual information, 

the LV-ROI is dilated using a local maximum operator (empirically defined as a disk 

structuring element with ray of 20 pixels) to improve the metric robustness. Finally, the 

estimated set of affine motion parameters is converted to a dense motion field (one 2D 

displacement vector per pixel) and used as initialization of a local non-rigid motion 

estimation algorithm.

Step II: Local Non-Rigid Motion Estimation

Optical flow (OF) algorithms (24–26) estimate dense motion fields by assuming intensity 

conservation during object displacements over time. Let be I(x,y,t) the image intensity of the 

reference image at pixel coordinates (x,y) at time t. The intensity conservation hypothesis 

leads to model the displacement (dx,dy) during time dt as:

[4]

The first-order Taylor series expansion about I(x,y,t) reads as:

[5]

with (Ix, Iy, It) = (∂I/∂x, ∂I/∂yx, ∂I/∂t) and where ε represents the high order terms. Ignoring ε 

(which hold for small displacements) and combining equations [4] and [5] lead to the optical 

flow equation:

[6]

where (u, v) = (dx/dt, dy/dt) is the 2D velocity field or optical flow.

However, the intensity conservation hypothesis does not hold for T1-mapping application 

where the images depict dramatic contrast/intensity variations due to different T1-weighting. 

Therefore, we propose to integrate the intensity variation between T1-weighted images as 

part of the motion model as follows:

[7]

where c(x,y,t) is the pixel-wise intensity variation. Using equations [5] and [7], a modified 

formulation of the optical flow equation can be written as:

[8]
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Equation [8] has 3 unknowns (2D motion field (u,v), and intensity variation (c)) which need 

to be estimated. Therefore, to solve this ill-posed problem, additional constraints are needed. 

Horn and Schunck proposed to constrain the spatial smoothness of the motion field in the 

initial formulation of the optical flow (equation [6]) (24). This framework was then extended 

by Cornelius and Kanade (27) to solve equation [8] where the spatial smoothness of both 

motion field and intensity variation was constrained. The optical flow is then estimated by 

minimization of the following functional:

[9]

where α is a weighting parameter designed to control the spatial smoothness of the motion 

field β is a weighting parameter which controls the spatial smoothness of the intensity 

variation c, and ∇u = (du/dx, du/dy), ∇v = (dv/dx, dv/dy), ∇c = (dc/dx, dc/dy).

To improve the robustness of the algorithm in the presence of transient structures induced by 

out-of-plane motion and specific tissue nulling at certain inversion time, we propose to add 

an additional regularization term which constrains the motion estimates using pre-estimated 

displacements of specific feature points (22). Feature points are obtained by regular 

sampling of the LV-ROI contour. The displacement of each feature point is automatically 

estimated using a region-matching approach restrained to a small ROI centered on each of 

these points. A simple 2D translational model is estimated for each feature point to maintain 

the robustness of the estimation. The similarity metric used for region matching is based on 

the edge orientation coincidence function Eedge (28) and is defined as:

[10]

where M is a binary mask set to 1 inside the feature point ROI and 0 elsewhere, S is the edge 

strength defined as , Δθ is the edge orientation 

variation defined as Δθ = tan−1(GyIref/GxIref) − tan−1 (GyI2reg/GxI2reg). To speed up the 

convergence of the feature point tracking step, the 2D translational displacement of each 

feature point is estimated using a sign gradient-descent with fixed steps (22,23) with the 

global motion estimate as initialization. To remove occasional non-physiological motion 

estimates, an outlier rejection is added. The motion estimates of the feature points are 

assumed to follow a bivariate Gaussian distribution. A feature point is automatically 

discarded if at least one of its displacement components does not lie within three standard 

deviations of the averaged feature point displacements (marginal three-sigma rule). The 

displacement of these feature points is then integrated into a novel variation formulation of 

the optical flow problem as follows:

[11]
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where (ui, vi) are the pre-estimated 2D displacements of each feature point, N is the number 

of feature points, λ is a weighting parameter, and F(di) is a distance function defined as:

[12]

where d represents the Euclidean distance between the pixel coordinates (x,y) and the ith 

feature point, and R controls the spatial influence of each constraint point. The optical flow 

is finally obtained by minimization of the functional EARCTIC(u,v,c) using the calculus of 

variation and the Gauss-Seidel approach as described in Appendix A.

Experimental Evaluation—Twenty-nine patients referred for clinical CMR (58±15 y, 19 

male) were recruited. Informed consent was obtained from all participants and the imaging 

protocol was approved by our institutional review board. All patients were scanned using a 

1.5T Philips Achieva (Philips Healthcare, Best, The Netherlands) scanner with a 32-channel 

cardiac phased array receiver coil. Each patient received an injection of 0.1 mmol/kg of 

gadobenate dimeglumine (MultiHance; Bracco Diagnostic Inc., Princeton, NJ). T1 mapping 

was performed using the MOLLI sequence (12) before and after contrast administration. The 

5-(3)-3 MOLLI scheme was used for pre-contrast T1 mapping while the 4-(1)-3-(1)-2 

MOLLI scheme was used for post contrast T1 mapping (29). Both sequences used a 

balanced-SSFP readout (TR/TE=3.1/1.5ms, FOV=360×337 mm2, acquisition 

matrix=188×135, voxel size=1.9×2.5 mm2, slice thickness=8 mm, number of phase-

encoding lines=70, linear ordering, 10 linear ramp-up pulses, SENSE factor=2, flip 

angle=35/70°, bandwidth=1085Hz/pixel). T1 scans have been acquired in the short axis 

views using either 1 or 3 slices for the first 20 patients. A single slice has been acquired in 

the four chamber orientation for the last nine patients. Three T1 scans were acquired for each 

patient: one before contrast injection, and two post-contrast scans at 15±5 min and 31±6 min 

after contrast injection, respectively. Note that post-contrast T1 mapping could not be 

performed in all patients.

Implementation—We implemented ARCTIC using both central processing unit (CPU) 

and graphic processing unit (GPU) to enable efficient computation. C++ was used for CPU 

implementation and compute unified device architecture (CUDA) was used for GPU 

implementation. In this CPU/GPU implementation, the iterative scheme of the optical flow 

(equation 17), which is the most computationally intensive step of the algorithm, was 

offloaded to the GPU. The rest of the algorithm was performed on the CPU. The CPU/GPU 

implementation was compared to a CPU only implementation entirely developed in C++.

Two approaches for automatic selection of the reference image were evaluated. In short axis 

data, the reference image was chosen as the 4th image since it has a long inversion time with 

the employed pre-contrast (second longest TI) and post-contrast (longest TI) MOLLI 

imaging schemes. In four chamber data, the reference image was selected as the image with 

the longest inversion time (5th and 4th image in pre-contrast and post contrast image series, 

respectively). In both cases, the reference image is located at the middle of each acquisition, 

which is favorable to minimize the motion amplitude to be estimated in the presence of 

drifting motion. A multi-resolution approach (30) was used for the non-rigid motion 

estimation step where the optical flow is initially estimated from first sub-resolution images 
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and then refined using the full resolution images. For each resolution level, the iterative 

scheme (equation [17]) used 100 iterations and was repeated five times.

T1 map reconstruction—T1 maps were reconstructed offline before and after motion 

correction. The restoration of the signal polarity among initial and motion corrected T1-

weighted images was performed using a multi-fitting approach (19). Several T1 fits were 

performed by inverting the signal magnitude of none of the points, the point with the 

shortest inversion time, the two points with the shortest inversion times, and so on. The 

correct polarity restoration is selected from the dataset leading to the smallest residual fitting 

error. Pixel-wise T1 fitting was performed in two steps. Apparent T1 values were first 

estimated using a three point model (31) as follows:

[13]

where S(x,y,tn) is the signal of the nth T1-weighted image acquired at time tn after the last 

inversion pulse. A, B, and  are the parameters estimated from the fit. A Marquard-

Levenberg optimizer was employed to converge to the solution using the code provided in 

(32). To speed up the convergence of the estimation and avoid local minimum, B was 

initialized to 1 and (A; ) were initialized using a 2-parameter grid search. T1 values were 

then computed from apparent T1 estimates as:

[14]

Data analysis—The relative amount of motion estimated from the global affine motion 

estimation step and the local non-rigid motion estimation step is reported. The amount of 

motion was measured as the average L2 norm (over the myocardium) of the relative 

estimated motion field.

To quantify the accuracy of the ARCTIC approach, endocardial and epicardial contours 

were manually drawn in all T1-weighted images of all uncorrected MOLLI series. Both 

contours were converted into binary mask set to 1 inside the contour and 0 outside. A binary 

representation of the myocardium was obtained by computing the difference between the 

epicardial binary mask and the endocardial binary mask. The myocardial binary mask of 

each T1-weighted image was then registered to the binary mask of the reference image using 

the estimated motion field of each T1-weighted image. The DICE similarity coefficient 

(DSC) (33) was then calculated between the myocardial binary mask of the reference image 

and the registered myocardial binary mask of each T1-weighted image as follows:

[15]

where Mref and Mreg are myocardial binary masks of the reference image and the registered 

image, respectively. An ideal registration leads to a perfect overlap between both masks and 

would provide a DSC of 1. A DSC of 0 corresponds to the absence of overlap.
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The myocardial boundary error (MBE) is also calculated to provide a local alignment 

measure. The myocardial boundary was first calculated for each T1-weighted image using 

the binary representation of the myocardium obtained from the endocardial and epicardial 

contours. MBE was measured as the average distance between the myocardial boundary of a 

T1-weighted image and the myocardial boundary of the reference image.

DSCs and MBEs are reported for uncorrected data (using the original encodardial/epicardial 

contours) and for motion corrected data (using the registered endocardial/epicardial 

contours). The averaged DSC (and MBE), over all 8(pre-contrast)/9(post-contrast) T1-

weighted images, is reported for each MOLLI acquisition. In order to quantify the overall 

registration performance for each T1-weighted image of a MOLLI acquisition, the averaged 

DSC (and MBE) over all MOLLI acquisitions is reported for each of the 8/9 T1-weighted 

images. The statistical significant difference between DSCs (and MBEs) obtained with and 

without motion correction was evaluated using paired t-tests. Statistical significance was 

considered at p < 0.05.

T1-map reconstructed from motion corrupted T1-weighted images can depict severe artifacts 

as shown in Figure 2. Therefore, a subjective qualitative analysis was then conducted by an 

experienced cardiologist to assess the value of uncorrected and motion corrected T1 maps. 

The presence or absence of motion was first assessed for each image series by visual 

inspection of all T1-weighted images. Each image series was subsequently classified as 

“with motion” or “no motion”. Original (uncorrected) and motion corrected T1 maps 

(85×2=170 T1 maps) were also created for each image series acquired in the short axis view 

and assessed in term of overall T1 map quality and level of motion artifacts using a 4-point 

scale (1-non diagnostic/severe motion artifact, 2-fair/large motion artifacts, 3-good/small 

motion artifacts, 4-excellent/no motion artifact) (34). Figure 3 shows example of T1 maps 

with associated subjective scores. The reader was blinded to the study design and whether 

the T1 maps were motion corrected or not. Wilcoxon signed rank test was used to test the 

null hypothesis that the difference of overall T1 map quality scores/motion artifact scores 

between uncorrected and motion corrected T1 maps was zero. Mann-Whitney U-test was 

used to test the null hypothesis that the difference of overall T1 map quality scores/motion 

artifact scores between “no motion” data and “with motion” data was zero. Statistical 

significance was considered at p < 0.05.

RESULTS

After visual inspection, 56% of uncorrected T1-weighted image series were classified as 

“with motion”. Figure 4 and Figure 5 illustrates the benefit of the proposed motion 

correction method in pre-contrast and post-contrast T1-weighted images, respectively. 

Significant drifting motion can be observed in the image series shows in Figure 4a. 

Unpredictable motion potentially induced by RR-interval variations is shown in the second 

image series in Figure 5a. Corresponding motion corrected T1-weighted images are shown 

in Figure 4b and Figure 5b. Although significant motion can be observed before motion 

correction, the myocardium appears stationary after motion correction. The proposed 

approach successfully registered all T1-weighted images including those with low intensity 

level and poor contrast.
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The relative amount of estimated motion in the myocardium was 0.5±0.2 mm and 1.8±1.8 

mm (“no motion” and “with motion” data, respectively) from the global affine motion 

estimation step and 0.4±0.2 mm and 0.6±0.3 mm (“no motion” and “with motion” data, 

respectively) from the local non-rigid motion estimation step.

Figure 6 shows the quantitative analysis of the proposed registration approach. DSCs were 

averaged over all T1-weighted images of each image series and were computed with and 

without motion correction. Averaged DSCs are shown for each image series acquired during 

pre-contrast (Figure 6a–b), early post-contrast (Figure 6c–d), and late post-contrast (Figure 

6e–f) imaging. Among all image series classified as “no motion” (Figure 6a,c,e), the average 

DSCs were 0.88±0.03 without motion correction and slightly improved to 0.89±0.03 after 

motion correction (p=0.006). This trend was only observed in “no motion” short axis data 

(0.89±0.02 vs. 0.90±0.02, p<0.001) and not in “no motion” four chamber data (0.87±0.03 

vs. 0.87±0.02, p=0.89). In the “with motion” image series, the averaged DSCs increased 

from 0.78±0.14 (uncorrected data) to 0.87±0.03 using ARCTIC (p<0.001) (Figure 6b,d,f). 

Increase of the averaged DSCs was observed after motion correction for “with motion” 

image series acquired in short axis orientation (0.77±0.16 vs. 0.87±0.04, p<0.001) and four 

chamber orientation (0.82±0.06 vs. 0.86±0.04, p<0.003). The averaged DSCs were also 

improved after motion correction for all “with motion” image series acquired during pre-

contrast (0.69±0.20 vs. 0.85±0.05, p<0.001), early post-contrast (0.82±0.07 vs. 0.88±0.03, 

p<0.001), and late post-contrast (0.84±0.05 vs. 0.88±0.03, p<0.001).

Figure 7 shows the average MBE obtained for each image series acquired during pre-

contrast (Figure 7a–b), early post-contrast (Figure 7c–d), and late post-contrast (Figure 7e–

f). Among all image series classified as “no motion” (Figure 7a,c,e), the average MBE was 

decreased from 0.76±0.16mm (uncorrected data) to 0.73±0.14mm using ARCTIC 

(p<0.001). The same analysis restrained to “no motion” short axis data showed a similar 

trend (0.72±0.13mm vs. 0.67±0.11mm, p<0.001). Although the average MBE was also 

reduced in “no motion” four chamber data from 0.89±0.17mm (uncorrected data) to 

0.87±0.11mm (using ARCTIC), the difference was not statistically significance (p=0.5). 

Among all image series classified as “with motion” (Figure 7a,c,e), a large reduction of the 

average MBE was obtained (1.29±0.72mm (uncorrected data) vs. 0.84±0.20mm using 

ARCTIC, p<0.001). A similar observation was found in “with motion” image series 

acquired in short axis orientation (1.30±0.79mm vs. 0.80±0.17mm, p<0.001) and four 

chamber orientation (1.24±0.33mm vs. 0.99±0.22mm, p<0.001). The averaged MBEs were 

also decreased after motion correction for all “with motion” image series acquired during 

pre-contrast (1.72±1.09mm vs. 0.90±0.26mm, p=0.001), early post-contrast (1.10±0.25mm 

vs. 0.81±0.14mm, p<0.001), and late post-contrast (1.06±0.32mm vs. 0.83±0.18mm, 

p<0.001).

Further quantitative analysis was performed to analyze the performance of ARCTIC for 

each T1-weighted image index of pre-contrast and post-contrast sequences. DSCs of each 

T1-weighted image index were averaged over the image series and are reported in Figure S1 

(short axis data) and Figure S2 (four chamber data). Similarly, MBEs of each T1-weighted 

image index were averaged over the image series and are reported in Figure S3 (short axis 

data) and Figure S4 (four chamber data). In “no motion” image series, similar DSCs and 
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MBEs were obtained before and after motion correction in pre-contrast (Figure S1a, S2a, 

S3a, and S4a), early post-contrast (Figure S1c, S2c, S3c, and S4c) and late post-contrast 

(Figure S1e, S2e, S3e, and S4e) imaging. Note that lower DSCs and higher MBEs were 

consistently obtained before motion correction in post-contrast images acquired immediately 

after an inversion pulse (1st, 5th, and 8th images of the series), which generally depict 

different contrast as illustrated in Figure 5. Substantially increased DSCs and reduced MBEs 

were obtained in “with motion” data for pre-contrast (Figure S1b, S2b, S3b, S4b), early 

post-contrast (Figure S1d, S2d, S3d, S4d), and late post-contrast (Figure S1f, S2f, S3f, S4f) 

imaging.

Figure 8 show examples of T1 maps reconstructed with and without motion correction for 

pre-contrast image series assessed as “with motion”. Motion-induced artifacts can be 

observed in all T1 maps reconstructed without motion correction. The quality of all T1 maps 

greatly improved after motion correction. Figure 9 shows similar results obtained in post-

contrast T1 maps. Motion-artifacts in all post-contrast maps were substantially reduced after 

motion correction. Subjective qualitative analysis of all T1 maps confirmed these findings 

and is reported in Figure 10. Without motion correction, the overall T1 map quality of “with 

motion” series was scored lower than “no motion” series (2.86±1.04 vs. 3.86±0.35, 

p<0.001). Higher motion artifact level was also found in “with motion” series compared to 

“no motion” series (2.51±0.84 vs. 3.81±0.47, p<0.001). No statistical difference was found 

in term of overall T1 map quality before and after motion correction in “no motion” image 

series (3.86±0.35 to 3.86±0.35, p=1). After motion correction, improved overall T1 map 

quality (2.86±1.04 to 3.49±0.77, p<0.001) and reduced motion artifacts (2.51±0.84 to 

3.61±0.64, p<0.001) were obtained in “with motion” series. Among those “with motion” 

series, 67% of motion corrected T1 maps were assessed as “no motion artifact” and 96% of 

T1 maps as “no motion artifact” or “small motion artifact”.

The computation time of ARCTIC for one T1-weighted image was ~10 seconds using the 

CPU only implementation and was reduced to ~1 second using the CPU/GPU 

implementation. Motion estimation and correction of a complete T1 scan using ARCTIC 

was thus performed in less than 10 seconds using the proposed CPU/GPU implementation.

DISCUSSION

In this study, we proposed a novel motion correction approach for both pre-contrast and 

post-contrast T1 mapping. The method was successfully validated in a patient cohort. 

Improved alignment of the myocardium was achieved in all T1-weighted images and all 

image series assessed as “with motion”. The method did not introduce unrealistic 

deformation for image series assessed as “no motion”. Furthermore, the proposed motion 

correction led to significant improvements in overall T1 map quality and substantially 

reduced the level of motion artifacts. Finally, our CPU/GPU implementation enables the 

processing of one complete T1 scan in less than 10 seconds which is suitable for clinical 

applicability.

Motion was observed in 56% of image series which is similar to prior studies which 

identified motion in 40% (16) and 48% (15) of series. The strong relation between the 
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presence of motion and decreased overall T1 map quality/increased motion artifacts 

demonstrates that motion is a major challenge for T1 mapping. The significant 

improvements obtained after motion correction in subjective T1 map assessment shows that 

the proposed image-registration algorithm represents an efficient strategy to address the 

motion issue.

DSCs and MBEs measured before motion correction in “no motion” series were found in 

good agreements with previous studies (15,16). Although the proposed motion correction 

approach provided a slight improvement in “no motion data”, it did not impact the quality of 

reconstructed T1 maps as revealed by the subjective qualitative analysis. On the other hand, 

large DSC increase and MBE reduction were obtained after motion correction in “with 

motion” data and led to significantly improved T1 maps in term of both overall quality and 

motion artifacts. This demonstrates the robustness of our approach for both series depicting 

minimal motion and large amplitude motion. The proposed approach was also found robust 

for both pre-contrast and post-contrast image series as well as for short axis and four 

chamber data.

The method was found reliable for all T1-weighted images. However, slightly lower DSCs 

and higher MBEs were consistently obtained in three post-contrast T1-weighted images (1st, 

5th, 8th T1-weighted images) of “no motion” post-contrast data (Figure S1c,e, S2c,e, S3c,e, 

S4c,e). It appears unlikely that lower DSCs in uncorrected data could be related to any 

physiological motion since the myocardial motion can generally be characterized in most 

patients as a drifting motion or a stochastic motion pattern due to RR-interval variations. 

Drifting motion leads to reduced DSCs in T1-weighted images acquired toward the 

beginning and the end of the sequence. Stochastic motion pattern should similarly affect all 

T1-weighted images when analyzed among a sufficiently large cohort. Therefore, it is likely 

that these reduced DSCs may be related to decrease accuracy in the manual myocardial 

delineation performed for DSC evaluation. Indeed, with the employed 4-(1)-3-(1)-2 post-

contrast MOLLI scheme, these three images are directly acquired after an inversion pulse 

using a short inversion time. Therefore, the contrast between myocardium, blood and fat is 

substantially different in those 3 images, and may reduce the accuracy of manual myocardial 

delineation and may lead to constant under-estimation or over-estimation of the myocardial 

area. Furthermore, this effect seemed to be more pronounced in four chamber data acquired 

in patients with large amount of fat, and could occasionally lead to incorrect local motion 

estimates in images directly acquired after an inversion pulse.

Lower DSCs and higher MBEs were observed in uncorrected “with motion” data acquired 

during pre-contrast in short axis orientation (Figure 6b and Figure 7b, respectively). This can 

be mainly explained by the presence of large heart displacements (up to 2 cm) in few pre-

contrast image series. Smaller motion patterns (higher DSCs and reduced MBEs) were 

observed in uncorrected post-contrast data acquired in the same patients. Training effect 

may explain their improved ability to sustain stable breath-holds during post-contrast 

imaging. In addition, some patients only underwent pre-contrast imaging which may have 

also contributed to increase differences between pre-contrast and post-contrast short axis 

data.
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The motion correction approach was tested using the MOLLI T1 mapping technique (12). 

Therefore, the performance of the method with other T1 mapping sequences such as 

Shortened MOLLI (ShMOLLI) (13), Saturation recovery single-shot acquisition (SASHA) 

(11), or SAturation Pulse Prepared Heart rate independent Inversion-REcovery sequence 

(SAPPHIRE) (14) remains to be investigated. ShMOLLI and MOLLI techniques use 

multiple Look-Locker experiments (20) with similar inversion time ranges. Therefore, T1-

weighted images in ShMOLLI and MOLLI generally depict similar intensity/contrast 

variation range and it is anticipated to obtain similar motion correction performance with 

both techniques. SASHA and SAPPHIRE acquisitions use saturation pulses at every heart 

beat which generally lead to T1-weighted images with reduced intensity/contrast. Therefore, 

the ability of the ARCTIC method to detect complex motion in those images will need to be 

carefully evaluated in future studies.

In this study, two approaches were evaluated for the selection of the reference image. 

Although good registration performance was achieved with the two strategies, the selection 

of the image with the longest inversion time may offer a more robust and automatic way to 

use ARCTIC in the presence of alternative acquisition schemes or other T1 mapping 

sequences.

Respiratory-induced motion and RR-interval variations represent the dominant components 

of the myocardial deformation/displacement in T1-weighted images. However, patients 

being imaged during arrhythmic event may show high RR-interval variations which can lead 

to more complex deformation of the myocardium. Although the elastic nature of the 

proposed local non-rigid motion estimation was found to successfully account for 

respiratory-induced motion and RR-interval variations, the robustness of the method in the 

presence of significant cardiac motion remains to be evaluated. Finally, the proposed 

method is retrospective and cannot account for through-plane motion. Prospective motion 

correction using respiratory navigation techniques could be employed to minimize though-

plane motion (35). This may also reduce in-plane motion, which would facilitate the image-

based registration process. 3D T1 mapping has been recently proposed (36,37) and could be 

a promising strategy to account for through-plane motion.

The same calibration of the weighting parameters (α,β,λ,R) was used across all patients and 

all datasets. However, it is likely that personalized parameter calibration may further 

improve the registration. For example, reduced α values may allow for the estimation of 

more complex motion while higher α values may improves the robustness of motion 

estimates against noise (38). Since the noise level and the motion complexity encountered in 

the myocardium are patient-specific and acquisition-specific, a personalized calibration of 

the weighting parameters may improve registration performance. Furthermore, the use of 

robust estimators such as the Lorentzian instead of the L2 norm in the variational 

formulation of the optical flow problem may reduce the impact of outlier and lead to 

improved registration (39). This will need to be investigated in future work.

Furthermore, native and post-contrast T1 mapping can be used for automatic ECV 

measurements, which requires the co-registration of both T1 maps. The co-registration can 

be performed using the pair of T1-weighted images with longest inversion times (34). These 
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images generally have similar contrast which facilitates the co-registration. The potential of 

the ARCTIC approach for the co-registration of native and post-contrast T1 maps will be 

investigated in future studies.

There are several limitations in this study. DICE similarity coefficients were used to 

quantify the registration. Although it gives a good measure of myocardium alignment, it 

does not provide a true measure of accuracy. The target registration error (40), which 

measures the registration error at some points of interest, can be used to accurately quantify 

the accuracy of a registration approach. This metric requires manual tracking of a set of 

points across the reference image and the images to be registered. However, due to the lack 

of anatomical features over the myocardium and the limited intensity/contrast in certain T1-

weighted images, point tracking was difficult to achieve and the target registration error was 

not measured.

CONCLUSIONS

A novel approach has been developed for the correction of respiratory-induced motion 

occurring during breath-hold T1 mapping sequences. The method provides excellent motion 

correction for both pre-contrast and post-contrast T1 mapping, and significantly improves 

the quality of T1 maps.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

The functional EARCTIC(u,v) is minimized using the calculus of variation and by solving the 

associated Euler-Langrage equations. Using the Laplacian approximation defined as ∇2u = 

u − ū and ∇2v = v − v̄ with (ū, v̄) the average value of (u, v) in the neighborhood (3×3 

pixels) of the estimated point (24), the following system of equations can be obtained:

[16]

where , and . This system is 

solved using the Gauss-Seidel approach which provides the following iterative scheme:
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[17]

with

[18]

Roujol et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
General scheme of the ARCTIC approach. A dense motion field is estimated between each 

T1-weighted image and a reference image which is chosen as the fourth image of the image 

series. A region-of-interest (ROI) is initially drawn manually on the reference image to 

delineate the endocardial border of the myocardium. Endocardial points (feature points) are 

then extracted by regular sampling of the ROI edges. Each T1-weighted image is then 

registered to the reference image using the following steps. The contrast similarity between 

the reference image and the image to register is first assessed using an heuristic approach. 

Affine motion parameters are then estimated over the ROI by maximization of the inter-

correlation coefficient (positive contrast similarity test) or the mutual information (negative 

contrast similarity test). Subsequently, the displacement of each feature point is estimated 

using the affine motion parameters as pre-conditioning. Local non-rigid motion estimation is 

finally performed to refine affine motion estimates and uses an extended formulation of the 

optical flow problem which simultaneously estimates motion field and intensity variation 

and integrates the displacement of feature points as an additional regularization term.
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Figure 2. 
Example of motion corrupted T1-weighted image series. To facilitate visual motion 

assessment, the epicardial contour of the myocardium was drawn on the first T1-weighted 

image and is overlaid in all other images (red contours). Large drifting motion can be 

observed between the T1-weighted images which results in large artifacts, and a non-

diagnostic T1 map.
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Figure 3. 
Illustration of the four-point scale used for assessment of overall T1 map quality and motion 

artifacts. Pre-contrast T1 maps with a score of, a) 1-non diagnostic/severe motion artifact, b) 

2-fair/large motion artifacts, c) 3-good/small motion artifacts, and d) 4-excellent/no motion 

artifact (d) are shown.
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Figure 4. 
Example of motion corrected T1-weighted (T1-w) images from a pre-contrast acquisition. a) 

Initial and b) motion corrected T1-weighted images are shown. All T1-weighted images 

were successfully registered to a common reference position using the proposed ARCTIC 

motion correction approach. Note that T1 weighted-images with poor contrast and low 

intensity (2nd and 7th images of the series) were also successfully registered.
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Figure 5. 
Example of motion corrected T1-weighted (T1-w) images from a post-contrast sequence 

acquired 15 minutes after contrast injection. a) initial and b) motion corrected T1-weighted 

images are shown. All T1-weighted images including those with poor contrast and low 

intensity level were successfully registered to a common reference position using the 

proposed motion correction approach.
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Figure 6. 
Average DICE similarity coefficient (DSC) of each image series acquired in short axis 

orientation (blue circle) and four chamber orientation (red triangle). Average DSCs of 

uncorrected data are plotted in function of average DSCs of motion corrected data for each 

“no motion” image series (a,c,e) and “with motion” image series (b,d,f) and pre-contrast 

(a,b), ~15 minutes post-contrast (c,d) and ~30 minutes post-contrast (e,f) image series. 

Similar DSCs were obtained before and after motion correction in “no motion” image series. 

Substantial DSC increase was achieved using ARCTIC in “with motion” image series.
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Figure 7. 
Average myocardial boundary error (MBE) obtained for each short axis image series (blue 

circle) and each four chamber image series (red triangle). Average MBEs of uncorrected 

data are plotted in function of average MBEs of motion corrected data for each “no motion” 

image series (a,c,e) and “with motion” image series (b,d,f) and pre-contrast (a,b), ~15 

minutes post-contrast (c,d) and ~30 minutes post-contrast (e,f) image series. While the MBE 

in uncorrected and motion corrected data was similar in “no motion” image series, a 

substantial MBE reduction was achieved using ARCTIC in “with motion” image series.
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Figure 8. 
Examples of pre-contrast T1 maps reconstructed before (uncorrected) and after motion 

correction. Large to severe motion artifacts are visible in all shown T1 maps reconstructed 

without motion correction. After motion correction, the quality of all T1 maps significantly 

improved and motion artifacts were substantially reduced.
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Figure 9. 
Examples of post-contrast T1 maps reconstructed before (uncorrected) and after motion 

correction. Motion artifacts are evident in all original (uncorrected) T1 maps (see white 

arrows). The motion artifact level substantially decreased in motion corrected T1 maps.
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Figure 10. 
Subjective qualitative analysis of T1 map before (uncorrected) and after motion correction. 

Similar T1 map quality is observed before and after motion correction in data identified as 

“no motion”. Improved image quality and reduced motion artifacts were observed after 

motion correction in data identified as “with motion”.
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