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Abstract

Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs 

are widely used to describe information processing occurring in natural cellular regulatory 

networks, and with upcoming advances in synthetic biology, CRNs are a promising language for 

the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of 

CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well 

understood.

CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary 

algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge 

on a correct answer, on the other hand, have been shown to decide only the semilinear predicates 

(a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of 

function, rather than predicate, computation by representing the output of a function f : ℕk → ℕl 

by a count of some molecular species, i.e., if the CRN starts with x1, …, xk molecules of some 

“input” species X1, …, Xk, the CRN is guaranteed to converge to having f(x1, …, xk) molecules of 

the “output” species Y1, …, Yl. We show that a function f : ℕk → ℕl is deterministically computed 

by a CRN if and only if its graph {(x, y) ∈ ℕk × ℕl ∣ f(x) = y} is a semilinear set.

Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can 

be computed by a CRN on input x in expected time O(polylog ∥x∥1).

1 Introduction

The engineering of complex artificial molecular systems will require a sophisticated 

understanding of how to program chemistry. A natural language for describing the 

interactions of molecular species in a well-mixed solution is that of (finite) chemical 

reaction networks (CRNs), i.e., finite sets of chemical reactions such as A + B → A + C. 

When the behavior of individual molecules is modeled, CRNs are assigned semantics 
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through stochastic chemical kinetics [13], in which reactions occur probabilistically with 

rate proportional to the product of the molecular count of their reactants and inversely 

proportional to the volume of the reaction vessel.

Traditionally CRNs have been used as a descriptive language to analyze naturally occurring 

chemical reactions (as well as numerous other systems with a large number of interacting 

components such as gene regulatory networks and animal populations). However, recent 

investigations have viewed CRNs as a programming language for engineering artificial 

systems. These works have shown CRNs to have eclectic computational abilities. 

Researchers have investigated the power of CRNs to simulate Boolean circuits [18], neural 

networks [14], and digital signal processing [15]. CRNs can simulate a bounded-space 

Turing machine efficiently, if the number of reactions is allowed to scale polynomially with 

the Turing machine’s space usage [26]. Other work has shown CRNs can efficiently 

simulate a bounded-space Turing machine, with the number of reactions independent of the 

space bound, albeit with an arbitrarily small, non-zero probability of error [3].1 Even Turing 

universal computation is possible with an arbitrarily small, non-zero probability of error 

over all time [24]. The computational power of CRNs also provides insight on why it can be 

computationally difficult to simulate them [23], and why certain questions are frustratingly 

difficult to answer (or even undecidable)[11, 27]. For example, it is PSPACE-hard to predict 

whether a particular species is producible [26]. The programming approach to CRNs has 

also, in turn, resulted in novel insights regarding natural cellular regulatory networks [7]. 

The importance of the model is underscored by the fact that equivalent models repeatedly 

arise in theoretical computer science under different guises: e.g. vector addition systems 

[16], petri nets [20], population protocols [1].

Recent work proposes concrete chemical implementations of arbitrary CRNs, particularly 

using nucleic-acid strand-displacement cascades as the physical reaction primitive [25, 6]. 

Thus, since in principle any CRN can be built, hypothetical CRNs with interesting behaviors 

are becoming of more than theoretical interest. One day artificial CRNs may underlie 

embedded controllers for biochemical, nanotechnological, or medical applications, where 

environments are inherently incompatible with traditional electronic controllers.

One of the best-characterized computational abilities of CRNs is the deterministic 

computation of predicates (decision problems) as investigated by Angluin, Aspnes and 

Eisenstat [2]. (They considered the equivalent distributed computing model of population 

protocols motivated by sensor networks.) Some CRNs, when started in an initial 

configuration assigning nonnegative integer counts to each of k different input species, are 

guaranteed to converge on a single “true” or “false” answer, in the sense that there are two 

special “voting” species T and F so that eventually either T is present and F absent to 

indicate “true”, or vice versa to indicate “false.” The set of inputs S ⊆ ℕk that cause the 

system to answer “true” is then a representation of the decision problem solved by the CRN. 

Angluin, Aspnes and Eisenstat showed that the input sets S decidable by some CRN are 

precisely the semilinear subsets of ℕk (see below).

1This is surprising since finite CRNs necessarily must represent large binary data strings in a unary encoding, since they lack 
positional information to tell the difference between two molecules of the same species.
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We extend these prior investigations of decision problems or predicate computation to study 

deterministic function computation. Consider the three examples in Fig. 1(top). These CRNs 

have the property that they converge to the right answer no matter the order in which the 

reactions happen to occur, and are thus insensitive to stochastic effects as well as reaction 

rate constants. Formally, we say a function f : ℕk → ℕl is computed by a CRN C if the 

following is true. There are “input” species X1, …, Xk and “output” species Y1, …, Yl such 

that, if C is initialized with x1, …, xk copies of X1, …, Xk, then it is guaranteed to reach a 

configuration in which the counts of Y1, …, Yl are described by the vector f(x1, …, xk), and 

these counts never again change. For example, the CRN C with the single reaction X → 2Y 

computes the function f(x) = 2x in the sense that, if C starts in an initial configuration with x 

copies of X and 0 copies of Y, then C is guaranteed to stabilize to a configuration with 2x 

copies of Y. Similarly, the function f(x) = ⌊x/2⌋ is computed by the single reaction 2X → Y 

(Fig. 1(a)), in that the final configuration is guaranteed to have exactly ⌊x/2⌋ copies of Y 

(and 0 or 1 copies of X, depending on whether x is even or odd).

It is illuminating to compare the computation of division by 2 shown in Fig. 1(a) with 

another reasonable alternative: reactions X → Y and Y → X (i.e. the reversible reaction X ⇌ 

Y). If the rate constants of the two reactions are equal, the system equilibrium is at half of 

the initial amount of X transformed to Y. There are two stark differences between this 

implementation and that of Fig. 1(a). First, this CRN would not have an exact output count 

of Y, but rather a distribution around the equilibrium. (However, in the limit of large 

numbers, the error as a fraction of the total would converge to zero.) Second, the equilibrium 

amount of Y for any initial amount of X would depend on the relative rate constants of the 

two reactions. In contrast, the deterministic computation discussed in this paper relies on the 

identity and stoichiometry of the reactants and products rather than the rate constants. While 

the rates of reactions are analog quantities, the identity and stoichiometry of the reactants 

and products are naturally digital. Methods for physically implementing CRNs naturally 

yield systems with digital stoichiometry that can be set exactly [25, 6]. While rate constants 

can be tuned, being analog quantities, it cannot be expected that they can be controlled 

precisely.

A few general properties of this type of deterministic computation can be inferred. The first 

property is that a deterministic CRN is able to handle input molecules added at any time, and 

not just initially. Otherwise, if the CRN could reach a state after which it no longer “accepts 

input”, then there would be a sequence of reactions that would lead to an incorrect output 

even if all input is present initially. (It is always possible that some input molecules remain 

unreacted for arbitrarily long.)

The second general property of deterministic computation relates to composition. As any 

bona fide computation must be composable, it is important to ask: can the output of one 

deterministic CRN be the input to another? The problem is that deterministic CRNs have, in 

general, no way of knowing when they are done computing, or whether they will change 

their answer in the future. This is essentially because a CRN cannot deterministically detect 

the absence of a species, and thus, for example, cannot discern when all input has been read. 

Moreover, simply concatenating two deterministic CRNs (renaming species to avoid 

conflict) does not always yield a deterministic CRN. For example, consider computing the 

Chen et al. Page 3

Nat Comput. Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



function f(x1, x2) = ⌊max(x1, x2)/2⌋ by composing the CRNs in Fig. 1(c) and (a). The new 

CRN is:

where W is the output species of the max computation, that acts as the input to the division 

by 2 computation. Note that if W happens to be converted to Y by the last reaction before it 

reacts with K, then the system can converge to a final output value of Y that is larger than 

expected. In other words, because the first CRN needs to consume its output W, the second 

CRN can interfere by consuming W itself (in the process of reading it out).

In contrast to the above example, two deterministic CRNs can be simply concatenated to 

make a new deterministic CRN if the first CRN never consumes its output species (i.e. it 

produces its output “monotonically”). Since it doesn’t matter when the input to the second 

CRN is produced (the first property, above), the overall computation will be correct. Yet 

deterministically computing a non-monotonic function without consuming output species is 

impossible (see Section 4). In a number of places in this paper, we convert a non-monotonic 

function into a monotonic one over more outputs, to allow the result to be used by a 

downstream CRN.

What do the functions in Fig. 1(top) have in common such that the CRNs computing them 

can inevitably progress to the right answer no matter what order the reactions occur in? 

What other functions can be computed similarly? Answering these questions may seem 

difficult because it appears like the three examples, although all deterministic, operate on 

different principles and seem to use different ideas.

We show that the functions deterministically computable by CRNs are precisely the 

semilinear functions, where we define a function to be semilinear if its graph {(x, y) ∈ ℕk × 

ℕl ∣ f(x) = y} is a semilinear subset of ℕk × ℕl. This means that the graph of the function is a 

union of a finite number of linear sets – i.e. sets that can be written in the form

(1.1)

for some fixed vectors b, u1, …, up ∈ ℕk+l. Fig. 1 (bottom) shows the graphs of the three 

example functions expressed as a union of sets of this form. Informally, semilinear functions 

can be thought of as “piecewise linear functions” with a finite number of pieces, and linear 

domains of each piece.2

2Semilinear sets have a number of characterizations. They are often thought of as generalizations of arithmetic progressions. They are 
also exactly the sets that are definable in Presburger arithmetic [21]: the first-order theory of the natural numbers with addition. 
Equivalently, they are the sets accepted by boolean combinations of “modulo” and “threshold” predicates [2]. Semilinear functions are 
less well-studied. The “piecewise linear” intuitive characterization is formalized in Lemma 4.3.
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This characterization implies, for example, that such functions as f(x1, x2) = x1x2, f(x) = x2, 

or f(x) = 2x are not deterministically computable. For instance, the graph of the function f(x1, 

x2) = x1x2 consists of infinitely many lines of different slopes, and thus, while each line is a 

linear set, the graph is not a finite union of linear sets. Our result employs the predicate 

computation characterization of Angluin, Aspnes and Eisenstat [2], together with some 

nontrivial additional technical machinery.

While the example CRNs in Fig. 1 all seem to use different “tricks”, in Section 4 we develop 

a systematic construction for any semilinear function. To get the gist of this construction see 

the example in Fig. 2. To obtain a CRN computing the example semilinear function f(x1, x2) 

= max(2x1 − x2, x2), we decompose the function into “linear” pieces: f1(x1, x2) = 2x1 − x2 

and f2(x1, x2) = x2 (formally partial affine functions, see Section 2). Then semilinear 

predicate computation (per [2]) is used to decide which linear function should be applied to 

a given input. A decomposition compatible with this approach is always possible by Lemma 

4.3. Linear functions such as f1 and f2 are easy for CRNs to deterministically compute by the 

relative stoichiometry of the reactants and products (analogously to the example in Fig. 

1(a)). However, note that to correctly compose the computation of f1 with the downstream 

computation (Fig. 1(b), right column) we convert f1 from a non-monotonic function with 

one output, to a monotonic function with two outputs such that the original output is 

encoded by their difference.

In the last part of this paper, we turn our attention to optimizing the time required for CRNs 

to converge to the answer. While the construction of Section 4 uses O(∥x∥ log ∥x∥) time, in 

Section 5, we show that every semilinear function can be deterministically computed on 

input x in expected time polylog(∥x∥). This is done by a similar technique used by Angluin, 

Aspnes, and Eisenstat [2] to show the equivalent result for predicate computation. They run 

a slow deterministic computation in parallel with a fast randomized computation, allowing 

the deterministic computation to compare the two answers and update the randomized 

answer only if it is incorrect, which happens with low probability. However, novel 

techniques are required since it is not as simple to “nondestructively compare” two integers 

(so that the counts are only changed if they are unequal) as to compare two Boolean values.

2 Preliminaries

Given a vector x ∈ ℕk, let , where x(i) denotes the ith coordinate of 

x. We abuse notation and consider the sets ℕk × ℕl and ℕk+l to be the same, because it is 

sometimes convenient to treat an ordered pair of vectors as being concatenated into a single 

longer vector. A set A ⊆ ℕk is linear if there exist vectors b, u1, …, up ∈ ℕk such that

Set A is semilinear if it is a finite union of linear sets. If f : ℕk → ℕl is a function, define the 

graph of f to be the set {(x, y) ∈ ℕk × ℕl ∣ f(x) = y}. A function is semilinear if its graph is a 

semilinear set.
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We say a partial function f : ℕk ⤏ ℕl is affine if there exist kl rational numbers a1,1, …, ak,l 

∈ ℚ and l + k nonnegative integers b1, …, bl, c1, …, ck ∈ ℕ such that, if y = f(x), then for 

each j ∈ {1, …, l}, , and for each i ∈ {1, …, k}, x(i) − ci ≥ 0. 

(In matrix notation, there exist a k × l rational matrix A and vectors b ∈ ℕl and c ∈ ℕk such 

that f(x) = A(x − c) + b.) In other words, the graph of f, when projected onto the (k+1)-

dimensional space defined by the k coordinates corresponding to x and the single coordinate 

corresponding to y(j), is a subset of a k-dimensional hyperplane.

Four aspects of the definition of affine functions invite explanation.

First, we allow partial functions because Lemma 4.3 characterizes the semilinear functions 

as finite combinations of affine functions, where the union of the domains of the functions is 

the entire input space ℕk. The value of an affine function on an input outside of its domain is 

irrelevant (and in fact may be non-integer).

Second, we have two separate “constant offsets” bj and ci. Affine functions over the reals are 

typically defined with only one of these, bj. Our definition captures the form that is directly 

computable with molecular counts: we can take x, subtract c, multiply by A, and subtract b, 

with every intermediate result being integer-valued. If we try to incorporate the c offset into 

the b offset, we could end up with fractional intermediate computations.

Third, it may seem overly restrictive to require bj and ci to be nonnegative. In fact, our proof 

of Lemma 4.2 is easily modified to show how to construct a CRN to compute an affine 

function that allows negative values for bj and ci. However, Lemma 4.3 shows that, when 

the function is such that its graph is a nonnegative linear set, then we may freely assume that 

bj and ci to be nonnegative. Since this simplifies some of our definitions, we use this 

convention.

Fourth, the requirement that x(i) − ci ≥ 0 seems artificial. When we prove that every 

semilinear function can be written as a finite union of partial affine functions with linear 

graphs (Lemma 4.3), however, this will follow from the fact that the “offset vector” in the 

definition of a linear set is required to be nonnegative.

Note that by appropriate integer arithmetic, a partial function f : ℕk ⤏ ℕl is affine if and 

only if there exist kl integers n1,1, …, nk,l ∈ ℤ and 2l+k nonnegative integers b1, …, bl, c1, 

…, ck, d1, …, dl ∈ ℕ such that, if y = f(x), then for each j ∈ {1, …, l}, 

, and for each i ∈ {1, …, k}, x(i) − ci ≥ 0. Each dj may be 

taken to be the least common multiple of the denominators of the rational coefficients in the 

original definition. We will employ this latter definition when convenient.

2.1 Chemical reaction networks

If Λ is a finite set (in this paper, of chemical species), we write ℕΛ to denote the set of 

functions f : Λ → ℕ. Equivalently, we view an element c ∈ ℕΛ as a vector of |Λ| 

nonnegative integers, with each coordinate “labeled” by an element of Λ. Given X ∈ Λ and c 
∈ ℕΛ, we refer to c(X) as the count of X in c. We write c ≤ c′ to denote that c(X) ≤ c′ (X) for 
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all X ∈ Λ. Given c, c′ ∈ ℕΛ, we define the vector component-wise operations of addition c + 

c′, subtraction c − c′, and scalar multiplication nc for n ∈ ℕ. If Δ ⊂ Λ, we view a vector c ∈ 

ℕΔ equivalently as a vector c ∈ ℕΛ by assuming c(X) = 0 for all X ∈ Λ \ Δ.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r, p, k〉 ∈ ℕΛ × 

ℕΛ × ℝ+, specifying the stoichiometry of the reactants and products, respectively, and the 

rate constant k. If not specified, assume that k = 1 (this is the case for all reactions in this 

paper), so that the reaction α = 〈r, p, 1〉 is also represented by the pair 〈r, p〉. For instance, 

given Λ = {A, B, C}, the reaction A + 2B → A + 3C is the pair 〈(1, 2, 0), (1, 0, 3)〉. A (finite) 

chemical reaction network (CRN) is a pair C = (Λ, R), where Λ is a finite set of chemical 

species, and R is a finite set of reactions over Λ. A configuration of a CRN C = (Λ, R) is a 

vector c ∈ ℕΛ. We also write #cX to denote c(X), the count of species X in configuration c, 

or simply #X when c is clear from context.

Given a configuration c and reaction α = 〈r, p〉, we say that α is applicable to c if r ≤ c (i.e., 

c contains enough of each of the reactants for the reaction to occur). If α is applicable to c, 

then write α(c) to denote the configuration c + p − r (i.e., the configuration that results from 

applying reaction α to c). If c′ = α(c) for some reaction α ∈ R, we write c →C c′, or merely c 
→ c′ when C is clear from context. An execution (a.k.a., execution sequence) ε is a finite or 

infinite sequence of one or more configurations ε = (c0, c1, c2, …) such that, for all i ∈ {1, 

…, |ε| − 1}, ci−1 → ci. If a finite execution sequence starts with c and ends with c′, we write 

, or merely c →* c′ when the CRN C is clear from context. In this case, we say that c
′ is reachable from c.

Turing machines, for example, have different semantic interpretations depending on the 

computational task under study (deciding a language, computing a function, etc.). Similarly, 

in this paper we use CRNs to decide subsets of ℕk and to compute functions f : ℕk → ℕl. In 

the next two subsections we define two semantic interpretations of CRNs that correspond to 

these two tasks.

2.2 Stable decidability of predicates

We now review the definition of stable decidability of predicates introduced by Angluin, 

Aspnes, and Eisenstat [2].3 Intuitively, some species “vote” for a true/false answer and the 

system stabilizes to an output when a consensus is reached and it can no longer change its 

mind. The determinism of the system is captured in that it is impossible to stabilize to an 

incorrect answer, and the correct stable output is always reachable.

A chemical reaction decider (CRD) is a tuple D = (Λ, R, Σ, ϒ, ϕ, σ), where (Λ, R) is a CRN, 

Σ ⊆ Λ is the set of input species, ϒ ⊆ Λ is the set of voters4, ϕ : ϒ → {0, 1} is the 

(Boolean) output function, and σ ∈ ℕΛ\Σ is the initial context. An input to D will be a vector 

i0 ∈ ℕΣ (equivalently, i0 ∈ ℕk if we write Σ = {X1, …, Xk} and assign Xi to represent the i’th 

3Those authors use the term “stably compute”, but we reserve the term “compute” to apply to the computation of functions f : ℕk → 
ℕl.
4The definitions of [2] assume that ϒ = Λ (i.e., every species votes). However, it is not hard to show that we may equivalently assume 
there are only two voting species, F and T, so that #F > 0 and #T = 0 means that the CRD is answering “false”, and #F = 0 and #T > 0 
means that the CRD is answering “true.” This convention will be more convenient in this paper.
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coordinate). Thus a CRD together with an input vector defines an initial configuration i 
defined by i(X) = i0(X) if X ∈ Σ, and i(X) = σ(X) otherwise. We say that such a configuration 

is a valid initial configuration, i.e., i ↾ (Λ \ Σ) = σ. If we are discussing a CRN understood 

from context to have a certain initial configuration i, we write #0 X to denote i(X).

We extend ϕ to a partial function Φ : ℕΛ ⤏ {0, 1} as follows. Φ(c) is undefined if either 

c(X) = 0 for all X ∈ ϒ, or if there exist X0, X1 ∈ ϒ such that c(X0) > 0, c(X1) > 0, ϕ(X0) = 0 

and ϕ(X1) = 1. Otherwise, there exists b ∈ {0, 1} such that (∀X ∈ ϒ)(c(X) > 0 ⇒ ϕ(X) = b); 

in this case, the output Φ(c) of configuration c is b.

A configuration c is output stable if Φ(c) is defined and, for all c′ such that c →* c′, Φ(c′) = 

Φ(c).5 We say a CRD D stably decides the predicate ψ : ℕΣ → {0, 1} if, for any valid initial 

configuration i ∈ ℕΛ with i ↾ Σ = i0, for all configurations c ∈ ℕΛ, i →* c implies c →* c′ 

such that c′ is output stable and Φ(c′) = ψ(i0). Note that this condition implies that no 

incorrect output stable configuration is reachable from i. We say that D stably decides a set 

A ∈ ℕk if it stably decides its indicator function.

The following theorem is due to Angluin, Aspenes, and Eisenstat [2]:

Theorem 2.1 ([2])—A set A ⊆ ℕk is stably decidable by a CRD if and only if it is 

semilinear.

The model they use is defined in a slightly different way. They study population protocols, a 

distributed computing model in which a fixed-size set of agents, each having a state from a 

finite set, undergo successive pairwise interactions, the two agents updating their states upon 

interacting. This is equivalent to chemical reaction networks in which all reactions have 

exactly two reactants and two products. However, the result carries over to our more general 

model, as we now explain.

The reverse direction, that every semilinear predicate is decided by some CRD, follows 

directly from the result on population protocols, since population protocols are a subset of 

the set of all CRNs. The forward direction of Theorem 2.1, that every stably decidable set is 

semilinear, holds even if stable decidability is defined with respect to any relation →* on ℕk 

that is reflexive, transitive, and “respects addition”, i.e., [(∀c1, c2, x ∈ ℕk) (c1 →* c2) ⇒ (c1 

+ x →* c2 + x)]. These properties can easily be shown to hold for the CRN reachability 

relation. The third property, in particular, means that if some molecules c1 can react to form 

molecules c2, then it is possible for them to react in the presence of some extra molecules x, 

such that no molecules from x react at all.

5Note that reactions may be applicable in an output stable state c. The same holds for our (very similar) definition of output stable 
states of CRNs that compute functions instead of predicates, defined in Section 2.3. The definition simply requires that no sequence of 
these reactions can either 1) produce a molecule that votes contrary to Φ(c), or 2) consume all molecules voting Φ(c). Our systematic 
construction in Lemma 4.4 obeys the stronger constraint that every output-stable state is “static”: no reactions are applicable to it. 
Thus requiring output stable states to be static does not alter the class of functions stably computable by CRNs. However, the time to 
convergence proven in Theorem 5.2 is sensitive to this choice, since our construction for Theorem 5.2 reaches an output stable state in 
expected time O(polylog n), but reactions continue to occur for expected time Ω(poly n).
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2.3 Stable computation of functions

Aspnes and Ruppert [4] describe an extension from Boolean predicates to functions, by 

generalizing the output function ϕ to a larger range ϕ : ϒ → {0, …, l}. Equivalently, one 

can consider multiple voting species V0, … Vl; if the CRN converges to only Vj votes, then 

then output is j. However, this output encoding handles only bounded-range functions: the 

size of ϒ must be at least the range of the function. By contrast our results concern functions 

with unbounded range.

We now define a notion of stable computation of functions in which the output and input are 

encoded identically — in molecular counts of certain species. Intuitively, the inputs to the 

function are the initial counts of input species X1, …, Xk, and the outputs are the counts of 

output species Y1, …, Yl. The system stabilizes to an output when the counts of the output 

species can no longer change. Again determinism is captured in that it is impossible to 

stabilize to an incorrect answer and the correct stable output is always reachable.

Let k, l ∈ ℤ+. A chemical reaction computer (CRC) is a tuple C = (Λ, R, Σ, Γ, σ), where (Λ, 

R) is a CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of output species, such that Σ 

∩ Γ = ∅, |Σ| = k, |Γ| = l, and σ ∈ ℕΛ\Σ is the initial context. Write Σ = {X1, X2, …, Xk} and Γ 

= {Y1, Y2, …, Yl}. We say that a configuration c is output count stable if, for every c′ such 

that c →* c′ and every Yi ∈ Γ, c(Yi) = c′(Yi) (i.e., the counts of species in Γ will never 

change if c is reached). As with CRD’s, we require initial configurations i of C with input i0 

∈ ℕΣ to obey i(X) = i0(X) if X ∈ Σ and i(X) = σ(X) otherwise, calling them valid initial 

configurations. We say that C stably computes a function f : ℕk → ℕl if for any valid initial 

configuration i ∈ ℕΛ, i →* c implies c →* c′ such that c′ is an output count stable 

configuration with f(i(X1), i(X2), …, i(Xk)) = (c′(Y1), c′(Y2), …, c′(Yl)). Note that this 

condition implies that no incorrect output stable configuration is reachable from i.

As an example of a formally defined CRC consider the function f(x) = ⌊x/2⌋ shown in Fig. 

1(a). This function is stably computed by the CRC (Λ, R, Σ, Γ, σ) where (Λ, R) is the CRN 

consisting of a single reaction 2X → Y, Σ = {X} is the set of input species, Γ = {Y} is the set 

of output species, and the initial context σ is zero for all species in Λ \ Σ. In Fig. 2(b) the 

initial context σ(F) = 1, and is zero for all other species in Λ \ Σ. In Fig. 1(a) there is at most 

one reaction that can happen in any reachable configuration. In contrast, different reactions 

may occur next in Fig. 1(b) and (c). However, from any reachable state, we can reach the 

output count stable configuration with the correct amount of Y, satisfying our definition of 

stable computation.

In Sections 4–5 we will describe systematic (but much more complex) constructions for 

these and all functions with semilinear graphs.

2.4 Fair execution sequences

Note that by defining deterministic computation in terms of certain states being reachable 

and others not, we cannot guarantee the system will get to the correct output for any possible 

execution sequence. For example suppose an adversary controls the execution sequence. 
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Then {X → 2Y, A → B, B → A} will not reach the intended output state y = 2x if the 

adversary simply does not let the first reaction occur, always preferring the second or third.

Intuitively, in a real chemical mixture, the reactions are chosen randomly and not 

adversarially, and the CRN will get to the correct output. In this section we follow Angluin, 

Aspnes, and Eisenstat [2] and define a combinatorial condition called fairness on execution 

sequences that captures what is minimally required of the execution sequence to be 

guaranteed that a stably deciding/computing CRD/CRC will reach the output stable state. In 

the next section we consider the kinetic model, which ascribes probabilities to execution 

sequences. The kinetic model also defines the time of reactions, allowing us to study the 

computational complexity of the CRN computation. Note that in the kinetic model, if the 

reachable configuration space is bounded for any start configuration (i.e. if from any starting 

configuration there are finitely many configurations reachable) then any observed execution 

sequence will be fair with probability 1. This will be the case for our constructions in 

Sections 4 and 5.

Let Δ ⊆ Λ. We say that p ∈ ℕΔ is a partial configuration (with respect to Δ). We write p = c 
↾ Δ for any configuration c such that c(X) = p(X) for all X ∈ Δ, and we say that p is the 

restriction of c to Δ. Say that a partial configuration p with respect to Δ is reachable from 

configuration c′ if there is a configuration c reachable from c′ and p = c ↾ Δ. In this case, we 

write c′ →* p.

An infinite execution ε = (c0, c1, c2, …) is fair if, for all partial configurations p, if p is 

infinitely often reachable then it is infinitely often reached.6 In other words, no reachable 

partial configuration is “starved”.7 This definition, applied to finite executions, deems all of 

them fair vacuously. We wish to distinguish between finite executions that can be extended 

by applying another reaction and those that cannot. Say that a configuration is terminal if no 

reaction is applicable to it. We say that a finite execution is fair if and only if it ends in a 

terminal configuration. For any species A ∈ Λ, we write #∞A to denote the eventual 

convergent count of A if #A is guaranteed to stabilize on any fair execution sequence; 

otherwise, #∞A is undefined.

The next lemma characterizes stable computation of functions by CRCs in terms of fair 

execution sequences, showing that the counts of output species will converge to the correct 

output values on any fair execution sequence. An analogous lemma holds for CRDs.

Lemma 2.2—A CRC stably computes a function f : ℕk → ℕl if and only if for every valid 

initial configuration i ∈ ℕΛ, every fair execution E = (i, c1, c2, …) contains an output count 

stable configuration c such that f(i(X1), i(X2), …, i(Xk)) = (c(Y1), c(Y2), …, c(Yl)).

6i.e. (∀Δ ⊆ Λ)(∀p ∈ ℕΔ)[((∃∞i ∈ ℕ) ci →* p) ⇒ ((∃∞ j ∈ ℕ) p = cj ↾ Δ)].
7This definition of fairness is stricter than that used in [2], which used only full configurations rather than partial configurations. We 
choose this definition to prevent intuitively unfair executions from vacuously satisfying the definition of “fair” simply because of 
some species whose count is monotonically increasing with time (preventing any configuration from being infinitely often reachable). 
Such a definition is unnecessary in [2] because population protocols by definition have a finite state space, since they enforce that 
every reaction has precisely two reactants and two products.
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Proof: The “if” direction follows because every finite execution sequence can be extended 

to be fair, and thus an output count stable configuration with the correct output is always 

reachable. The “only if” direction is shown as follows. We know that from any reachable 

configuration c, some correct output stable configuration c′ is reachable (but possibly 

different c′ for different c). We will argue that in any infinite fair execution sequence there is 

some partial configuration that is reachable infinitely often, and that any state with this 

partial configuration is the correct stable output state. Consider an infinite fair execution 

sequence c1, c2, …, and the corresponding reachable correct output stable configurations , 

, …. As in Lemma 11 of [2], there is some integer k ≥ 1 such that a configuration is output 

count stable if and only if it is output count stable when each coordinate that is larger than k 

is set to exactly k (k-truncation). The infinite sequence , , … must have an infinite 

subsequence sharing the same k-truncation. Let p be the partial configuration consisting of 

the correct output and all the coordinates less than k in the shared truncation. This partial 

configuration is reachable infinitely often, and no matter what the counts of the other species 

outside of p are, the resulting configuration is output count stable.

2.5 Kinetic model

The following model of stochastic chemical kinetics is widely used in quantitative biology 

and other fields dealing with chemical reactions between species present in small counts 

[13]. It ascribes probabilities to execution sequences, and also defines the time of reactions, 

allowing us to study the computational complexity of the CRN computation in Sections 4 

and 5.

In this paper, the rate constants of all reactions are 1, and we define the kinetic model with 

this assumption. A reaction is unimolecular if it has one reactant and bimolecular if it has 

two reactants. We use no higher-order reactions in this paper when using the kinetic model.

The kinetics of a CRN is described by a continuous-time Markov process as follows. Given 

a fixed volume υ and current configuration c, the propensity of a unimolecular reaction α : X 

→ … in configuration c is ρ(c, α) = #cX. The propensity of a bimolecular reaction α : X + Y 

→ …, where X ≠ Y, is . The propensity of a bimolecular reaction α : X 

+ X → … is . The propensity function determines the evolution 

of the system as follows. The time until the next reaction occurs is an exponential random 

variable with rate ρ(c) = Σα ∈ R ρ(c, α) (note that ρ(c) = 0 if no reactions are applicable to c). 

The probability that next reaction will be a particular αnext is .

The kinetic model is based on the physical assumption of well-mixedness that is valid in a 

dilute solution. Thus, we assume the finite density constraint, which stipulates that a volume 

required to execute a CRN must be proportional to the maximum molecular count obtained 

during execution [24]. In other words, the total concentration (molecular count per volume) 

is bounded. This realistically constrains the speed of the computation achievable by CRNs. 

Note, however, that it is problematic to define the kinetic model for CRNs in which the 
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reachable configuration space is unbounded for some start configurations, because this 

means that arbitrarily large molecular counts are reachable.8 We apply the kinetic model 

only to CRNs with configuration spaces that are bounded for each start configuration.

We now prove two lemmas about the complexity of certain common sequences of reactions. 

Besides providing simple examples of the kinetic model, they capture patterns that will be 

used throughout Section 4 and 5. These lemmas are implicit or explicit in many earlier 

papers on stochastic CRNs.

Lemma 2.3—Let {A1, …, Am} be a set of species, such that the count of each is O(n). Then 

the expected time for i unimolecular reactions Ai → …, in which none of the Ai appear as 

products, to consume all Ai’s is O(log n).

Proof: In any configuration c, the propensity of the ith reaction is #c Ai. Let k = Σi #c Ai. The 

time until next reaction is an exponential random variable with propensity k. Thus the 

expected time until the next reaction occurs is 1/k. Every time one of the reactions occurs, 

one of the Ai’s is consumed, and so k decreases by 1. Thus, by linearity of expectation, the 

expected time to consume all the Ai molecules is .

Lemma 2.4—Let L be a species with count 1, and A a species of count n. Then, if the 

volume is υ = O(n), the expected time for reaction L + A → L + B to convert all A’s to B’s is 

O(n log n).

Proof: When exactly k molecules of species A remain, the propensity of the reaction is k/υ. 

Thus the expected time until the next reaction is υ/k. Therefore by linearity of expectation, 

the expected time for L to react with every A is .

3 Exactly the semilinear functions can be deterministically computed

In this section we use Theorem 2.1 to show that only “simple” functions can be stably 

computed by CRCs. This is done by showing how to reduce the computation of a function 

by a CRC to the decidability of its graph by a CRD, and vice versa. In this section we do not 

concern ourselves with kinetics. Thus the volume is left unspecified, and we consider the 

combinatorial-only condition of fairness on execution sequences for our positive result 

(Lemma 3.2) and direct reachability arguments for the negative result (Lemma 3.1).

The next lemma shows that every function computable by a chemical reaction network is 

semilinear by reducing stably deciding a set that is the graph of a function to stably 

computing that function. It turns out that the reduction technique of introducing 

“production” and “consumption” indicator species will be a general technique, used 

repeatedly in this paper.

8One possibility is to have a “dynamically” growing volume as in [24].
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Lemma 3.1

Every function stably computable by a CRC is semilinear.

Proof—Suppose there is a CRC C stably computing f. We will construct a CRD D that 

stably decides the graph of f. By Theorem 2.1, this implies that the graph of f is semilinear. 

Intuitively, the difficulty lies in checking whether the amount of the outputs Yi produced by 

C matches the value given to the decider D as input. What makes this non-trivial is that D 

does not know whether C has finished computing, and thus must compare Yi while Yi is 

potentially being changed by C. In particular, D cannot consume Yi or that could interfere 

with the operation of C.

Let C = (Λ, R, Σ, Γ, σ) be the CRC that stably computes f : ℕk → ℕl, with input species Σ = 

{X1, …, Xk} and output species Γ = {Y1, …, Yl}. We will modify C to obtain the following 

CRD D = (Λ′, R′, Σ′, ϒ′, ϕ′, σ′). Let  and , where 

each ,  are new species. Intuitively,  represents the number of Yi’s produced 

by C and  the number of Yi’s consumed by C. The goal is for D to stably decide the 

predicate . In other words, the initial 

configuration of D will be the same as that of C except for some copies of , equal to the 

purported output of f to be tested by D.

Let Λ′ = Λ ∪ YC ∪ YP ∪ {F, T}. Let Σ′ = Σ ∪ YC. Let ϒ′ = {F, T}, with ϕ(F) = 0 and ϕ(T) = 

1. Let σ′(T) = 1 and σ′(S) = 0 for all S ∈ Λ′\ (Σ′ ∪ {T}). We will modify R to obtain R′ as 

follows. For each reaction α that consumes a net number n of Yi molecules, append n 

products  to α. For each reaction α that produces a net number n of Yi molecules, append 

n products  to α. For example, the reaction A + 2B + Y1 + 3Y3 → Z + 3Y1 + 2Y3 becomes 

.

Then add the following additional reactions to R′, for each i ∈ {1, …, l},

(3.1)

(3.2)

(3.3)

(3.4)

Observe that if , then from any reachable 

configuration we can reach a configuration without any  or  for all i, and such that no 

more of either kind can be produced. (The CRC stabilizes and all of  and  is 

consumed by reaction 3.1.) In this configuration we must have #T > 0 because the last 
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instance of reaction 3.1 produced it (or if no output was ever produced, T comes from the 

initial context σ′), and T can no longer be consumed in reactions 3.2–3.3. Thus, since all of 

F can be consumed in reaction 3.4, a configuration with #T > 0 and #F = 0 is always 

reachable, and this configuration is output stable.

Now suppose  for some output coordinate i* ∈ 

{1, …, l}. This means that from any reachable configuration we can reach a configuration 

with either  or  but not both, and such that for all i, no more of  and 

can be produced. (This happens when the CRC stabilizes and reaction 3.1 consumes the 

smaller of  or .) From this configuration, we can reach a configuration with #F > 0 

and #T = 0 through reactions 3.2–3.3. This is an output stable configuration since reactions 

3.2–3.4 require T.

The next lemma shows the converse of Lemma 3.1. Intuitively, it uses a random search of 

the output space to look for the correct answer to the function and uses a predicate decider to 

check whether the correct solution has been found.

Lemma 3.2

Every semilinear function is stably computable by a CRC.

Proof—Let f : ℕk → ℕl be a semilinear function, and let

denote the graph of f. We then consider the set

Intuitively, Ĝ defines the same function as G, but with each output variable expressed as the 

difference between two other variables. Note that Ĝ is not the graph of a function since for 

each y ∈ ℕl there are many pairs (yP, yC) such that yP − yC = y. However, we only care that 

Ĝ is a semilinear set so long as G is a semilinear set, by Lemma 3.3, proven below.

Then by Theorem 2.1, Ĝ is stably decidable by a CRD D = (Λ, R, Σ, ϒ, ϕ, σ), where

and we assume that ϒ contains only species T and F such that for any output-stable 

configuration of D, exactly one of #T or #F is positive to indicate a true or false answer, 

respectively.

Define the CRC C = (Λ′, R′, Σ′, Γ′, σ′) as follows. Let Σ′ = {X1, …, Xk}. Let Γ′ = {Y1, …, 

Yl}. Let Λ′ = Λ ∪ Γ′. Let σ′(S) = σ(S) for all S ∈ Λ \ Σ, and let σ′(S) = 0 for all S ∈ Λ′ \ (Λ \ 
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Σ). Intuitively, we will have F change the value of y (by producing either  or 

molecules), since F’s presence indicates that D has not yet decided that the predicate is 

satisfied. It essentially searches for new values of y that do satisfy the predicate. This 

indirect way of representing the value y is useful because yP and yC can both be increased 

monotonically to change y in either direction. If D had Yj as a species directly, and if we 

wanted to test a lower value of yj, then this would require consuming a copy of Yj, but this 

may not be possible if D has already consumed all of them.

Let R′ be R plus the following reactions for each j ∈ {1, …, l}:

(3.5)

(3.6)

It is clear that reactions (3.5) and (3.6) enforce that at any time, #Yj is equal to the total 

number of  produced by reaction (3.5) minus the total number of  produced by 

reaction (3.6) (although some of each of  or  may have been produced or consumed by 

other reactions in R).

Suppose that f(x) ≠ (#Y1, …, #Yl). Then if there are no F molecules present, the counts of 

 and  are not changed by reactions (3.5) and (3.6). Therefore only reactions in R 

proceed, and by the correctness of D, eventually an F molecule is produced (since 

eventually D must reach an output-stable configuration answering “false”, although F may 

appear before D reaches an output-stable configuration, if some T are still present). Once F 

is present, by the fairness condition (choosing Δ = {Y1, …. Yl}), eventually the value of 

(#Y1, …, #Yl) will change by reaction (3.5) or (3.6). In fact, every value of (#Y1, …, #Yl) is 

possible to explore by the fairness condition.

Suppose then that f(x) = (#Y1, …, #Yl). Perhaps F is present because the reactions in R have 

not yet reached an output-stable “true” configuration. Then perhaps the value of (#Y1, …, 

#Yl) will change so that f(x) ≠ (#Y1, …, #Yl). But by the fairness condition, a correct value of 

(#Y1, …, #Yl) must be present infinitely many times, so again by the fairness condition, 

since from such a configuration it is possible to eliminate all F molecules before producing 

 or  molecules, this must eventually happen. When all F molecules are gone while f(x) 

= (#Y1, …, #Yl) and D is in an output-stable configuration (thus no F can ever again be 

produced), then it is no longer possible to change the value of (#Y1, …, #Yl), whence C has 

reached a count-stable configuration with the correct answer. Therefore C stably computes f.

Note that the total molecular count (hence the required volume) of the CRC in Lemma 3.2 is 

unbounded. In Section 4 we discuss an alternative construction that avoids this problem.

Lemma 3.3

Let k, l ∈ ℤ+, and suppose G ⊆ ℕk × ℕl is semilinear. Define
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Then Ĝ is semilinear.

Proof—Let G1, …, Gt be linear sets such that . For each i ∈ {1, …, t}, define

It suffices to show that each Ĝi is linear since . Let i ∈ {1, …, t} and let b, u1, 

…, ur ∈ ℕk × ℕl be such that

Define the vectors v1, …, vr ∈ ℕk × ℕl × ℕl as vj = (uj, 0l). Here, 0l denotes the vector in ℕl 

consisting of all zeros. In other words, let vj be uj on its first k + l coordinates and 0 on its 

last l coordinates. Similarly define b′ = (b, 0l).

Also, for each j ∈ {1, …, l} define vr+j = (0k, 0j−1 10l−j, 0j−1 10l−j). (i.e., a single 1 in the 

position corresponding to the jth output coordinate, one for yP and one for yC). Without the 

vectors vr+j, the set of points defined by b′, v1, …, vr would be simply Gi with l 0’s 

appended to the end of each vector. By adding the vectors vr+j, for each (x, y) ∈ Gi and each 

yP, yC ∈ ℕl such that y = yP − yC, we have that  for some n1, 

…, nr+l ∈ ℕ; in particular, for n1, …, nr chosen such that  and nr+j = 

yC(j) for each j ∈ {1, …, l}.

Thus , whence Ĝi is linear.

Lemmas 3.1 and 3.2 immediately imply the following theorem.

Theorem 3.4

A function f : ℕk → ℕl is stably computable by a CRC if and only if it is semilinear.

One unsatisfactory aspect of Lemma 3.2 is that we do not reduce the computation of f 

directly to a CRD deciding the graph G of f, but rather to D deciding a related set Ĝ. It is not 

clear how to directly reduce to a CRD deciding G since it is not obvious how to modify such 

a CRD to monotonically produce extra species that could be processed by the CRC 

computing f. Lemma 3.1, on the other hand, directly uses C as a black-box. Although we 

know that C, being a chemical reaction computer, is only capable of computing semilinear 

functions, if we imagine that some external powerful “oracle” controlled the reactions of C 
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to allow it to stably compute a non-semilinear function, then D would decide that function’s 

graph. Thus Lemma 3.1 is more like the black-box oracle Turing machine reductions 

employed in computability and complexity theory, which work no matter what mythical 

device is hypothesized to be responsible for answering the oracle queries.

4 Deterministic computation of semilinear functions in O(∥x∥ log ∥x∥) time

Lemma 3.2 describes how a CRC can deterministically compute any semilinear function. 

However, there are problems with this construction if we attempt to use it to evaluate the 

speed of semilinear function computation in the kinetic model. First, the configuration space 

is unbounded for any input since the construction searches over outputs without setting 

bounds. Thus, more care must be taken to ensure that any infinite execution sequence will be 

fair with probability 1 in the kinetic model. What is more, since the maximum molecular 

count is unbounded, it is not clear how to set the volume for the time analysis. Even if we 

attempt to properly define kinetics, it seems like any reasonable time analysis of the random 

search process will result in expected time at least exponential in the size of the output.9

For our asymptotic time analysis, let the input size n = ∥x∥ be the number of input 

molecules. The total molecular count attainable will always be O(n); thus, by the finite 

density constraint, we assume the volume υ = Θ(n). We now describe a direct construction 

for computing semilinear functions in O(n log n) time that does not rely on the search 

technique explored in the previous section, but rather uses the mathematical structure of the 

semilinear graph.

For the asymptotic running time analysis, we will repeatedly assume that reactions complete 

“sequentially”: upstream reactions complete before downstream ones start. Although this is 

unrealistic, it provides an upper bound on the computation time that is easy to calculate. 

Note that in proving the correctness of our CRN algorithms we cannot make this 

assumption, because we must show that the computation is correct no matter in what order 

the reaction occur.

We use the technique of “running multiple CRNs in parallel” on the same input. To 

accomplish this it is necessary to split the inputs X1, …, Xk into separate molecules using a 

reaction , which will add only O(log n) to the time complexity by 

Lemma 2.3, so that each of the p separate parallel CRNs do not interfere with one another. 

For brevity we omit stating this formally when the technique is used.

We require the following theorem, due to Angluin, Aspnes, Diamadi, Fischer, and René [1], 

which states that any semilinear predicate can be decided by a CRD in expected time O(n 

log n). (This was subsequently reduced to O(n) by Angluin, Aspnes, and Eisenstat [3], but 

O(n log n) suffices for our purpose.)

9The random walk is biased downward because of the increasing propensities of the reactions consuming Yi’s.
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Theorem 4.1 ([1])

Let ϕ : ℕk → {0, 1} be a semilinear predicate. Then there is a stable CRD D that decides ϕ, 

and the expected time to reach an output-stable state is O(n log n), where n is the number of 

input molecules.

The next lemma shows that affine partial functions can be computed in expected time O(n 

log n) by a CRC. For its use in proving Theorem 4.4, we require that the output molecules 

be produced monotonically. Unfortunately, this is impossible for general affine partial 

functions. For example, consider the function f(x1, x2) = x1 − x2 where the domain of f is 

dom f = {(x1, x2) ∣ x1 ≥ x2}. By withholding a single copy of X2 and letting the CRC stabilize 

to the output value #Y = x1 − x2 + 1, then allowing the extra copy of X2 to interact, the only 

way to stabilize to the correct output value x1 − x2 is to consume a copy of the output species 

Y. Therefore Lemma 4.2 is stated in terms of an encoding of affine partial functions that 

allows monotonic production of outputs, encoding the output value y(j) as the difference 

between the counts of two monotonically produced species  and , using the same 

technique used in the proofs of Lemmas 3.1 and 3.2.

Let f : ℕk ⤏ ℕl be an affine partial function, where, letting y = f(x), for all j ∈ {1, …, l}, 

 for integer ni,j and nonnegative integer bj, ci, and dj. 

Define f̂ : ℕk ⤏ ℕl × ℕl as follows. For each x ∈ dom f, define yC ∈ ℕl for each j ∈ {1, …, 

l} as . That is, yC(j) is the negation of the j’th 

coordinate of the output if taking the weighted sum of the inputs on only those coordinates 

with a negative coefficient ni,j. The value yP(j) is then similarly defined for all the positive 

coefficients and the bj offset: for each x ∈ dom f, define yP ∈ ℕl for each j ∈ {1, …, l} as 

. Because x(i) − ci ≥ 0, yP and yC are always 

nonnegative. Then if y = f(x), we have that y = yP − yC. Define f̂ as f̂(x) = (yP, yC).

Lemma 4.2

Let f : ℕk ⤏ ℕl be an affine partial function. Then there is a CRC that computes f̂ : ℕk ⤏ ℕl 

× ℕl in expected time O(n log n), where n is the number of input molecules, such that the 

output molecules monotonically increase with time (i.e. none are ever consumed), and at 

most O(n) molecules are ever produced.

Proof—If (yP, yC) = f̂(x), then there exist kl integers n1,1, …, nk,l ∈ ℤ and 2l + k 

nonnegative integers b1, …, bl, c1, …, ck, d1, …, dl ∈ ℕ such that, for each j ∈ {1, …, l}, 

 and 

. Define the CRC as follows. It has input 

species Σ = {X1, …, Xk} and output species .

Chen et al. Page 18

Nat Comput. Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For each j ∈ {1, …, l}, start with bj copies of . This accounts for the bj offsets.

For each i ∈ {1, …, k}, start with a single molecule , and for each m ∈ {0, …, ci − 1}, add 

the reactions

(4.1)

(4.2)

This accounts for the ci offsets by eventually producing x(i) − ci copies of . Reaction (4.1) 

takes expected time O(n) to complete because each reaction instance takes expected time at 

most O(n) (since this is the slowest time for any reaction in volume O(n)) and a constant 

number, ci, of such reaction instances must take place. Once  is produced (hence there are 

now x(i) − ci copies of Xi), reaction (4.2) takes time O(n log n) to complete by Lemma 2.4.

For each i ∈ {1, …, k}, add the reaction

(4.3)

This allows each output to be associated with its own copy of the input. Reaction (4.3) takes 

time O(log n) to complete by Lemma 2.3.

For each i ∈ {1, …, k} and j ∈ {1, …, l}, if ni,j > 0, add the reaction

(4.4)

and if ni,j < 0, add the reaction

(4.5)

Reaction (4.4) produces dj(yP (j) − bj) copies of , and reaction (4.5) produces djyC(j) 

copies of . Each takes time O(log n) to complete by Lemma 2.3.

Finally, to produce the correct number of  and  output molecules, we must divide the 

count of each  and  by dj. For each j ∈ {1, …, l}, start with a single copy of a 

molecule  and another . For each j ∈ {1, …, l} and each m ∈ {0, …, dj − 1}, add 

the reactions
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By Lemma 2.4, each of these reactions requires time O(n log n) to complete.

The next lemma characterizes semilinear functions as finite piecewise linear functions, 

where each of the pieces is defined over an input domain that is a linear set. This will enable 

us to use CRCs as constructed in Lemma 4.2 to compute semilinear functions in Lemma 4.4.

Lemma 4.3

Let f : ℕk → ℕl be a semilinear function. Then there is a finite set {f1 : ℕk ⤏ ℕl, …, fm : ℕk 

⤏ ℕl} of affine partial functions, where each dom fi is a linear set, such that, for each x ∈ 

ℕk, if fi(x) is defined, then f(x) = fi(x), and .

We split the semilinear function into partial functions, each with a graph that is a linear set. 

The non-trivial aspect of our argument is showing that (straightforward) linear algebra over 

the reals can be used to solve our problem about integer arithmetic. For example, consider a 

partial function defined by the following linear graph: b = 0, u1 = (1, 1, 1), u2 = (2, 0, 1), u3 

= (0, 2, 1) (where the first two coordinates are inputs and the last coordinate is the output). 

Note that the set of points where this function is defined is where x1 + x2 is even. Given an 

input point x, the natural approach to evaluating the function is to solve for the coefficients 

n1, n2, n3 such that x can be expressed as a linear combination of u1, u2, u3 restricted to the 

first two coordinates. Then the linear combination of the last coordinate of u1, u2, u3 with 

coefficients n1, n2, n3 would give the output. However, the vectors u1, u2, u3 are not linearly 

independent (yet this linear set cannot be expressed with less than three basis vectors — 

illustrating the difference between real spaces and integer-valued linear sets), so there are 

infinitely many real-valued solutions for the coefficients. We show that ui must span a real 

subspace with at most one output value for any input coordinates. Then we can throw out a 

vector (say u1) to obtain a set of linearly independent vectors (u2, u3) and solve for n2, n3 ∈ 

ℝ, and let n1 = 0. In this example, the resulting partial affine function is f(x1, x2) = (x1 + 

x2)/2.

Proof of Lemma 4.3—Let G = {(x, y) ∈ ℕk × ℕl | f(x) = y} be the graph of f. Since G is 

semilinear, it is a finite union of linear sets {L1, …, Ln}. It suffices to show that each of 

these linear sets Lm is the graph of an affine partial function. Since Lm is linear, its projection 

onto any subset of its coordinates is linear. Therefore dom fm (the projection of Lm onto its 

first k coordinates) is linear.

We consider each output coordinate separately, since if we can show that each y(j) is an 

affine function of x, then it follows that y is an affine function of x. Fix j ∈ {1, …, l}. Let 

 be the (k + 1)-dimensional projection of Lm onto the coordinates defined by x and y(j), 

which is linear because Lm is. Since  is linear, there exist vectors b, u1, …, up ∈ ℕk+1 

such that .

Consider the real-vector subspace spanned by u1, …, up. It cannot contain the vector j = (0, 

…, 0, 1)T. Suppose it does. Take a subset of linearly independent vectors spanning this 

subspace from the above list (we possibly remove some linearly dependent vectors); say u1, 

…, up′. The unique solution to the coefficients ξ1, …, ξp′ ∈ ℝ such that j = ξ1u1 + … + 
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ξp′up′ can be obtained by using the left-inverse of the matrix with columns u1, …, up′ (the 

left inverse exists because the matrix is full-rank). Since the elements of the left-inverse 

matrix are rational functions of the matrix elements, and vectors u1, …, up′ consist of 

numbers in ℕ, the coefficients ξ1, …, ξp′ are rational. We can multiply all the coefficients by 

the least common multiple of their denominators c yielding cj = m1u1 + … + mp′up′ where 

m1, …, mp′ ∈ ℤ. Now consider a point a in  defined as b + n1u1 + … + np′up′, where ni ∈ 

ℕ. Define . We choose a such that ni are large enough that . Since , 

we have that both a and  are in . This is a contradiction 

because  is the graph of a partial function and cannot contain two different points that 

agree on their first k coordinates. Therefore j is not contained in the span of u1, …, up.

Consider again the real-vector subspace spanned by u1, …, up. Again, let u1, …, up′ be a 

subset of linearly independent vectors spanning this subspace. Since j is not in it, the 

subspace must be at most k dimensional. If it is strictly less than k dimensional, add enough 

vectors in ℕk+1 to the basis set for the spanned subspace to be exactly k-dimensional but not 

include j. Call this new set of k linearly independent vectors w1, …, wk, where wi = ui for i 

∈ {1, …, p′}. Let v1, …, vk ∈ ℕk be w1, …, wk restricted to the first k coordinates. The fact 

that w1, …, wk are linearly independent, but j is not in the subspace spanned by them, 

implies that v1, …, vk are linearly independent as well. This can be seen as follows. If v1, 

…, vk were not linearly independent, then we could write vk = ξ1v1 + … + ξk−1vk−1 for some 

ξi ∈ ℝ. However, . Since j is proportional to , 

we obtain a contradiction. Therefore v1, …, vk are linearly independent.

We now describe how to construct an affine function y(j) = f(x) for  from w1, …, wk. Let 

matrix V be the square matrix with v1, …, vk as columns. Let b′ be b restricted to its first k 

coordinates. We claim that y(j) = b(k + 1) + (w1(k + 1), …, wk(k + 1)) · V−1 · (x − b′). 

Below we’ll show that this expression computes the correct value y(j). But first we show 

that it defines a partial affine function f (x). Because v1, …, vk are linearly independent, the 

inverse V−1 is well-defined. We need to show  for integer 

ni,j and nonnegative integer bj, ci, and dj, and that on the domain of f, x(i) − ci ≥ 0. The offset 

bj = b(k + 1), which is a non-negative integer because b is a vector of non-negative integers. 

Since the offset vector b′ is the same for each output dimension, and it is likewise non-

negative, we obtain the offset ci = b′(i). Further, since V−1 consists of rational elements 

(because V consists of elements in ℕ), we can define dj and ni,j as needed. Finally, note that 

the least value of x(i) that could be in  is b′(i) = ci, and thus on the domain of f, x(i) − ci ≥ 

0.

Finally, we show that this expression computes the correct value y(j). Let (ξ1, …, ξk)T ≜ 

V−1 · (x − b′), which implies that . If our value of y(j) is incorrect, then 

∃n1, …, np ∈ ℕ such that  and  agree on the first k coordinates 

but not on the k + 1st. Recall that the real-vector subspace spanned by w1, …, wk includes 
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the subspace spanned by u1, …, up but does not include j. But  is 

proportional to j and lies in the subspace spanned by w1, …, wk. Therefore we obtain a 

contradiction, implying that our value of y(j) is computed correctly.

The next lemma shows that every semilinear function f can be computed by a CRC in O(n 

log n) time. It uses a systematic construction based on breaking down f into a finite number 

of partial affine functions f1, …, fm, in which deciding which fi to apply is itself a semilinear 

predicate. Intuitively, the construction proceeds by running many CRCs and CRDs in 

parallel on input x, computing all fi’s and all predicates of the form ϕi = “x ∈ dom fi?” The 

ϕi predicate computation is used to activate (in the case of a “true” answer) or deactivate (in 

case of “false”) the outputs of fi. Since eventually one CRD stabilizes to “true” and the 

remainder to “false”, eventually the outputs of one fi are activated and the remainder 

deactivated, so that the value f(x) is properly computed.

Lemma 4.4

Let f : ℕk → ℕl be semilinear. Then there is a CRC C that stably computes f, and the 

expected time for C to reach a count-stable configuration on input x is O(n log n), where n 

is the number of input molecules (the O() constant depends on f but not on n).

Proof—The CRC will have input species Σ = {X1, …, Xk} and output species Γ = {Y1, …, 

Yl}.

By Lemma 4.3, there is a finite set {f1 : ℕk ⤏ ℕl, …, fm : ℕk ⤏ ℕl} of affine partial 

functions, where each dom fi is a linear set, such that, for each x ∈ ℕk, if fi(x) is defined, 

then f(x) = fi(x). We compute f on input x as follows. Since each dom fi is a linear (and 

therefore semilinear) set, we compute each predicate ϕi = “x ∈ dom fi and (∀i′ ∈ {1, …, i − 

1}) x ∉ dom fi′?” by separate parallel CRD’s. The latter condition ensures that for each x, 

precisely one of the predicates is true, in case the domains of the partial functions have 

nonempty intersection.

By Lemma 4.2, we can compute each f̂i by parallel CRC’s. Assume that for each i ∈ {1, …, 

m} and each j ∈ {1, …, l}, the jth pair of outputs y P (j) and y C (j) of the ith function is 

represented by species  and . We interpret each  and  as an “inactive” version 

of “active” output species  and .

For each i ∈ {1, …, m}, we assume that the CRD computing the predicate ϕi represents its 

output by voting species Ti to represent “true” and Fi to represent “false”. Then add the 

following reactions for each i ∈ {1, …, m} and each j ∈ {1, …, l}:

(4.6)

(4.7)
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(4.8)

The latter two reactions implement the reverse direction of the first reaction using only 

bimolecular reactions. Also add the reactions

(4.9)

(4.10)

and

(4.11)

(4.12)

That is, a “true” answer for function i activates the ith output and a “false” answer 

deactivates the ith output. Eventually each CRD stabilizes so that precisely one i has Ti 

present, and for all i′ ≠ i, Fi′ is present. At this point, all outputs for the correct function f̂i are 

activated and all other outputs are deactivated. The reactions enforce that at any time, 

. In particular, #Yj ≥ #Kj and #Yj ≥ #Mi,j at all times, so 

there will never be a Kj or Mi,j molecule that cannot participate in the reaction of which it is 

a reactant. Eventually  and  stabilize to 0 for all but one value of i (by reaction 

(4.10)), and for this value of i,  stabilizes to y(j) and  stabilizes to 0 (by reaction 

(4.11)). Eventually #Kj stabilizes to 0 by reaction (4.12). Eventually #Mi,j stabilizes to 0 

since Fi is absent for the correct function f̂i. This ensures that #Yj stabilizes to y(j).

It remains to analyze the expected time to stabilization. Recall n = ∥x∥. By Lemma 4.2, the 

expected time for each affine function computation to complete is O(n log n). Since we have 

m parallel computations, and m depends on f but not n, the expected time for all of the 

computations to complete is O(n log n). We must also wait for each predicate computation 

to complete. By Theorem 2.1, each of these predicates takes expected time at most O(n log 

n) to complete, so again all of them complete in expected time O(n log n).

Eventually, the Ti leaders must convert inactive output species to active, and Fi′ (for i′ ≠ i) 

must convert active output species to inactive. By Lemma 2.4, each of these requires at most 

O(n log n) expected time, and therefore they all complete in expected time at most O(n log 

n). Finally, reactions (4.11) and (4.12) are at least as fast as the process described in Lemma 

2.4. Thus it takes O(n log n) expected time for reactions (4.11) and (4.12) to consume all 

and Kj molecules, at which point the system has stabilized.
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5 Optimization to polylog(∥x∥) time

Angluin, Aspnes, and Eisenstat combined the slow, deterministic predicate-deciding results 

of [2] with a fast, error-prone simulation of a bounded-space Turing machine to show that 

semilinear predicates can be computed without error in expected polylogarithmic time [3]. 

We show that a similar technique implies that semilinear functions can be computed by 

CRNs without error in expected polylogarithmic time in the kinetic model, combining the 

same Turing machine simulation with our O(n log n) construction described in Lemma 4.4.

We in fact use the construction of [3] in order to conduct the fast, error-prone computation 

in our proof of Theorem 5.2. The next theorem formalizes the properties of that construction 

that we require.

Theorem 5.1 ([3])

Let f : ℕk → ℕl be a function by a t(m)-time-bounded, s(m)-space-bounded Turing machine, 

where m ≈ log n is the input length in binary, and let c ∈ ℕ. Then there is a CRC C that 

computes f correctly with probability at least 1 − n−c, and the expected time for C to reach a 

count-stable configuration is O(t(m)5). Furthermore, the total molecular count never 

exceeds O(2s(m)).

Semilinear functions on an m-bit input can be computed in time O(m) and space O(m) on a 

Turing machine. Therefore the bounds on CRC expected time and molecular count stated in 

Theorem 5.1 are O(log5n) and O(n), respectively, when expressed in terms of the number of 

input molecules n.

Theorem 5.1 is a rephrasing of the main result of Angluin, Aspnes, and Eisenstat [3]. 

However, a modification of their construction is required to achieve “uniformity” with 

respect to input size. Rephrasing their construction to our language of CRNs, they allow a 

different amount of “fuel” species (call it F) for every input size. Indeed, because their 

model exclusively uses two-reactant, two-product reactions, and thus preserves the total 

molecular count, this non-uniformity is necessary: the required amount of fuel molecules 

depends on the space usage s(m), so that the tape of the Turing machine can be accurately 

represented throughout the computation. We, however, require a uniform initial state. 

Luckily, we do not need to supply these fuel molecules as part of the input configuration. 

Instead, these fuels may be generated from the inputs by letting the first reaction of the input 

Xi be , where  is the input interacting with the rest of the CRC, and c ∈ ℕ is 

chosen large enough that the CRC of [3] will not run out of F molecules. Since the CRC of 

[3] is used here only to compute semilinear functions, which require only O(n) space to 

compute on a Turing machine, c · n copies of F are sufficient to run this CRC if c is 

sufficiently large.

The following theorem is the main theorem of this section.
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Theorem 5.2

Let f : ℕk → ℕl be semilinear. Then there is a CRC C that stably computes f, and the 

expected time for C to reach a count-stable configuration is O(log5 n), where n is the 

number of input molecules.

Proof—Our CRC will use the counts of Yj for each output dimension y(j) as the global 

output, and begins by running in parallel:

1. A fast, error-prone CRC F to compute y = f(x) with high probability, as in Theorem 

5.1. For any constant c > 0, we can design F so that it is correct and finishes in time 

O(log5 n) with probability at least 1 − n−c, while never reaching total molecular 

count higher than O(n). We modify the CRC to store the output in three separate 

sets of species Yj (the global output), Bj, and Cj redundantly (i.e. y = b = c) as 

follows. Upon halting F copies an “internal” output species Ŷj to Yj, Bj, and Cj 

through reactions H + Ŷj → H + Yj + Bj +Cj (in asymptotically negligible time).10 

In this way we are guaranteed that the amount of Yj produced by C is the same as 

the amounts of Bj and Cj no matter whether its computation is correct or not. This 

redundant storage is used for later comparison and possible replacement with the 

slow, deterministic CRC (described next).

2. A slow, deterministic CRC S for y′ = f(x). It is constructed as in Lemma 4.4, 

running in expected O(n log n) time.

3. A slow, deterministic CRD D for the semilinear predicate “b = f(x)?”. It is 

constructed as in Theorem 2.1 and runs in expected O(n) time.

Following Angluin, Aspnes, and Eisenstat [3], we construct a “timed trigger” as follows, 

using a single leader molecule, a single “marker” molecule, and n = ∥x∥ “interfering” 

molecules. To ensure that there are always n interfering molecules, we can let them be the 

input molecules, and a special species I that is generated in the reactions , where 

 is the input species interacting with the remainder of the CRC. The leader will then 

interact with both Xi and I as interfering molecules.

The leader fires the trigger if it encounters the marker molecule, M, d times without any 

intervening reactions with the interfering molecules, where d is a constant. Note that 

choosing d larger increases the expected time for this event to happen, since it becomes 

more likely that the leader encounters an interfering molecule before encountering the M 

molecule d times in a row. This happens rarely enough that with high probability the trigger 

fires after F and D finishes (time analysis is presented below). When the trigger fires, it 

checks if D is outputting a “no” (e.g. has a molecule of L0), and if so, produces a molecule 

of Pfix. This indicates that the output of the fast CRC F is not to be trusted, and the system 

should switch from the possible erroneous result of F to the sure-to-be correct result of S.

10Here, H is some species that is guaranteed with high probability to be absent until F has halted, and then to increase to large (Ω(n)) 
count in asymptotically negligible time.
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Once a Pfix is produced, the system converts the output molecules  of the slow, 

deterministic CRC S to the global output Yj, and kills enough of the global output molecules 

to remove the ones produced by the fast, error-prone CRC:

(5.1)

(5.2)

(5.3)

Finally, Pfix triggers a process consuming all species of F other than Yj, Bj, and Cj in 

expected O(log n) time so that afterward, F cannot produce any output molecules. More 

formally, let QF be the set of all species used by F. For all , add 

the reactions

(5.4)

(5.5)

where K ∉ QF is a unique species.

First, observe that the output will always eventually converge to the right answer, no matter 

what happens: If Pfix is eventually produced, then the output will eventually be exactly that 

given by S which is guaranteed to converge correctly. If Pfix is never produced, then the fast, 

error-prone CRC must produce the correct amount of Yj — otherwise, D will detect a 

problem.

For the expected time analysis, let us first analyze the trigger. The probability that the trigger 

leader will fire on any particular reaction number is at most n−d. In time n2, the expected 

number of leader reactions is O(n2). Thus, the expected number of firings of the trigger in n2 

time is n−d+2. This implies that the probability that the trigger fires before n2 time is at most 

n−d+2. The expected time for the trigger to fire is O(nd).

We now consider the contribution to the total expected time from 3 cases:

1. F is correct, and the trigger fires after time n2. There are two subcases: (a) F 

finishes before the trigger fires. Conditional on this, the whole system converges to 

the correct answer, never to change it again, in expected time O(log5 n). This 

subcase contributes at most O(log5 n) to the total expected time. (b) F finishes after 

the trigger fires. In this case, we may produce a Pfix molecule and have to rely on 

the slow CRC S. The probability of this case happening is at most n−c. Conditional 

on this case, the expected time for the trigger to fire is still O(nd). The whole 

system converges to the correct answer in expected time O(nd), because everything 
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else is asymptotically negligible. Thus the contribution of this subcase to the total 

expectation is at most O(n−c · nd) = O(n−c+d).

2. F is correct, but the trigger fires before n2 time. In this case, we may produce a Pfix 

molecule and have to rely on the slow CRC S for the output. The probability of this 

case occurring is at most n−d+2. Conditional on this case occurring, the expected 

time for the whole system to converge to the correct answer can be bounded by 

O(n2). Thus the contribution of this subcase to the total expectation is at most 

O(n−d+2 · n2) = O(n−d+4).

3. F fails. In this case we’ll have to rely on the slow CRC S for the output again. Since 

this occurs with probability at most n−c, and the conditional expected time for the 

whole system to converge to the correct answer can be bounded by O(nd) again, the 

contribution of this subcase to the total expectation is at most O(n−c · nd) = 

O(n−c+d).

So the total expected time is bounded by O(log5 n) + O(n−c+d) + O(n−d+4) + O(n−c+d) = 

O(log5 n) for d > 4, c > d.

6 Conclusion

We defined deterministic computation of CRNs corresponding to the intuitive notion that 

certain systems are guaranteed to converge to the correct answer no matter what order the 

reactions happen to occur in. We showed that this kind of computation corresponds exactly 

to the class of functions with semilinear graphs. We further showed that all functions in this 

class can be computed efficiently.

A work on chemical computation can stumble by attempting to shoehorn an ill-fitting 

computational paradigm into chemistry. While our systematic construction may seem 

complex, we are inspired by examples like those shown in Fig. 1 that appear to be good fits 

to the computational substrate. While delineation of computation that is “natural” for a 

chemical system is necessarily imprecise and speculative, it is examples such as these that 

makes us satisfied that we are studying a form of natural chemical computation.

In theoretical computer science, the notion of randomized computation has received 

significant attention. However, the additional computational power given by error-prone 

computation compared with deterministic computation is usually rather limited. For 

example, the class of languages decided by Turing machines, whether they are required to 

be deterministic or randomized (or even nondeterministic), is the same. In the case of 

polynomial-time Turing machines, it is widely conjectured [19] that P = BPP, i.e., that 

randomization adds at most a polynomial speedup to any predicate computation. In contrast, 

CRNs are unusual in the large gap between the power of randomized and deterministic 

computation: While randomized CRNs can simulate arbitrary Turing machines with high 

probability [24], deterministic computation is severely limited to semilinear functions only.

Our systematic constructions (unlike the examples in Fig. 1) rely on a carefully chosen 

initial context — the “extra” molecules that are necessary for the computation to proceed. 

Some of these species need to be present in a single copy (“leader”). We left unanswered 
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whether it may be possible to dispense with this level of control of the chemical 

environment, but this question has since been answered affirmatively by Doty and 

Hajiaghayi [12]. However, the construction of [12] runs in expected time O(n); it remains 

open whether there is are leaderless CRNs computing any semilinear function in sublinear 

expected time.

In contrast to the CRN model discussed in this paper, which is appropriate for small 

chemical systems in which every single molecule matters, classical “Avogadro-scale” 

chemistry is modeled using real-valued concentrations that evolve according to mass-action 

ODEs. Moreover, despite relatively small molecular counts, many biological chemical 

systems are well-modeled by massaction ODEs. While the scaling of stochastic CRNs to 

mass-action systems is understood from a dynamical systems perspective [17], little work 

has been done comparing their computational abilities. There are hints that single/few-

molecule CRNs perform a fundamentally different kind of computation. For example, recent 

theoretical work has investigated whether CRNs can tolerate multiple copies of the network 

running in parallel finding that they can lose their computational abilities [9, 10].

Does our notion of deterministic computation have an equivalent in mass-action systems? 

Consider what happens when the CRN shown in Fig. 1(c) is viewed as a mass-action 

reaction network, with (non-negative) real-valued inputs [X1]0, [X2]0 and output [Y]∞ 

(where we use the standard mass-action convention: [·]0 for the initial concentration, and 

[·]∞ for the equilibrium concentration). In the limit t → ∞, the mass-action system will 

converge to the correct output amount of [Y]∞ = max([X1]0, [X2]0), and moreover, the 

output amount is independent of what (non-zero) rate constants are assigned to the reactions. 

Thus one is tempted to connect the notion of deterministic computation studied here and the 

property of robustness to rate parameters of a mass-action system. Parameter robustness is a 

recurring motif in biologically relevant reaction networks due to much evidence that 

biological systems tend to be robust to parameters [5].

However, the connection is not simple. Consider the CRN shown in Fig. 1(a). In the 

massaction limit it loses the ability of computing the floor function, but still computes [Y]∞ 

= [X]0/2 for real valued [X]0, [Y]∞, independent of reaction rates. More interestingly, the 

CRN shown in Fig. 1(b), when considered as a mass-action reaction network, could 

converge to a different amount of Y as t → ∞, depending on the rate constants of the last 

two reactions and the input amounts. Specifically, let k1, k2, and k3 be the rate constants of 

the three reactions, respectively. If [X1]0 > [X2]0 and k2 ≤ k3[X2]0/([X1]0 − [X2]0), then Y will 

go to k2/k3([X1]0 − [X2]0) rather than [X2]0 as in Fig. 1(b). In all other cases, the output will 

correctly match the function in the figure. (This can be verified by determining the steady 

states of the system and then determining the stability of each one as a function of the initial 

concentrations and rate constants.) The cause of the disagreement between stochastic and 

mass-action instances of this CRN can be identified with the “type I” deviant effect 

demarcated by Samoilov and Arkin [22].
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Figure 1. 
Examples of deterministically computable functions. (Top) Three functions and examples of 

CRNs deterministically computing them. The input is represented in the molecular count of 

X (for (a)), and moleculer counts of X1, X2 (for (b) and (c)). The output is represented by the 

molecular count of Y. Example (a) computes via the relative stoichiometry of reactants and 

products of a single reaction. In example (b), the second and third reactions convert B to Y 

and vice versa, catalyzed by X1 and B, respectively. Thus, if there are any X1 remaining after 

the first reaction finishes (and thus x1 > x2), all of B can get converted to Y permanently 

(since some B is required to convert Y back to B). Since in this case the first reaction 

produces x2 molecules of B, x2 molecules of the output Y are eventually produced. If the first 

reaction consumes all of X1 (and thus x1 ≤ x2), eventually any Y that was produced in the 

second reaction gets converted to B by the third reaction. To see that the CRN in (c) 

correctly computes the maximum, note that the first two reactions eventually produce x1 + 

x2 molecules of Y, while the third reaction eventually produces min(x1, x2) molecules of K. 

Thus the last reaction eventually consumes min(x1, x2) molecules of Y leaving x1 + x2 − 

min(x1, x2) = max(x1, x2) Y ’s. (Bottom) Graphs of the three functions. The set of points 

belonging to the graph of each of these functions is a semilinear set. Under each plot this 

semilinear set is written in the form of a union of linear sets corresponding to Equation 1.1. 

The defining vectors are shown as colored arrows in the graph.
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Figure 2. 
An example capturing the essential elements of our systematic construction for computing 

semilinear functions (Lemma 4.4). To compute the target semilinear function, we recast it as 

a piecewise function defined in terms of linear functions, such that semilinear predicates can 

decide which of the linear functions is applicable for a given input (this recasting is possible 

by Lemma 4.3). (a) The graph of the target function visualizing the decomposition into 

linear functions. (b) A CRN deterministically computing the target function with intuitive 

explanations of the reactions. We use tri-molecular reactions for simplicity of exposition; 

however, these can be converted into a sequence of bimolecular reactions. Note that we 

allow an “initial context”: a fixed set of molecules that are always present in the initial state 

in addition to the input. The linear functions g and h are computed monotonically by 

representing the output as the difference of P (“produce”) minus C (“consume”) species. 

Thus although Pg − Cg could be changing non-monotonically, Pg and Cg do not decrease 

over time, allowing them to be used as inputs for downstream computation. To compute the 

semilinear predicate ϕ(x1, x2) = “x1 > x2?”, a single molecule, converted between F (ϕ = 

“false”) and T (ϕ = “true”) forms, goes back and forth consuming  and . Whether it 

gets stuck in the F or T forms indicates the excess of  or . The reactions in the right 

column use the output of this predicate computation to set the count of Y (the global output) 

to either the value computed by g or h. Note that the CRN cannot “know” when the 

predicate computation has finished since the absence of  or  cannot be detected. Thus 

the reactions in the right column must be capable of responding to a change in F/T. Species 
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P̂g, P̂h, and Ĉg are used to backup the values of Pg, Ph, and Cg, enabling the switch in 

output.
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