
Original article

BactPepDB: a database of predicted peptides

from a exhaustive survey of complete

prokaryote genomes

Julien Rey1,2,3, Patrick Deschavanne1,2 and Pierre Tuffery1,2,3,*

1INSERM, U973, MTi, F-75205 Paris, France, 2Université Paris Diderot, Sorbonne Paris Cité, F-75205
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Abstract

With the recent progress in complete genome sequencing, mining the increasing amount

of genomic information available should in theory provide the means to discover new

classes of peptides. However, annotation pipelines often do not consider small reading

frames likely to be expressed. BactPepDB, available online at http://bactpepdb.rpbs.univ-

paris-diderot.fr, is a database that aims at providing an exhaustive re-annotation of all

complete prokaryotic genomes—chromosomal and plasmid DNA—available in RefSeq

for coding sequences ranging between 10 and 80 amino acids. The identified peptides

are classified as (i) previously identified in RefSeq, (ii) entity-overlapping (intragenic) or

intergenic, and (iii) potential pseudogenes—intergenic sequences corresponding to a

portion of a previously annotated larger gene. Additional information is related to homo-

logs within order, predicted signal sequence, transmembrane segments, disulfide bonds,

secondary structure, and the existence of a related 3D structure in the Protein Databank.

As a result, BactPepDB provides insights about candidate peptides, and provides

information about their conservation, together with some of their expected biological/

structural features. The BactPepDB interface allows to search for candidate peptides in

the database, or to search for peptides similar to a query, according to the multiple prop-

erties predicted or related to genomic localization.

Database URL: http://www.yeastgenome.org/

Introduction

Peptides and mini proteins have recently met a regain of

interest for therapeutic applications (1, 2). For one part,

several breakthroughs have allowed significant progress on

some traditional weaknesses of peptides as candidate

therapeutics. Chemical modifications among which, to cite

some, pegylation (3), stapling (4), glycosilation (5), or the

construction of chimeric molecules combining cargos and
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peptides (6) have shown effective to significantly increase

the in vivo stability of peptides or their delivery in targeted

cells. In addition, the characterization of new classes of

peptides offers promising perspectives for development.

Antimicrobial peptides are expected to address the urge for

the discovery of new antibiotics (7). Bacterial quorum sens-

ing peptides that participate in cell-to-cell communication

and bacterial adaptation to specific conditions could also

lead to new ways to control bacterial proliferation (8).

Peptides extracted from venoms have shown to target very

specifically various receptors (9). Cell penetrating peptides

raise new promises for the controlled cell-specific penetra-

tion of peptides (10).

In general however, the rate of discovery of new pep-

tides remains low. Most frequently, the characterization of

natural peptides still relies on cycles of purification and

sequencing that prevent large scale exploration.

Alternative routes rely on the use of phage display tech-

niques [see for instance (11, 12)] or combinatorial chem-

ical methods (13, 14) that have led to success in the

identification of peptides targeting specific protein–protein

interactions [e.g. (15)]. Such approaches are however

labor-intensive and costly.

Thanks to the progress of high throughput sequencing

techniques, an increasing amount of complete genome se-

quences is becoming available which could constitute an

important source for the identification of candidate pep-

tides. Unfortunately, mining this amount of information

for the discovery of new active peptides still faces some

challenges. First, the identification of candidate genes from

genomic sequences cannot be directly related to their

effective expression. For eukaryotes, even for expressed

genes, the knowledge of genomic sequences does not pro-

vide sure information about the expressed sequences,

owing to the presence of exons and the fact that peptides

such as hormones, for instance, often result from the

maturation of preproteins [e.g. (16)]. Prokaryotes do not

possess such features to the same extent, and gene identifi-

cation and chromosomic information should in theory be

more straightforward, although not exhaustive, because

peptides effectively expressed can be encoded in non-

genomic nucleic acid, such as that of plasmids. However,

the identification of short coding sequences (SCSs) can be

challenging (17), and as a consequence, standard annota-

tion pipelines have shown to identify only few such SCSs

(18). Indeed, very few candidate genes of size <50 residues

are annotated in the RefSeq database (curated non-redun-

dant sequence database of genomes) (19). Also, in addition

to the crude identification of candidates from a single gen-

omic sequence, it also seems desirable to have means to ex-

plore if and how much such genes are conserved across

species. The more a peptide is conserved, and the more

probable is its biological role. For instance, most bacteri-

ocins are genus specific, see (20).

BactPepDB comes as an attempt to organize at a large

scale the information available from complete prokaryotic

genome sequences. It comes as a complement to more spe-

cialized preexisting databases among which databases

related to antimicrobial peptides (21–27), predicted se-

creted bacterial proteins (28), quorum sensing peptides

(29), signal peptides (30), anuran peptides (31), peptides

including the amino isobutyric acid residues (32), cell pene-

trating peptides (33) and non-ribosomal peptides (34). It is

also distinct from databases such as PepBank (35) or

EROP-Moscow (36) that compile information related to

peptides acknowledged as biologically active from litera-

ture sources, or databases such as PEPX (37) or peptiDB

(38) devoted to the structure of protein–peptide complexes.

Instead, it compiles information about SCSs of size be-

tween 10 and 80 amino acids predicted from the analysis

of the complete genome sequence of prokaryotes. For each

SCS, different features are predicted to provide informa-

tion about some of their expected biological/structural fea-

tures. Finally, the search for homologs within the genomes

of each order is performed. Overall BactPepDB proposes a

unique and exhaustive survey of candidate peptides over

the complete chromosomal information available for pro-

karyotes, which we believe can be a valuable contribution

to assist the identification of new biologically active

peptides.

Construction and Content

Genome wide identification of the candidate

peptides

An overview of the processing of BactPepDB is presented

in Figure 1. Full genome sequences are collected from

RefSeq database (curated non-redundant sequence data-

base of genomes) (19) in FASTA format, together with the

organism taxonomy and the corresponding annotations

about gene location in the GenBank format. The complete

genome and plasmids sequences are then processed using

BactgeneSHOW (39), a program specifically designed for

the prokaryote genome-wide identification of SCSs.

BactgeneSHOW relies on Hidden Markov Models that ac-

count for the presence of ribosome-binding sites (RBS) and

four types of nucleotide composition of the coding se-

quences. It analyses both direct and reverse strands. It has

been successfully used to identify new SCSs whose expres-

sion has been further validated by transcriptomic analyses

(17). Predicted SCSs are then translated into amino acid se-

quences, and only sequences of size between 10 and 80

amino acids are considered for further analysis.
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Compared to the classical upper limit of peptides of 50 amino

acids, the limit of 80 amino acids comes since in some cases, a

leader sequence usually on the order of 20–30 amino acids can

exist. All such candidate SCSs corresponding to genes already

annotated in RefSeq (19) are first identified and inserted in

BactPepDB along with their annotations. Then, all the SCSs and

RBS genomic coordinates identified by BactgeneSHOW are inte-

grated into the database and the newly detected SCSs are labeled

as belonging to intergenic regions or coding regions (entity-over-

lapping sequences).

Potential pseudogenes detection

In order to facilitate the identification of false positives, we

also perform a search for potential pseudogenes.

Pseudogenes are dysfunctional relatives of genes that have

lost their protein-coding ability or are otherwise no longer

expressed in the cell. Pseudogenes can arise from a partial

duplication of active genes and can be found in the inter-

genic regions. We thus perform a similarity-based ap-

proach to detect partially duplicated genes. This approach

takes the set of genes detected in intergenic regions of a

genome and compares it to the set of RefSeq annotated

gene sequences of the same genome. This comparison is ac-

complished by using the blastp algorithm (40). Cutoff val-

ues of 50% identity and 50% coverage of the shortest

sequence are set to filter those sequence hits. We recall

however that as BactGeneSHOW accounts for the presence

of the RBS, all BactPepDB SCSs labeled as potential

pseudogenes are possibly expressed.

Similarity searching

Similarity searching is performed using blastp (40) on the

protein sequences. Inter-species sequence conservation in-

ference is achieved by performing an all-against-all search

over all the peptide sequences of all the species of an order

(as given by organismal taxonomy of RefSeq), considering

a sequence identity and coverage of >50% each. Intergenic

SCSs are then classified into three different categories ac-

cording to Warren et al. (18). Intergenic SCSs that align to

annotated genes from other species are classified as ‘similar

to RefSeq entry’ in the genome to which they belong.

Intergenic SCSs that align to entity-overlapping sequences

from other species are classified as ‘genomic artifacts’.

Finally, intergenic SCSs that align to intergenic sequences

from other species are labeled as ‘potentially missing’. For

these last ones, we require that hit sequence(s) belong to a

different taxonomic family. Indeed, a requirement based on

different species would not be satisfactory, as there are pro-

karyotes classified as different species with very similar

intergenic sequences due to lack of divergence [for example,

Brucella species (41)]. Furthermore, the species and genera

levels of classification have been shown to be highly vari-

able in prokaryotes (42–45). As such, the next highest taxo-

nomic level (the family) is considered. This requirement is

the main evidence used to distinguish sequences that are

likely to be real genes from sequences that represent some

other conserved elements. In order to give a qualitative esti-

mate of the conservation, two levels of conservation are

also provided: a weak conservation stands for the identifi-

cation of a candidate ortholog in another species of a genus

(191 genera), whereas strong conservation stands for the

existence of a candidate ortholog in more than two species

of a genus, whatever the number of species (105 genera).

Integration of predicted features

For each candidate peptide, several supplementary analyses

are performed and include: (i) the prediction of secondary

structure using PsiPred (46), (ii) the prediction of the local

conformation prediction as a Structural Alphabet profile

(47), (iii) the search for the existence of candidate structure

by performing a blastp against the protein data bank

(PDB) (48), (iv) the prediction of putative disulfide bonds

using DIPro (49), (v) the prediction of transmembrane seg-

ments using TMHMM (50), and (vi) the prediction of sig-

nal peptides using SignalP (51). Finally, cross references

with external databases have also been considered but are

presently limited to Bactibase (23).

Figure 1. BactPepDB flowchart.
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Update strategy

Periodical updates of the database are scheduled. Due to

the computational cost however, we intend to keep the

database up to date on a 6-month basis only.

Database architecture

BactPepDB was implemented using the combination of the

Perl CGI programming language (5.10.1) and a MySQL re-

lational database (5.1.66). The site is running on Apache

server (2.2.16-6) installed on a Kernel-based Virtual

Machine with Debian 6.0.6 as operating system.

Database access

BactPepDB is accessible through a web portal at http://

bactpepdb.rpbs.univ-paris-diderot.fr. The website requires

no authentication.

Database interface

The search page proposes two possibilities to query

BactPepDB. The first is to search for homologs of a peptide

sequence among the BactPepDB collection, the second is to

search for peptides of BactPepDB matching various crite-

ria. Different parameters can be combined to focus the

search: (i) source organism, which represents the

sequenced genome the peptides are predicted from, (ii)

peptide status, which makes possible to restrict the search

to predicted peptides or to peptides already annotated in

RefSeq (19), (iii) predicted peptide features, which makes

possible to specify information such as the location of the

predicted gene (coding or intergenic region), and for pep-

tides in the intergenic regions, if it is a potential pseudo-

gene or not, (iv) sequence features like sequence length or

the ability to use regular expressions, and (v) other pre-

dicted features such as the presence of a transmembrane

segment or a disulfide bond, and peptide conservation

across different species of an order (see Similarity

Searching section). After running a search, a brief summary

of the number of hits matching the different criteria is

returned, followed by a list of the hits with the details of

the values. This list can be sorted interactively using each

criterion as sort key. Finally, links to external resources

performing prediction about peptide bioactivity, such as

PeptideRanker (52), CAMP (25) or AntiBP2 (53) are pro-

posed. For the similarity search results, pair-wise align-

ments of the queries with the corresponding hits are

shown, but the user also has the possibility to request for a

multiple alignment of all the hits using Clustal Omega (54)

along with a representation of the residue frequencies at

each position produced by WebLogo (55). Each peptide in

the database has a unique accession number (e.g. BPDB:

0845925). Subsequently clicking on a BPDB id will lead to

the peptide entry content which contains all gathered infor-

mation concerning this peptide. At any time, users can

move back to the search page and narrow their search as

search parameters are preserved.

Results and Discussion

On date of 8 August 2014, the database contains 1 747

413 Peptides from 1226 species (2240 strains including

1598 plasmids) belonging to 557 genera, 218 families and

97 orders. Looking at the agreement between the candi-

dates identified by BactGeneSHOW and the genes previ-

ously annotated in RefSeq, we observe that 74% of

the SCSs annotated in RefSeq are detected by

BactGeneSHOW, in which 66% of the SCSs match

exactly, and only 8% differ by either their start or stop

positions. The remaining 26% could correspond to SCSs

missed by BactGeneSHOW, to SCSs of RefSeq not identi-

fied using an automated annotation pipeline and thus pos-

sibly having non-typical start codons but observed as

expressed by biologists or to genes discarded by the trunca-

ture to 80 amino acids. This highlights the limits of a fully

automated procedure, but still, a significant amount of in-

formation can be retrieved.

Among the candidates identified in BactPepDB that are

not annotated in RefSeq, one denotes, as illustrated in

Figure 2, a clear increase of the number of new entries for

smaller SCSs. As a consequence of our flexible definition

of potential pseudogenes, the fraction of non-potential

pseudogenes new intergenic SCSs for sizes of> 50 amino

acids is actually marginal. This suggests that the approach

does not identify false positives with high frequencies.

Conversely, very few of the candidate sequences identified

correspond to already annotated sequences for sizes be-

tween 10 and 30 amino acids. Furthermore, one observes

some kind of compensation between the increasing num-

ber of new intergenic candidates and the decreasing num-

ber of RefSeq entries that maintains the number of such

peptides rather constant from 80 down to 20 amino acids.

Some increase of new intergenic candidates is observed

for sizes from 10 to 15 amino acids, which is difficult to

interpret at the moment, and remains the subject for fur-

ther investigation. The fraction of the RefSeq SCSs, the

potential pseudogenes peptides, the intra and intergenic

SCSs are reported in Table 1, using a three class separ-

ation depending on peptide size, to distinguish regions in

which new intergenic SCSs are, roughly, predominant,

equal and marginal compared to previous RefSeq entries.

Overall, SCSs not previously annotated in RefSeq
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correspond to 70% of BactPepDB. Among these, over

263 000 (15%) are predicted to have disulfide bonds,

over 173 000 (10%) to have transmembrane segments

and over 30 000 (1.7%) to have signal peptides.

Structural homologs of the PDB could be detected for

over 100 000 new SCSs.

Considering the intra-genus and intra-order conserva-

tion, we observe that close to 184 000 new SCSs detected

in the intergenic regions are conserved to some extent

across different species of a genus, whereas 112 000 of

them are conserved across different taxonomic families of

an order. Table 2 presents a comparison of the fraction of

the conserved SCSs for these new intergenic SCSs and those

preexisting in RefSeq. Interestingly, the fraction of inter-

genic SCSs that are conserved is similar to that of RefSeq,

which suggests that the information of these newcomers is

consistent with preexisting one. The fraction of the con-

served peptides identified in the intergenic regions appears

stable depending of peptide size when considering the dif-

ferent species of a genus (intra-genus) or the different fami-

lies of an order (intra-order). Overall, depending on the

taxonomic level chosen as a requirement for conservation

significance, at least 18% of the new intergenic SCSs are

conserved.

Figure 2. BactPepDB entries according to peptide size.

Table 1. BactPepDB entries by categories

Small Medium Large

RefSeq 3946 (0.6) 143 157 (30.4) 362 395 (63.2)

Potential pseudogenes 201 228 (28.6) 51 752 (11.0) 11 743 (2.1)

Intergenic 324 533 (46.2) 189 573 (40.2) 121 897 (21.3)

Entity-overlapping 173 270 (24.6) 86 907 (18.4) 77 012 (13.4)

The three categories correspond to small (<30 amino acids), medium (30–50 amino acids) and large (>50 amino acids) peptide

sizes. Peptides already annotated in RefSeq are distinguished from newcomers of BactPepDB categorized as potential pseudo-

genes, intergenic and entity-overlapping. Fractions in % within brackets.

Table 2. Conserved SCSs

Small Medium Large

Intra-genus RefSeq 978 (25) 40 913 (29) 152 429 (42)

New intergenic SCSs 84 276 (26) 57 584 (30) 41 447 (34)

Intra-order RefSeq 750 (19) 20 041 (14) 60 194 (17)

New intergenic SCSs 61 662 (19) 28 047 (15) 21 940 (18)

Numbers and fractions (% within brackets) of peptide entries that are conserved across species of a genus (intra-genus) and

across families of an order (intra-order). Fractions are relative to the total number of entries in each category (see Table 1). The

three categories correspond to small (<30 amino acids), medium (30–50 amino acids) and large (>50 amino acids) peptide sizes.

Peptides already annotated in RefSeq are distinguished from the new intergenic SCSs of BactPepDB.
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Evaluation of predictions

As the database contains predicted candidates, it is import-

ant to assess how likely it can assist the identification of

truly expressed peptides. A way to assess BactPepDB-

added value comes from experimental studies focusing on

specific genomes. For instance, 14 CDSs that were missing

from the initial annotation of Vibrio splendidus LGP32

were recently uncovered (57). We found that 12 of our pre-

dictions overlap these missing CDSs. To assess this on a

larger scale, we have also compared two versions of

BactPepDB based on two versions of the RefSeq database

(on date of 11 June 2013 and 30 September 2013) and

have found that 125 newly annotated peptides of size com-

prised between 10 and 80 amino acids were added for gen-

omes that are common to both versions, 33 of which are

not of the ‘predicted’ kind and were biologically con-

firmed. BactGeneSHOW had correctly predicted 89 of

these newcomers in the previous version of BactPepDB,

among which 24 are now biologically confirmed, which

means that about 70% of those newly annotated peptides

were already present in BactPepDB before making it to the

RefSeq database. Among those predicted peptides, 83 are

conserved across different species and only six were unique

in their respective order, supporting that peptide conserva-

tion is a good measure of peptide expression likeliness.

As the core of BactPepDB relies on BactGeneSHOW,

we have also run other gene prediction programs over

these genomes to assess BactGeneSHOW performance.

GeneMarkHMM 2.6 was able to retrieve 94 of these new-

comers, whereas Prodigal 2.5 could only find 38 of them.

Although GeneMarkHMM 2.6 slightly outperformed

BactGeneSHOW, it is important to note that

GeneMarkHMM was apparently inefficient for some gen-

omes, for instance in Flavobaterium psychrophilum JIP02/

86 where none of the five newly annotated genes was de-

tected, whereas BactGeneSHOW retrieves them. Indeed,

GeneMarkHMM relies on precalculated heuristic models

which may not be suitable for all species whereas

BactGeneSHOW relies on a self-learning algorithm.

Finally, another important point to assess is the ex-

pected proportion of false positives present in the database.

Although this is a very difficult question to answer, we re-

cently gained some insight through RNA deep sequencing

data, which reveals smaller intergenic transcripts and

mRNA extensions. Analysis of new transcripts from

Escherichia coli str. K-12 substr. MG1655 (56, 58) showed

that only 74 predicted sequences of BactPepDB were over-

lapping the 1094 potentially non-coding transcripts

(ncRNA) and long 50-UTR extensions detected in the inter-

genic regions of MG1655. This is interesting enough be-

cause only a very small fraction of these 1094 transcribed

regions is supposed to code for peptides.

Searching for Bactibase homologs

We illustrate here the use of BactPepDB to the search for

homologs of Bactibase (23). Bactibase is, in our experience,

the only database devoted to antimicrobial peptides for

which the complete sequence collection could be down-

loaded. Among the 219 entries, 197 peptide sequences

match the condition to have sequences of size between 10

and 80 residues without non-standard amino acids in their

sequence. The genomic information (chromosomal and

plasmidic) corresponding to the genus/species was present

in BactPepDB for 146 of them. However, this condition

does not imply the information should be present in

BactPepDB since for one part some variation between

strains of a species can occur, and for another part, some

peptides can result from the cleavage of preproteins larger

than 80 residues, thus out of the scope of BactPepDB. A

careful inspection of the literature reporting peptide identi-

fication for each Bactibase entry showed that peptides not

found in BactPepDB correspond to 11 cases for which pre-

proteins are larger than 80 amino acids, and 37 cases for

which it was not possible to conclude, owing to the fact

that the peptide sequence was not elucidated using gen-

omic information or that it was not possible to conclude

between chromosomal or plasmid encoding. As a result, 98

peptides only were clearly in the scope of BactPepDB.

A similarity-based search in BactPepDB—accepting a

correct identification for a hit in the same species, and with

over 90% identity—led to the identification of 56 of them.

RefSeq annotations were only present for 34 cases over 56.

Thus BactPepDB was able to infer new knowledge for 22

cases over 98, a gain of 22%. Furthermore, hits at a lesser

sequence identity were found for 22 more peptides.

BactPepDB was thus able to grab information for 76 pep-

tides over 98. We remind that all strains of a species are

not expected to produce all antimicrobial peptides [see for

instance (59–62)]. Overall, such results illustrate that the

re-annotation of the complete genome using a method spe-

cialized for SCSs can have added value, at least as a prelim-

inary step to confront with additional information.

Comparison with BAGEL, a database of predicted

bacteriocins

We have also analysed the consistency of BactPepDB with

BAGEL (24), a resource predicting bacteriocins from gen-

omic data, over a collection of 15 genomes of different

genera: Acaryochloris marina MBIC11017, Achromo-

bacter xylosoxidans A8, Bacillus cereus AH187, Bacillus

subtilis BSn5, Enterobacter cloacae SCF1, Escherichia coli

W, Geobacillus sp C56 T3, Lactobacillus casei W56,

Methanococcus voltae A3, Mycobacterium tuberculosis
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H37Rv, Mycobacterium tuberculosis RGTB327, Strepto-

coccus pneumoniae AP200, Streptococcus thermophilus

CNRZ1066, Vibrio parahaemolyticus RIMD 2210633,

and Vibrio vulnificus CMCP6. Over these genomes,

BAGEL returned 713 candidates. We also found 395 of

these candidates have a size of >80 amino acids. On the

213 remaining candidates, only 89 are common to BAGEL

and BactPepDB. Such difference of 124 candidates is not

per se surprising since BAGEL relies on Glimmer2 to iden-

tify candidates, and it does not consider the presence of a

RBS when BactGeneSHOW does—one can thus expect

BactGeneSHOW to be more stringent. Among the 89 can-

didates identified by both BAGEL and BactPepDB, 55 are

annotated in RefSeq (and in BactPepDB), in which seven

are known bacteriocins, the others being hypothetical bac-

teriocins. None of the remaining 124 candidates proposed

by BAGEL is annotated in RefSeq. Thus, accepting the

RefSeq annotation as a criterion to validate the candi-

dates—note that not all RefSeq entries are biologically con-

firmed—we find BactPepDB would propose a more

narrow set of candidates, not discarding any true positive.

Conclusions and Future Directions

BactPepDB is a database of predicted peptides from a ex-

haustive survey of complete prokaryote genomes.

BactGeneSHOW being a generic approach to the search

for SCSs, taking into account the complete spectrum of

prokaryotes from archaea to bacteria and the diversity of

each category, it is expected that due to the variability in

start codon and codon usage, some part of the truly ex-

pressed SCSs are not detected. Genome coding specificity,

particularly that existing for bacteria and archaea, could

be integrated in BactGeneSHOW but this remains the sub-

ject for further work. In addition, from our analyses,

BactPepDB already shows the ability to retrieve a large

part of previously annotated biological peptides when in

the scope of the database. BactPepDB could be improved

in several other directions. At present, this precludes im-

portant sources of prokaryotic information such as those

with unusual codons, as well as the incomplete genomes

available in RefSeq or other databases from which it

should be possible to increase the knowledge of the degree

of conservation of candidates. Particularly, it could be of

interest to add data from the Ensembl Bacteria database

(63) as it contains, on average, more strains per species.

Another limit is related to the impossibility to detect pep-

tides resulting from the maturation of large proteins, which

is presently beyond the scope of BactPepDB.

Accepting these limitations, it remains that BactPepDB

appears to contain new knowledge about SCSs compared

to previous RefSeq entries. Although, it is difficult to

exactly assess the amount of candidate peptides that may

be expressed in some physiological conditions, or that may

have a biological activity, BactPepDB provides a rather

unique panorama of SCSs over the complete collection of

genomes available, at the level of individual sequences but

also considering their conservation through genera. The

close to 18% of BactPepDB newcomers conserved to some

extent could be seeds for further investigations. The detec-

tion of small peptides being more difficult using biochem-

ical analyses, BactPepDB is thus expected to assist the

experimental discovery of new bioactive peptides.
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