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1. Summary
Heat-shock protein (Hsp)10 is the co-chaperone for Hsp60 inside mitochondria,

but it also resides outside the organelle. Variations in its levels and intracellular dis-

tribution have been documented in pathological conditions, e.g. cancer and

chronic obstructive pulmonary disease (COPD). Here, we show that Hsp10 in

COPD undergoes changes at the molecular and subcellular levels in bronchial

cells from human specimens and derived cell lines, intact or subjected to stress

induced by cigarette smoke extract (CSE). Noteworthy findings are: (i) Hsp10

occurred in nuclei of epithelial and lamina propria cells of bronchial mucosa

from non-smokers and smokers; (ii) human bronchial epithelial (16HBE) and

lung fibroblast (HFL-1) cells, in vitro, showed Hsp10 in the nucleus, before and

after CSE exposure; (iii) CSE stimulation did not increase the levels of Hsp10

but did elicit qualitative changes as indicated by molecular weight and isoelectric

point shifts; and (iv) Hsp10 nuclear levels increased after CSE stimulation in HFL-

1, indicating cytosol to nucleus migration, and although Hsp10 did not bind DNA,

it bound a DNA-associated protein.

2. Introduction
The 10 kDa heat-shock protein (Hsp10) is classically considered a mitochondrial

co-chaperonin that interacts with Hsp60 to assist in the folding of other mito-

chondrial proteins [1]. Hsp10 does not contain a mitochondrial targeting

sequence, but its translocation to the organelle is mediated by its N-terminal

sequence that can form an amphipathic alpha helix, which enables it to cross

the mitochondrial membrane [2,3].

Hsp10 has been found in extra-mitochondrial sites such as secretory gran-

ules from various cell types [4,5] and in circulation. In the latter location,
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Hsp10 has been called early pregnancy factor (EPF) because it

appears in the maternal serum within 24 h after fertilization

in several mammalian species [6–10].

The nuclear gene encoding Hsp10 is HSPE1 (GeneID:

3336) and it is localized on 2q33.1, head-to-head on opposite

strands with the gene of Hsp60 (HSPD1) [11]. These genes are

controlled by a bidirectional promoter and the regulation of

the two genes was found to be simultaneous in eukaryotic

cells both under normal conditions and after stress [11].

A number of studies showed that the levels of Hsp10 are

increased, usually together with those of Hsp60, in various patho-

logic conditions such as colon cancer [12,13], post-ischaemic brain

[14] and myocardial ischaemia [15,16]. Also, Hsp10 levels were

found decreased in other pathological conditions, for example,

bronchial carcinogenesis [17]. We also found that Hsp10 and

Hsp60 decrease in bronchial dysplasia and adeno-squamous car-

cinoma [17,18], but increase in airways mucosa in smokers with

chronic obstructive pulmonary disease (COPD) [19].

COPD is a chronic inflammatory disease of central and per-

ipheral airways and lung parenchyma characterized by an

increased number of tissue lymphocytes, macrophages and

neutrophils [20]. Hsps have protective roles intracellularly but

are potentially pathogenetic when released outside cells, as

they can initiate/perpetuate inflammation [21]. In the lung,

intracellular Hsps have predominantly a cytoprotective effect

[22–24]. By contrast, extracellular Hsps may act as signal

molecules for the immune system, modulating the secretion

of proinflammatory cytokines [25–28]. In previous work, we

investigated in airways tissues the presence and levels of var-

ious Hsps, including Hsp10 and Hsp60, in relation to the

COPD severity [19]. We found that Hsp10 and Hsp60 levels

were increased in the bronchial epithelium of severe/very

severe COPD compared with control non-smokers; by contrast,

in lamina propria the number of Hsp10 positive cells was sig-

nificantly increased in all stages of stable COPD compared

with control smokers with normal lung function and non-

smoking subjects, while the number of Hsp60-positive cells

was significantly higher only in severe/very severe COPD com-

pared with control smokers with normal lung function. Hence,

we speculated that both molecules can be involved in maintain-

ing the inflammatory status. However, the different correlations

of Hsp60 and Hsp10 levels with smoking habits led us to

wonder about the effects of cigarette smoke on the expression

and subcellular localization of these proteins in bronchial

mucosa, i.e. in epithelial and lamina propria cells. We addressed

these issues pertaining to Hsp10 in the work reported here, by

means of in vivo and in vitro experiments.
3. Material and methods
3.1. Recruitment of subjects, lung function tests,

fibreoptic bronchoscopy, collection and processing
of bronchial biopsies in patients with COPD

We selected and studied bronchial biopsies from 19 subjects with

normal lung function, nine current smokers (age¼ 64+8;

M : F ¼ 8 : 1) and 10 non-smokers (age¼ 65+9; M : F ¼ 9 : 1).

All subjects were Caucasians and were recruited from the Respir-

atory Medicine Unit of the ‘Fondazione Salvatore Maugeri’

(Veruno, Italy). The severity of the airflow obstruction was
staged using current GOLD (Global Initiative for Chronic

Obstructive Lung Disease) criteria, as described [19].

Pulmonary function tests were performed as previously

described [20]. Pulmonary function tests included measure-

ments of FEV1 and FEV1/FVC under baseline conditions in

all the subjects examined (6200 Autobox Pulmonary Function

Laboratory; Sensormedics Corp., Yerba Linda, CA, USA).

Subjects were at the bronchoscopy suite at 08.30 h after

having fasted from midnight and were pre-treated with

atropine (0.6 mg IV) and midazolam (5–10 mg IV). Oxygen

(3 l min21) was administered via nasal prongs throughout the

procedure and oxygen saturation was monitored with a digital

oximeter. A fibreoptic bronchoscope (Olympus BF10 Key-

Med, Southend, UK) was passed through the nasal passages

into the trachea under local anaesthesia with lidocaine (4%) to

the upper airways and larynx. More lidocaine (2%) was sprayed

into the lower airways, and four bronchial biopsy specimens

were taken from segmental and sub-segmental airways of the

right lower and upper lobes using size 19 cupped forceps. Bron-

chial biopsies for immunohistochemistry were gently extracted

from the forceps and processed for light microscopy as pre-

viously described [20]. Two samples were embedded in Tissue

Tek II OCT (Miles Scientific, Naperville, IL, USA), frozen

within 15 min in isopentane pre-cooled in liquid nitrogen and

stored at –808C. The best frozen sample was then oriented and

6 mm thick cryostat sections were cut for immunohistochemical

light microscopy analysis and processed as described below.

3.2. Immunohistochemistry and scoring system
Two sections from each sample were stained applying immu-

nohistochemical methods with antibodies specific for Hsp10

(rabbit anti-Cpn10 polyclonal antibody, StressGen Bio-

technologies, Victoria BC, Canada, Cat. No. SPA-110,

dilution 1 : 300) and Hsp60 (mouse anti-Hsp60 monoclonal

antibody, Sigma, St. Louis, MO, Cat. No. H4149, dilution 1 :

300). Briefly, after blocking non-specific binding sites with

serum derived from the same animal species as that of the

secondary antibody, primary antibody was applied at the

set dilutions in Tris-buffered saline (0.15 M saline containing

0.05 M Tris–HCl at pH 7.6) and incubated 1 h at 238C in a

humid chamber. Antibody binding was demonstrated with

secondary antibodies, anti-rabbit (Vector, BA 1000) or anti-

mouse (Vector, BA 2000), followed by ABC kit AP AK5000,

Vectastain, and fast-red substrate (red colour). Slides were

included in each staining run with human tonsil or nasal

polyp as a positive control. For the negative control slides,

normal goat, mouse or rabbit non-specific immunoglobulins

(Santa Cruz Biotechnology, Santa Cruz, CA, USA) were used

at the same protein concentration as the primary antibody.

Morphometric measurements were performed with a

light microscope (Leitz Biomed, Leica Cambridge, UK) con-

nected to a video recorder linked to a computerized image

system (Quantimet 500 Image Processing and Analysis

System, Software Qwin V0200B, Leica). Immunopositivity

was scored using a semi-quantitative approach. Three

independent observers (F.C., A.D.S. and B.B.) evaluated the

immunohistochemical results and quantified the percen-

tage of positive cells for each specimen both in epithelium

and lamina propria, down to 100 mm beneath the epithe-

lial basement membrane. Ten high-power fields were

examined in each slide and cell counting was performed at

400� magnification.
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3.3. Preparation of cigarette smoke extract
Cigarette smoke extract (CSE) was obtained following proto-

cols standardized in our laboratory, using a Buchner flask

connected to a system acting as a vacuum-driven apparatus

[29]. Two cigarettes without filters were combusted and the

smoke was bubbled through 50 ml of serum-free Dulbecco’s

modified Eagle’s medium (DMEM). The obtained suspension

was then adjusted to pH 7.4 and filtered through a 0.22 mm

pore filter. This medium was defined 100% CSE and was

applied to cell cultures at different percentages (1, 2, 5 and

10%) within 20 min from preparation. Exposure of cells to

CSE was carried out with an incubation time of 24 h.

3.4. Cell cultures and in vitro model set-up
All experiments were conducted in triplicate. SV40-transformed

human bronchial epithelial (16HBE) and immortalized human

fetal lung fibroblast (HFL-1) cell lines were used to set up an

in vitro model in order to assess their behaviour after CSE

exposure. Both cell lines were cultured in 8-well chamber slides

and 25/75 cm2 tissue culture flasks (BD Falcon). Culture

medium was composed of DMEM containing 10% fetal bovine

serum (FBS), 100 U ml21 penicillin, 100 mg ml21 streptomycin,

0.25 mg ml21 amphotericin B and 2 mM L-glutamine (all from

Invitrogen, Milan, Italy). Cultures were maintained at 378C in a

humidified atmosphere of 5% CO2. Cells from passages 17–22

were used for the experiments. After reaching 70% of confluence,

cells were starved with serum-free DMEM, supplemented with

100 U ml21 penicillin, 100 mg ml21 streptomycin, 0.25 mg ml21

amphotericin B and 2 mM L-glutamine, for 24 h at 378C in a

humidified atmosphere 5% CO2. They were then treated with

various doses of CSE for different times, as outlined below.

After culturing, cells grown in chamber slides were

washed with phosphate-buffered saline (PBS) and fixed in

methanol for 20 min at 2208C. Air-dried slides were then

stored at 2208C until use (see ‘Immunocytochemistry and

scoring system’).

3.5. Cell viability assay
Cell viability after CSE exposure was evaluated by MTT [3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]

assay (Sigma Aldrich). After CSE exposure for 24 h in 24-

well plates (Corning, Oneonta, NY, USA), culture medium

was replaced by MTT, previously diluted in phenol-red free

DMEM. After an incubation period of 3 h, the cell precipitate

was solubilized by using acidic absolute isopropanol (HCl

0.04 M). The amount of formazan was evaluated spectropho-

tometrically by reading A570, with background subtraction at

650 nm. Triton X-100 (1% v/v) was used as a positive control

for cytotoxicity. Triplicate assays were performed using cells

at different culture passages. Non-treated (NT) conditions

were used as controls in both cell lines.

3.6. Immunocytochemistry and scoring system
Immunocytochemistry (ICC) analyses were performed on

16HBE and HFL-1 cells cultured and treated in 8-well chamber

slides (BD Falcon), following previously published protocols

[30,31]. After culturing, cells were washed with PBS and fixed

in methanol for 20 min at 2208C. Air-dried slides were then

stored at 2208C until use. For the ICC procedure, the cells
were permeabilized with 0.1% Triton X-100 in PBS and then

washed with PBS. To block endogenous peroxidases, cells

were treated with 0.3% H2O2 in PBS and then with 1% FBS for

blocking non-specific antigens. Antibodies anti-Hsp10 (rabbit

polyclonal, StressGen) and anti-Hsp60 (mouse monoclonal,

clone LK1, Sigma Aldrich) were used at 1 : 300 dilution.

Antibody anti-prolyl 4-hydroxylase (clone 5B5, Dako, Copenha-

gen, Denmark) was used at 1 : 100 dilution as positive control for

the HFL-1 cells. Antibody anti-cytokeratin 8 (mouse mono-

clonal, Sigma) was used at 1 : 200 dilution as positive control

for the 16HBE cells. Negative controls were obtained subtracting

the primary antibody incubation step. The detection system

used was the LSAB (Labelled Streptavidin-Biotin)-2 kit

(Dako), an avidin–biotin complex system in which a biotiny-

lated secondary antibody reacts with peroxidase-conjugated

streptavidin molecules. The 3-amino-9-ethylcarbazole (AEC)þ
High Sensitivity Substrate Chromogen Ready-to-Use (Dako

Cytomation) was used as developer. Each passage was pre-

ceded by washes with PBS. The positive reaction was

observed using a light microscope (Leica DM 5000B).

Immunopositivity was scored using a semi-quantitative

approach [32,33]. Three independent observers (F.C., R.A.

and G.L.R.) separately evaluated the immunocytochemical

results in epithelium and lamina propria and determined the

percentage of positive cells for each specimen. Ten high-

power fields were examined in each culture slide and counting

of the cells was performed at 400� magnification.

3.7. Resin-embedding procedures and immunogold
analysis for Hsp10 subcellular localization

LR-White was used as resin to embed 16HBE and HFL-1 cells.

Cell fixation was carried out using a fixative solution (4% paraf-

ormaldehyde, 1� PBS pH 7.4, 0.2% glutaraldehyde). After

washing with 1� PBS pH 7.4, the cells were dehydrated by suc-

cessive passages through increasing percentages of ethanol

solutions (30, 50, 70 and 80%). Then cells were embedded in

LR-White resin. Ultrathin sections of 70–100 nm were layered

on gold mesh grids. To block endogenous peroxidases, the

grids with sections were incubated with 0.3% H2O2. To block

non-specific antigens, 3% bovine serum albumin (BSA; Aurion

BSA-c, Electron Microscope Sciences, Hatfield, PA, USA) in

1� PBS pH 7.6 was used. For immunolocalization, ultrathin sec-

tion-containing mesh grids were incubated with anti-Hsp10

(rabbit polyclonal, StressGen) and anti-Hsp60 (mouse mono-

clonal, clone LK1, Sigma Aldrich) at 1 : 30 dilution, and then

with 10 nm colloidal gold particle-coupled anti-rabbit (10 nm

gold-labelled goat anti-rabbit IgG (H þ L) RPN421V, Amer-

sham Biosciences, Milan, Italy) or anti-mouse (Electron

Microscope Sciences) secondary antibodies at 1 : 30 dilution.

A fixation step with 2% glutaraldehyde preceded the contrast

procedure. The latter was carried out incubating grids with 1%

(w/v) uranyl acetate in dark, methanol, and then with Reynold’s

lead citrate solution in dark. After washing with deionized water

and drying, sections were examined with a transmission electron

microscope (JEM-1220, JEOL, Milan, Italy).

3.8. One-dimensional protein electrophoresis (SDS-
PAGE) and western blotting

Measurements were carried out of the variations of Hsp10 and

Hsp60 in 16HBE and HFL-1 after treatment with various
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percentages of CSE (1, 2, 5 and 10%) and compared with con-

trol conditions, using one-dimensional (1D) sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A

fixed amount of total and sub-fractionated proteins (30 mg for

each sample) was loaded with sample buffer (0.5 M Tris–

HCl pH 6.8, 10% SDS, 10% glycerol, bromophenol blue,

0.2 M dithioerythritol (DTE)) and applied to a 12% SDS-

PAGE gel. Gel run was performed for 2 h at 238C. For the

subsequent western blotting, gels obtained from 1D electro-

phoresis were incubated in transfer buffer (190 mM glycine,

25 mM Tris, 20% methanol) for 30 min and then blotted on

polyvinylidene di-fluoride (PVDF) membrane (Hybond-P,

GE Healthcare, Milan, Italy). After antigen blocking for 1 h

with 3% BSA in 0.05% Tween-20 Tris-buffered saline (T-TBS)

pH 7.6, membranes were exposed overnight at 48C to specific

primary antibodies: anti-Hsp10 (rabbit polyclonal, StressGen)

at 1 : 2000 dilution, or anti-Hsp60 (mouse monoclonal, clone

LK1, Sigma Aldrich) at 1 : 1000 dilution; anti-b-actin (mouse

monoclonal, clone AC-74, Sigma Aldrich) at 1 : 2000 dilution

and anti-LDH (rabbit monoclonal, clone EP1563Y Epitomics)

at 1 : 2500 dilution were used as cytoplasmic control anti-

bodies and anti-lamin A (rabbit polyclonal, Sigma Aldrich)

at 1 : 5000 dilution was used as nuclear control antibody.

All antibodies were diluted in antibody buffer (1% BSA,

0.05% T-TBS). Membranes were then incubated with specific

horseradish peroxidase (HRP)-labelled secondary antibodies,

anti-rabbit (1 : 50 000 dilution) and anti-mouse (1 : 10 000

dilution; both from GE Healthcare), for 1 h. They were exposed

to chemo-luminescent substrate (Immobilon, Millipore, Biller-

ica, MA, USA) for 5 min and then developed in a dark room

on chemiluminescence films (Hyperfilm, GE Healthcare).
3.9. Two-dimensional protein electrophoresis
(SDS-PAGE) and western blotting

Total proteins from NT and 5% CSE-treated 16HBE and HFL-1

cells were separated according to two independent properties in

two steps, using two-dimensional (2D) electrophoresis. In the

first-dimension run, isoelectric focusing (IEF), proteins were

separated according to their isoelectric point (pI) on immobi-

lized pH gradient (IPG) strips (Immobiline DryStrip gels, GE

Healthcare). In the second-dimension run, SDS-PAGE separ-

ated the proteins according to their molecular weight. For this

study, we used two 7-cm IPG strips with nonlinear pH gradient:

4–7 for Hsp60 and 6–11 for Hsp10 (GE Healthcare) and a 10%

2D gel for SDS-PAGE. Prior to IEF, each IPG strip for each con-

dition was previously rehydrated with rehydration solution

(8 M urea, 2% w/v CHAPS, 0.5% v/v IPG buffer, 0.002% bro-

mophenol blue (1% stock solution), double-distilled water, to

which was added the reducing agent dithioerythritol prior

to use). Samples were diluted in this solution and allowed to

enter IPG strips for 1 h at 238C. The first-dimension run

included six steps at various voltages (‘step and hold’ or ‘gradi-

ent’) at different times: (i) hold at 30 V for 720 min, (ii) hold at

100 V for 15 min, (iii) gradient 100 V to 300 V for 30 min,

(iv) hold at 300 V for 20 min, (v) gradient 300 V to 3000 V

60 min and (vi) hold at 3000 V for 105 min.

After IEF, protein-separated IPG strips were equilibrated

with SDS equilibration solution (6 M urea, 75 mM Tris–HCl

pH 6.8, 29.3% glycerol, 2% SDS, double-distilled water), pre-

pared in order to obtain two buffers, one containing DTE as

reducing agent (Buffer A) and one containing iodoacetamide
(which alkylates reduced sulfurs) and bromophenol blue

(Buffer B). Equilibrated IPG strips were used for the

second-dimension run, which comprised two subsequent

steps at different constant currents and different times:

10 mA gel21 for 10 min; and 20 mA gel21 for 120 min.

For both first- and second-dimension runs the Zoom Dual

Power adapter (Life Technologies, Milan, Italy) was used.

3.10. Image acquisition and data analysis
Two-dimensional gels were stained with ammoniacal silver

nitrate as previously described [34]. Silver-stained gels were

imaged with a ChemiDoc MP system (Bio-Rad, Milan, Italy).

Gel analysis was then performed using IMAGE MASTER PLATINUM

software (GE Healthcare). As internal standard for gel cali-

bration, we used an array of features of the cell lysate,

whose pI and relative molecular mass (Mr) were formerly

estimated by interpolation with serum proteins that had

co-migrated with the whole cell lysate. Further identifications

of spots of interest were made by western blotting of 2D gels.

3.11. Coomassie blue staining, nano-high performance
liquid chromatography and electrospray mass
spectrometry

Proteins were stained with Coomassie Brilliant Blue G-250

stain (SimplyBlue Safestain, Invitrogen). Stained gels were

digitalized, and image analysis was performed using IMAGE

MASTER PLATINUM software. Spots from 2DE maps of biological

interest were carefully excised from the gel and subjected to in-

gel trypsin digestion according to published procedures [35]

with minor modications. Protein identification was performed

as previously reported [36] through a nanoHPLC (Proxeon,

Bruker Daltonics, Macerata, Italy) and MS/MS ion trap

(Amazon ETD, Bruker Daltonics) system. Instrument settings

were consistent with our previous studies [37].

The spray capillary was a fused silica capillary, 0.090 mm

o.d., 0.020 mm i.d. For all experiments, a sample volume of

15 ml was loaded by the autosampler onto a homemade 2 cm

fused silica precolumn (100 mm i.d.; 375 mm o.d.; Reprosil C18-

AQ, 5 mm, Dr. Maisch, Ammerbuch-Entringen, Germany).

Sequential elution of peptides was accomplished using a flow

rate of 300 nl min21 and a linear gradient from Solution A (2%

acetonitrile; 0.1% formic acid) to 50% of solution B (98% aceto-

nitrile; 0.1% formic acid) in 40 min over the precolumn in-line

with a homemade 15 cm resolving column (75 mm i.d.; 375 mm

o.d.; Reprosil C18-AQ, 3 mm, Dr. Maisch). The acquisition par-

ameters for the instrument were as follows: dry gas

temperature, 2208C; dry gas, 4.0 l min21; nebulizer gas, 10 psi;

electrospray voltage, 4000 V; high-voltage end-plate offset,

2200 V; capillary exit, 140 V; trap drive, 63.2; funnel 1

in, 100 V, out 35 V and funnel 2 in, 12 V, out 10 V; ICC target,

200 000; maximum accumulation time, 50 ms. The sample was

measured with the ‘Enhanced Resolution Mode’ at 8100 m/z
per second (which allows mono-isotopic resolution up to four

charge stages) polarity positive, scan range from m/z 300 to

1500, five spectra averaged and rolling average of 1. The

‘Smart Decomposition’ was set to ‘auto’.

Acquired CID (collision-induced dissociation) spectra were

processed in DATAANALYSIS v. 4.0, and deconvoluted spectra

were further analysed with BIOTOOLS v. 3.2 (Bruker Daltonics)

software and submitted to Mascot search program (in-house
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v. 2.2, Matrix Science, London, UK). The following parameters

were adopted for database searches with MASCOT search pro-

gram: NCBInr database (release date 10 March 2013; 247 209

sequences); taxonomy ¼ Homo sapiens; peptide mass tolerance

of +0.3 Da; fragment mass tolerance of +0.3 for CID ions;

enzyme specificity, trypsin with two missed cleavages con-

sidered; fixed modifications: carbamidomethyl (C); variable

modifications: oxidation (M).

3.12. Total and sub-fractionated proteins extraction
The 16HBE and HFL-1 cells were collected after treatment and

were lysed with lysis buffer (20 mM Tris–HCl pH 7.5, 1% Non-

idet P-40, 50 mM NaCl, 1� Proteases Inhibitor) in order to

obtain total proteins. In parallel, separate nuclear and cyto-

plasmic fractions were obtained using Nuclear Extract Kit

(Active Motif, Carlsbad, CA, USA), following the manufac-

turer’s instructions. Protein concentration was determined

spectrophotometrically, using the DC Protein Assay kit

(Bio-Rad), following the manufacturer’s instructions.

3.13. Chromatin extracts and western blotting
Chromatin protein extracts derived from 16HBE and HFL-1 cells

were prepared according to previously published protocols [38].

16HBE and HFL-1 cells were collected and each cell line was split

in two tubes with or without 2% formaldehyde in 100 ml of 0.5 �
M buffer (10 mM HEPES–KOH (pH 7.6), 25 mM KCl, 5 mM

MgCl2, 5% glycerol), 1 mM dithiothreitol (DTT) and 1 mM

phenyl methyl sulfonyl fluoride (PMSF) and incubated for

15 min at 238C. Both cross-linked and not cross-linked samples

were added with 125 mM glycine and transferred to a microfuge

tube containing 100 ml of M buffer, 0.8% NP-40, 1 mM DTT, and

1 mM PMSF; incubated on ice for 15 min; homogenized with

a pestle; and pelleted by centrifugation at 2100g for 5 min at

48C. The supernatant (cytoplasmic extracts) was recovered and

the pellet (chromatin proteins) was resuspended in boiling

SDS-PAGE loading buffer. Proteins were fractionated by SDS-

PAGE and analysed by protein blotting using anti-Hsp10

(rabbit polyclonal, StressGen) at 1 : 2000 dilution. The chemi-

luminescent HRP-conjugated secondary antibodies (anti-rabbit

1 : 50 000 dilution) were used and the reaction developed using

the Super Signal West Femto substrate (Pierce, Milan, Italy)

and acquired with the ChemiDoc XRS imager (Bio-Rad).

3.14. Nucleosome band-shift assay
A total of 146-bp and 251-bp amplified rDNA fragments [39]

were incubated with increasing amounts of recombinant

human and recombinant Drosophila ISWI [40], respectively,

in 10 ml final volume containing 50 mM Tris–HCl (pH 8),

50 mM NaCl, 1 mM MgCl2, 100 mg ml21 chicken albumin,

0.05% NP-40 and 10% glycerol. The reaction was incubated

for 15 min at 258C and samples were resolved on 1.4% agar-

ose gel in 0.3� Tris–borate–EDTA buffer at 48C for 50 min as

previously reported [39] and detected by EtBr staining.

3.15. Statistical analyses
Data were plotted using MS EXCEL software. Statistical analyses

were performed using GRAPHPADPRISM v. 4 software (GraphPad

Software, San Diego, CA, USA). The statistical methods used

were non-parametric analyses. The significance of the differences
in chaperonins levels between control and CSE treatments was

assessed by the Kruskal–Wallis test, and significance of differ-

ences between different groups was analysed by the Mann–

Whitney test. Values were considered significant when p� 0.05.

3.16. Computational studies (in silico analyses)
In order to confirm the variations in Hsp10 subcellular local-

ization on the basis of physical–chemical parameters, in silico
analyses were carried out using online ExPASy Proteomics

Server (http://www.expasy.org). In this site, methods are

found that use various algorithms to determine the character-

istics of primary amino acid sequences such as physical–

chemical features, based for example on electric charges,

hydrophobic moment, number of hydrophobic amino acids,

etc. We used PSORT for prediction of subcellular localization

and of nucleic acid-binding motifs.

4. Results
4.1. In vivo analysis of Hsp10 and Hsp60 levels

and cellular localization
We quantified the levels of Hsp10 and Hsp60 in epithelium

and lamina propria of bronchial mucosa of non-smoker and

smoker subjects with normal lung function to determine if

there was an increase associated with smoking, which is con-

sidered a source of stressors for the airways tissues. The

clinical characteristics of the subjects studied are shown in

the electronic supplementary material, table S1. Hsp10 and

Hsp60 levels did not show quantitative changes in epithelium

or in lamina propria of the bronchial mucosa of smokers com-

pared with non-smokers (figure 1a). Both molecules showed a

cytoplasmic positivity, often with a granular pattern resem-

bling a mitochondrial positivity (figure 1b). Hsp10 was

positive in both groups of subjects, smokers and non-smokers,

and both in epithelial and lamina propria cells. Notably, while

Hsp60 positivity is clearly outside cell nuclei, the Hsp10 pat-

tern suggests a nuclear positivity which may not be fully

explained by a simple superimposition with cytosol.

4.2. 16HBE and HFL-1 cell viability after CSE exposure
We performed a set of in vitro experiments to determine poss-

ible effects on Hsp10 and Hsp60 levels and subcellular

localization caused by exposure to CSE. We first determined

if CSE exposure at various concentrations caused cell death.

HFL-1 and 16HBE cells were incubated for 24 h with CSE

at different percentages (1, 2, 5 and 10%) and, after the incu-

bation, the cell morphology was examined by phase-contrast

microscopy. For both cell lines, morphological features were

maintained after 24 h of treatment (figure 2a). Also, to

assess the effects of CSE exposure on cell viability, we per-

formed viability assays by using MTT. The doses of CSE

used in this study did not produce any detectable decrease

in cell viability in HFL-1 or 16HBE cells (figure 2b).

4.3. Immunolocalization of Hsp10 and Hsp60
in CSE-treated 16HBE and HFL-1 cells

We quantified the levels of Hsp10 and Hsp60 in 16HBE and

HFL-1 cells before and after CSE treatment. Hsp10 and

http://www.expasy.org
http://www.expasy.org
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Figure 1. Immunohistochemical detection of Hsp10 and Hsp60 in human
bronchial mucosa. (a) The levels of Hsp10 in epithelium (Ep) and in
lamina propria (Lp) were similar in non-smokers compared with smokers.
Hsp60 was detected only in epithelial cells and its levels were also similar
in non-smokers and smokers. Statistical analyses showed that all of the vari-
ations were not significant with p-values ranging between p ¼ 0.1 and 0.4.
(b) Representative immunohistochemical images. Hsp10 is present in epi-
thelium and lamina propria cells of non-smokers and smokers, whereas
Hsp60 is present only in epithelial cells. Arrowheads, epithelial positivity;
arrows, lamina propria positivity. Scale bars, 50 mm.
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Hsp60 levels did not show quantitative changes after treatment

( p . 0.05; figure 3a). Hsp60 was present in the cytoplasm, often

with the granular aspect typical of mitochondrial localization

(figure 3b). Hsp10 showed not only a wide cytoplasmic, gran-

ular distribution but also an appreciable positivity at the

nuclear level (figure 3b, insets). These data were in agreement

with the in vivo immunohistochemical results obtained with

bronchial mucosa cells as described above, and showed nuclear

localization of Hsp10 in treated and untreated cells. To the best

of our knowledge, positivity for Hsp10 in the nucleus of

airways mucosa cells has never been described before.
4.4. Immunogold analysis of Hsp10 and Hsp60 in
untreated 16HBE and HFL-1 cells

To verify the immunohistochemical results showing nuclear

localization of Hsp10 in normal cells with another method,

immunogold analyses were performed on ultrathin sections

of untreated 16HBE and HFL-1 cells. Both 16 HBE and HFL-1

cells showed Hsp10 positivity in the nucleus (figure 4a), in

addition to the typical mitochondrial localization (figure 4a,

insets). By contrast, we did not find nuclear localization for

Hsp60, although both chaperonins were also positive in the

cytosol and, slightly, in the plasma membrane in both cell lines.
4.5. Western blotting of whole cell lysates
We performed western blotting to further determine if CSE

stimulation does or does not induce quantitative changes in

Hsp10 and Hsp60 levels; as described above the immuno-

histochemical method did not detect changes (figure 3a).

Total proteins extracted from NT 16HBE and HFL-1 cells

and after 24 h of CSE exposure were used for 1D SDS-

PAGE. Figure 4b shows histograms displaying results of

semi-quantitative densitometry of Hsp10 and Hsp60 levels

in 16HBE and HFL-1 cells after CSE exposure (from 1 to

10%) in comparison with the controls (i.e., cells not treated

with CSE). 16HBE expressed both Hsp10 and Hsp60 in all

the tested conditions. Hsp60 showed increased levels after

24 h of treatment with 10% CSE by comparison with the

untreated controls ( p , 0.01). By contrast, Hsp10 in 16HBE

as well as both molecules in HFL-1 did not show any signifi-

cant difference between treated and NT cells. The observed

difference in the levels of Hsp60 after 24 h of 10% CSE treat-

ment compared with controls is in contrast to the previously

described immunocytochemical data, which did not show a

significant difference. This discrepancy may be attributed to

the higher sensitivity of western blotting as compared with

immunohistochemistry for measuring protein levels. In fact,

the two methods are complementary with immunohisto-

chemistry having resolution power to map the topography of

antigens in subcellular compartments and tissue types,

whereas western blotting is advantageous to directly identify

immunologically and quantify protein bands. Except for this,

the other results from western blotting were in agreement

with immunocytochemistry.

4.6. Two-dimensional SDS-PAGE on total protein
extracts

In order to determine if qualitative variations in the Hsp10 and

Hsp60 molecules did occur after CSE exposure, 2D SDS-PAGE

analyses were performed on 100 mg of total protein extracts.

To perform this set of experiments we used two sources of

materials for protein extraction, NT cells as control and cells

exposed to 5% CSE for 24 h. The choice of this CSE concentration

was based on 1D western blot results: we used the highest con-

centration that did not determine changes in the Hsp10 and

Hsp60 levels. Western blots and resulting spots were analysed

using gel matching, with reference maps in our laboratory data-

base, as explained in Material and Methods. Figure 5 shows the

results of 2D-IPG western blot of the Hsp60 isoforms in the HFL-

1 cell line under control condition and after 24 h of treatment

with 5% of CSE. Control cells showed four Hsp60 isoforms

with the same relative molecular weight (Mr ¼ 57 500) but dis-

tinct pIs, 5.09, 5.14, 5.18 and 5.24 (figure 5a). After 5% CSE

exposure, HFL-1 showed only the absence of the Hsp60 5.09 iso-

form (figure 5b). More differences were instead found when

analysing the results of Hsp10 isoforms. Control conditions

(figure 5c) showed three different isoforms of Hsp10: one, the

more highly expressed and basic isoform (likely to be the typical

canonical Hsp10), had an apparent Mr of 10 800 and pI of 8.7

(relative to the most expressed isoform); the other two isoforms

had a Mr of 10 600, with pI 8.3, and Mr 11 000, with pI 7.5. Con-

siderable modifications were visible following CSE treatment.

On the one hand, the canonical isoform showed Mr and pI

shifts (Mr ¼ 11 500; pI¼ 8.9), on the other hand, the two acid

forms became undetectable after treatment (figure 5d). Very
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Figure 3. Immunocytochemistry for Hsp10 and Hsp60. (a) Levels of Hsp10
and Hsp60 in 16HBE and HFL-1 cells before (NT) and after (10%) incubation
with CSE at 10%. No statistically significant differences were found between
the groups ( p-values ranging between 0.48 and 0.68). (b) Representative
microphotographs showing immunolocalization by immunohistochemistry of
Hsp10 and Hsp60 in 16HBE and HFL-1 cells. The insets indicate nuclear
localization of Hsp10. Scale bars, 10 mm (figures) and 1 mm (insets).
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similar results were obtained for 16HBE cells (data not shown).

Hence, CSE exposure in bronchial cell lines induced qualitative

modifications in the two chaperonins, particularly in Hsp10.

4.7. Mass spectrometry analyses
In order to further verify the identity of the three Hsp10 iso-

forms described in the preceding subsection, we carried out

mass spectrometry analyses on spots cut from Coomassie

blue-stained 2D gels. After trypsin digestion and HPLC

analyses, identification of amino acid sequences of the spots

was obtained by ESI-MS (electrospray ionization-mass spec-

trometry). Recognized peptide fragments possessed amino

acid sequences comprising the primary amino acid sequence

of Hsp10 (figure 5e), confirming the identity of the basic spot

as canonical Hsp10. Also, the tryptic digest of the other two

more acidic spots excised from the gels showed the presence

of peptide fragments belonging to the amino acid sequence

of Hsp10, therefore identifying also these two spots as acid iso-

forms of Hsp10. The peptide fragment recognized in all the

three spots was 41VLQATVVAVGSGSK54. The complete list

of peptides identified by MS experiments is reported in the

electronic supplementary material, table S2. These findings

confirm the 2D western blotting results and support the idea

that CSE treatment might be responsible for the decrease or dis-

appearance of Hsp10 acid isoforms. Moreover, CSE treatment

may have caused post-translational modifications responsible

for the shifts in Mr and pI of the canonical isoform of Hsp10.

4.8. Western blotting analysis for Hsp10 in subcellular
fractions of 16HBE and HFL-1 cells

In order to verify Hsp10 levels in the cytoplasm and in the

nuclear fraction, we performed western blotting analyses on
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cytoplasmic and nuclear protein extracts, sub-fractionated from

control and 24 h-CSE-treated 16HBE and HFL-1 cells. In both

cells, Hsp10 was found in all tested conditions, not only in the

cytoplasmic but also in the nuclear fraction (figure 6). Cyto-

plasmic contamination of the nuclear fraction was searched by

assessing lactate dehydrogenase, and the results indicated no

contamination. Interestingly, the statistical analyses showed an

increase in Hsp10 levels in the nucleus after 5%, and 10% CSE

stimulation in 16HBE and after 2, 5 and 10% CSE stimulation

in HFL-1. By contrast, cytosolic Hsp10 was reduced after 2%

and 10% CSE stimulation in HFL-1 but did not change in

16HBE. These data suggest a subcellular redistribution of

Hsp10, at least in HFL-1 cells, after CSE exposure, i.e. in these

cells Hsp10 seems to migrate from cytosol to nucleus.
4.9. Western blotting analyses of Hsp10 on chromatin
proteins and gel retardation assays

To better understand the significance of Hsp10 localization in the

nucleus in normal conditions, we performed a 1D SDS-PAGE on

supernatant (SN) and chromatin pellet (P) from not-fixed and

fixed 16HBE and HFL-1 cells in control condition (not exposed

to CSE). Fixation was performed using formaldehyde.

Figure 7a,b shows the results of the western blotting for Hsp10.

Both cell lines that were not fixed with formaldehyde showed

the presence of Hsp10 in the supernatant only (SN not-fixed),

but the chaperonin was not present in not-fixed chromatin (P
not-fixed). The cells that were fixed (both cell lines), showed

the absence of Hsp10 in the supernatant (S fixed) and its pres-

ence in the chromatin faction (P fixed). These results show that

Hsp10 in the nucleus is close to the chromatin.

In order to determine if Hsp10 would directly interact with

DNA, gel retardation assays (band-shift assays) were carried

out on 0.5 nmol of 146- and 251-bp rDNA fragments (50 and

80 ng, respectively), using increasing amounts (0, 4, 8, 16, and

32 nmol) of recombinant human Hsp10 and, as control, recom-

binant Drosophila ISWI. No band shift was observed with

human recombinant Hsp10, neither on 146-bp (figure 7c) nor

on 251-bp (figure 7d) rDNA fragments, in contrast to results

with Drosophila recombinant ISWI. These findings indicate

that Hsp10 does not directly interact with DNA, but is bound

to chromatin, suggesting that the chaperonin interacts with

nuclear proteins whose identity remains to be clarified.
4.10. In silico investigations and computational analyses
for protein sorting

In order to find structural features that would explain the results

obtained in vitro, we performed in silico analyses, using avail-

able tools to characterize the Hsp10 molecule. ExPASy Server

tools were used for detecting physical–chemical features. All

the algorithms based their analyses on primary amino acid

sequences, charge distribution and other molecular parameters,

but did not take into account three-dimensional structures
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and/or physical–chemical variations with respect to a physio-

logical in vivo environment. By using PSORT II, prediction of

protein subcellular localization was investigated for Hsp10.

PSORT II uses a series of methods taking into account several

physical–chemical parameters, for instance number of basic

amino acids, hydrophilic state, hydrophobic moment and

other features. Among these methods, the k-Nearest Neighbors

is an algorithm that evaluates the probability of sub-localization

in different cell compartments. Table 1 shows the results, pre-

dicting a predominant cytoplasmic localization (56.5%) for

Hsp10, which is remarkable considering that Hsp10 is classi-

cally thought to be a mitochondrial protein. The nucleus was

predicted as second subcellular localization (17.4%), which sup-

ports our experimental results, indicating presence of Hsp10 in

the nucleus.
4.11. Prediction of localization signals and nucleic
acid-binding motifs

In order to find possible explanations for the presence of

Hsp10 in the nucleus, PSORT II software was used to predict
the presence of an amino acid sequence that could serve as a

DNA- or RNA-binding motif. Data in the electronic sup-

plementary material, table S3 show that Hsp10 does not

possess typical DNA- or RNA-binding motifs. This result

indicates that Hsp10 in the nucleus does not bind DNA but

a chromatin protein, as indicated by the experimental results

described above.
5. Discussion
Hsp10 and Hsp60 have for a long time been considered typi-

cal intramitochondrial molecules devoted to assisting protein

folding inside the organelle. However, there is now evidence

that the Hsp10 and Hsp60 are also localized in other cell com-

partments such as cytosol, granules and plasma membrane

[3]. The subcellular localization of Hsp10 was investigated

in rat tissues by the immunogold technique. In all examined

anatomical regions, Hsp10 was present in mitochondria, but

a strong and specific Hsp10 positivity was also found in sev-

eral extra-mitochondrial compartments in various structures.

These included zymogenic granules in pancreatic acinar cells,

growth hormone granules in anterior pituitary and pancreatic

polypeptide granules in pancreatic islet cells [41]. It was pro-

posed that Hsp10 may reach the bloodstream via these

secretory granules. It was also reported that Hsp10 labelling

in these extra-mitochondrial compartments was at least com-

parable with, if not higher than, that seen in mitochondria. By

contrast, the labelling in other cell compartments such as the

nucleus was generally weak, near background levels. These

observations for Hsp10 were similar to those that had been

reported earlier for Hsp60 [42].

The role of Hsp10 residing in the cytoplasm is not yet well

understood. It was demonstrated that an interaction of Hsp10

and Hsp60 with procaspase-3 occurs in the mitochondria of

Jurkat cells, and that the disruption of this complex is

accompanied by the release of active caspase fragments from

the mitochondrial intermembrane space, which is followed

by progression to cell death [43]. It was also demonstrated

that the increase in Hsp10 levels in cardiac myocytes protects

mitochondrial function, thus exerting an anti-apoptotic effect

during ischaemia/reoxygenation [16]. Hsp10 and Hsp60

have a similar distribution and higher than normal levels in

cells before and after stress and during pathogenesis of a

number of diseases, including cancer [44] and inflammatory

diseases [45]. Furthermore, Hsp10 has also been found

increased in some precursors of normal human bone-marrow

cells and it disappeared during lineage maturation, while

Hsp60 did not show changes in levels during bone marrow

cell differentiation [46]. These data support the notion that

intracellular Hsp10 has roles, probably independent of

Hsp60, different from its canonical function as co-chaperone

for Hsp60 in protein folding inside mitochondria.

To the best of our knowledge, this is the first report of

Hsp10 localization in nucleus of human bronchial cells. The

work reported here shows that (i) in specimens from subjects

with normal respiratory function, either smokers or non-smo-

kers, Hsp10, in contrast to Hsp60, was localized not only in the

cytoplasm but also in nuclei of epithelial and lamina propria

cells of bronchial mucosa in vivo. The Hsp10 levels in the

nucleus was the same in the two groups of subjects.

(ii) Human bronchial epithelial cells and lung fibroblasts,

in vitro, showed Hsp10 but not Hsp60 positivity in the nucleus,
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Table 1. Predicted subcellular localization for Hsp10. k-Nearest Neighbors
(PSORT II) results, showing the prediction of the possible subcellular
localization of Hsp10.

cell compartment Hsp10 (%)

cytoplasmic 56.5

mitochondrial 8.7

nuclear 17.4

cytoskeletal 8.7

peroxisomal 8.7
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before and after CSE exposure; (iii) CSE did not cause an

appreciable overall increase in levels of Hsp10 in either cell

line; (iv) CSE exposure determined in both cells lines qualitat-

ive changes in Hsp10, as indicated by Mr and pI shifts. In

addition, the less expressed isoforms of Hsp10 were undetect-

able after CSE exposure; (v) Hsp10 nuclear levels increased

after CSE exposure in HFL-1, suggesting a migration of this

protein from cytosol to nucleus in response to the exogenous

stimulus; (vi) Hsp10 in the nucleus did not bind DNA but it

bound one or more nuclear proteins; and (vii) bioinformatics

predicted that Hsp10 can occur in the nucleus but it does

not have structural features, i.e. motifs, for DNA binding.

In a previous paper, we discussed three molecules, EPF,

extracellular Hsp10, and intracellular Hsp10, all of which had

been described independently, at different times, with diverse
functions [1]. These three molecules are in fact variants of the

product of the same gene. How these variants originate and

what are their distinctive structural features, if any, is still

unclear, but investigations in this area should provide data

useful to understand the various functions of Hsp10 and the

mechanisms pertaining to its various localizations.

The results from the proteomics experiments provided

novel insights on the existence of different isoforms of

human Hsp10, which are differently regulated by a stressor

such as CSE. Our data demonstrated that in normal cell

lines three different isoforms of Hsp10 are detectable (cen-

tered at pI of 7.5, 8.3 and 8.7), with the most basic one

being the most expressed (or canonical) form. A database

search in Expasy and related databases (not shown) showed

that the only experimental evidence of human Hsp10 (Uni-

ProtKB accession number P61604) in a 2D database refers

to a spot at pI ¼ 8.9, identified by researchers of the Univer-

sity College Dublin (http://proteomics-portal.ucd.ie:8082/

cgi-bin/2d/2d.cgi?P61604) in human brain and heart

samples run on 6–11 IPG strips. However, the reported Mr

of this molecule is between 8280 and 8900 Da. Given a theor-

etical pI of 8.9 and a theoretical Mr of 10 800 Da, it seems

unclear which modification in the mature protein may have

caused this shift. No data are available, to the best of our

knowledge, on the existence of other isoforms of Hsp10 at

more acidic pI values, such as those we demonstrated in the

two cell lines we investigated by means of both 2D western

blotting and tandem mass spectrometry. We can hypothesize

that these isoforms are derived by post-translational modifica-

tions occurring on the canonical Hsp10 molecule. Database

http://proteomics-portal.ucd.ie:8082/cgi-bin/2d/2d.cgi?P61604
http://proteomics-portal.ucd.ie:8082/cgi-bin/2d/2d.cgi?P61604
http://proteomics-portal.ucd.ie:8082/cgi-bin/2d/2d.cgi?P61604
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searches showed that one phosphorylation site has been

demonstrated at threonine 79 [47], and another four sites

are predicted to exist at serine and tyrosine residues (NetPhos

2.0 analysis, not shown). Phosphorylation, albeit leading to

nearly undetectable Mr changes at the protein level, may

have a dramatic effect on pI: for example, Scansite analysis

of Hsp10 showed that a single phosphorylation event

may result in an isoform with a theoretical pI of 7.38

(http://scansite.mit.edu). Moreover, multiple acetylation

sites have been demonstrated at lysine and alanine residues

in the same protein sequence, apart from the known N-term-

inal acetylation (at alanine). All of these modifications may

have relevant effects on the pI of the modified protein, as

well as on its molecular weight. Impairment of deacetyla-

tion enzymes, which may add further complexity to the

isoform pattern of Hsp10, has been linked to cigarette

smoke stimulus in lung cells, as demonstrated for histone

deacetylases (HDACs) and sirtuins, whose impairment has

been correlated to the inflammatory stimulus arising from

smoke challenge [48–52].

The demonstration of the exact modifications occurring to

the more acidic isoforms of Hsp10 and the identification of

the cellular modifying enzymes is beyond the scope of the

present paper, but it is currently under active investigation

in our laboratory.

Data reported here indicate that in human cells of the res-

piratory mucosa there are at least three different intracellular

locales for Hsp10: mitochondrial, nuclear, and cytosolic. It is

likely that in these three locations there occur as many variants

of Hsp10 with distinct roles, perhaps all related to chaperoning

functions but pertaining to distinct substrates and/or protein

quality control pathways. The balance between these forms is

probably well regulated in the cell but this is still a matter for

further research. One can hypothesize that the induction of

Hsp10 gene expression, or overexpression, by a variety of stres-

sors results in a redistribution of the chaperonin whose final

destination and functions depends on the gene-inducing

cause and mechanism. Thus, Hsp10 can enter into the mito-

chondria to collaborate with Hsp60 in protein folding, or

transfer to secretory granules (either for chaperoning proteins

in them or for escaping out of the cells and reaching the blood-

stream), or translocate to the nucleus.

Hsp10 could translocate into the nucleus by itself via an

as yet to be discovered mechanism, or translocation could

take place by association with another protein equipped for

that task, thus enabling the chaperonin lacking a nuclear
localization signal to gain the intranuclear space. In the

latter location, Hsp10 may play roles such those expected

from intranuclear molecules, e.g. participation in cell prolifer-

ation, differentiation and death.

The electronic supplementary material, table S4 shows the

results of an in silico analysis to search for known interactors of

Hsp10 with clear nuclear localization. Twenty-two unique mol-

ecules have been discovered using both Biogrid and IntAct

databases. Of note, some of these molecules, are known tran-

scription factors, or molecules involved in the control of the

cell cycle, or even other chaperone molecules, such as mortalin.

In addition, other interactors of Hsp10 have been shown to have

direct and indirect roles in chromatin remodelling and transcrip-

tional control. For example, CBX3 recognizes and binds histone

H3 tails methylated at ‘Lys-9’. This may lead to epigenetic

repression or, as recently shown, also to differential maturation

of RNAs (co-transcriptional alternative splicing) [53]. Also, the

histone-binding protein RBBP7 is a component of several

complexes that regulate chromatin metabolism. Another rel-

evant molecule is ATF2: it is a transcriptional activator that

regulates the transcription of genes such as those involved in

anti-apoptosis, cell growth and DNA damage response. In par-

ticular, recent data linked ATF2 downregulation to an increased

apoptosis after oxidative stress stimuli [54].

Finally, variations in the levels of Hsp10 beyond the

normal range for each localization may have a pathogenic

significance. For instance, the increase, or decrease, of

Hsp10 in cancer could be involved in regulation of apoptosis

of tumour or pre-tumoural dysplastic cells.
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