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ABSTRACT Experimental information on the structure
and dynamics ofmolten globules gives estimates for the energy
landscape's characteristics for folding highly helical proteins,
when supplemented by a theory of the helix-coil transition in
collapsed heteropolymers. A law of corresponding states
relating simulations on small lattice models to real proteins
possessing many more degrees of freedom results. This cor-
respondence reveals parallels between "minimalist" lattice
results and recent experimental results for the degree ofnative
character of the folding transition state and molten globule
and also pinpoints the needs of further experiments.

Recently a framework for understanding biomolecular self-
organization using a statistical characterization of the free-
energy landscape of protein molecules has emerged (1-5).
Based on the physics of mesoscopic, disordered systems, it can
capitalize on the ability to simulate "minimalist" models of
proteins, to characterize the folding mechanism through a few
energetic and entropic parameters describing the free-energy
surface globally. The energy landscape of a foldable protein
resembles a many-dimensional funnel with a free-energy gra-
dient toward the native structure. The funnel is also rough,
giving rise to local minima, which can act as traps during
folding. Most random heteropolymers have numerous funnels
to globally different low-energy states just as do glasses and
spin glasses. The search through the energy minima of a rough
landscape is slow and becomes more difficult as the glass
transition is approached. Typically a random heteropolymer
will not fold to its lowest free-energy minimum in times less
than that needed to explore completely the configuration
space if there were no barriers. This supposed difficulty for a
natural protein has been called the Levinthal paradox (5). For
most random heteropolymers, the search problem of the
Levinthal paradox is real, but the guiding forces engineered by
molecular evolution can overcome the Levinthal paradox
provided they are strong enough, in accordance with the
"principle of minimal frustration" (1-4). Most simply, the
landscape of a protein funnel is characterized by three param-
eters: the mean square interaction energy fluctuations, AE2,
measuring ruggedness; a gradient toward the folded state, SE,;
and an effective configurational entropy, SL, describing the
search problem size. Our goal here is to use experiments,
theory, and simulations to estimate these topographic param-
eters that determine the folding mechanism. Bryngelson et al
(5) classify several regimes of folding. In part of the protein's
phase diagram, folding is entirely downhill in a free-energy
sense; i.e., as the ensemble of intermediate structures becomes
progressively more native-like, the energy gradient completely
overcomes the entropy loss. This occurs for folding funnels
with very large 8Es and is called type 0 folding. Under
thermodynamic conditions near the folding transition mid-
point, entropy and energy do not completely compensate each
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other; thus, intermediates are not present at equilibrium (i.e.,
a free thermodynamic energy barrier intercedes). In a type I
transition, activation to an ensemble of states near the top of
this free-energy barrier is the rate-determining step. Type I
transitions occur when the energy landscape is uniformly
smooth. When the landscape is sufficiently rugged, in addition
to surmounting the thermodynamic activation barrier, at an
intermediate degree of folding, unguided search again be-
comes the dominant mechanism. At this point, a local glass
transition has occurred within the folding funnel. If the glass
transition occurs after the main thermodynamic barrier, the
mechanism is classified as type IIa. Here specific kinetic
intermediates occur late in folding but are native-like. On the
other hand, if the glass transition occurs before the main
thermodynamic barrier, intermediates are misfolded traps,
which can be described by a multistep chemical kinetic scheme.
The details of this type IIb mechanism are very sensitive to the
thermodynamic state, interaction potentials, and the specific
sequence.

Starting with Levitt and Warshel (6), a variety of simple
models of protein folding called minimalist have been devel-
oped. Recent studies with continuum models by Honeycutt
and Thirumalai (7) and others have been interpreted using
energy landscape ideas. Another class of minimalist models
studies folding of heteropolymers on a lattice using Monte
Carlo kinetics (4, 8-11). Both these studies and the exact
enumeration schemes pioneered by Dill and co-workers (12)
provide a characterization of the energy landscape for such
minimalist models. The simplicity of these models strikes some
as being terribly unrealistic, since real proteins possess many
details not present in most minimalist models such as hydro-
gen-bonded secondary structure and side chain conforma-
tional degrees of freedom important for packing. Each of these
has a different energy scale. Can these features be at all taken
into account when making the connection between minimalist
models and experiments on real proteins without studying
highly complex models?
The energy landscape philosophy and the analogy to phase

transitions provide the key. The broad mechanism of phase
transitions depends only on gross features of the energy
function. When appropriately scaled, the part of the phase
diagrams relevant to boiling of liquids as disparate as water and
xenon can be superimposed. At the empirical level, this
remarkable similarity is known as the law of corresponding
states (13), and it is also the basic idea of the renormalization
group (14).
The energy landscape picture suggests that there is also a law

of corresponding states mapping the phase diagram and
kinetic mechanisms of real proteins onto those for minimalist
models. If separate phase transitions for ordering the addi-
tional degrees of freedom possessed by real proteins intervene
during folding, a multistep mechanism can still result, but in a
major part of the more complex phase diagram, the effect of
the extra degrees of freedom in real proteins will be to
"renormalize" energy and entropy scales for the protein-
folding funnel.
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Here we explore a correspondence of real proteins with
minimalist protein-folding models that uses an analytic theory
of helix-coil transitions in collapsed heteropolymers to effec-
tively renormalize out secondary structure formation. When
combined with experimental measurements of the amount of
secondary structure, the theory quantifies the effective num-
ber of degrees of freedom of a helical protein through the
configurational entropy. Dynamical measurements on the
molten globule state crudely characterize the energy landscape
ruggedness. The funnel's slope is then inferred using the
thermodynamics of the molten globule to folded transition.
The reduction of configuration entropy through helix for-

mation in the collapsed state yields an energy landscape
comparable in extent or complexity with that for minimalist
models with fewer residues but lacking explicitly secondary
structure. The corresponding energetic topography for an
optimized three-letter code minimalist lattice model roughly
corresponds with the energy gradient and ruggedness of a
realistic folding funnel.
The parallel between the gross features of the landscape of

real proteins and the three-letter code lattice models allows us
to quantify aspects of the folding mechanism in real proteins
by using computer simulations of the model. By simulating
many folding trajectories and characterizing the free energy as
a function of several order parameters, we can identify the
location of the relevant thermodynamic free-energy barrier,
which is rather small, and determine the position of glass
transition within the folding funnel. While the broad transition
state occurs early, the glass transitions occur rather late in the
folding processes for this model. At the denaturation midpoint,
folding occurs via a type Ila scenario but is rather close to the
downhill type Ob scenario. The details of a protein's folding
after the glass transition late in the funnel cannot be studied
using the corresponding states principle, but the earlier events
can.

Establishing the Correspondence Between Minimalist
Models and Real Proteins

Collapsed states have been established as rather general
intermediates in folding (15). Some compact intermediates
contain a substantial percentage of helical secondary struc-
ture. At least two views of the collapsed states are prevalent.
Some argue that the molten globule state has a specifically
defined tertiary structure comparable to the native protein.
Others view the equilibrium collapsed state as still conforma-
tionally fluid in terms of the backbone structure resembling a
polymer below its 8 point (16). Both Kallenbach and co-
workers (17) and Engelman and co-workers (18) have found
compact states with varying degrees of helical structure, thus
suggesting its lability. The two pictures may not be so clearly
separable since the guiding forces of the funnel do induce a
significant amount of fluctuating tertiary order in the disor-
dered globule. The relevant collapsed states are the dynamic
ones of the early stages of folding and not necessarily the
equilibrium states found elsewhere in the phase diagram (e.g.,
the "acid molten globule").
The degree of helical content of equilibrium collapsed states

has often been measured to be quite high. The relation
between helicity and the conformational entropy shown in Fig.
1 can be found from the theory developed by Luthey-Schulten
et at (19), since both depend parametrically on the effective
hydrogen bond energy. The theory due to Bascle et at (20)
could also be used with appropriate modification. Taking 65%
helicity as a reasonable estimate, our theory gives a confor-
mational entropy of 0.6kB per monomer unit. The effective
number of states to be searched is related to this Levinthal
entropy, eS'JkB. Though the states differ in character, the
number of states in the mechanism here is comparable to that
for the framework model (ref. 21 and references therein; ref.
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FIG. 1. Configurational (Levinthal) entropy versus helicity accord-
ing to the theory of Luthey-Schulten et at (19). Both quantities depend
parametrically on the effective hydrogen bond strength divided by kBT.

22). Diffusion-collision calculations assume only the correct
helices can be formed and direct construction of the fold from
the high entropy random coil. A free chain has an entropy of
2.3kB per monomer unit (23). Unlike the framework picture,
the dramatic reduction in entropy upon collapse arises from
confinement, indiscriminate helix formation, and the con-
strained orientation of the helices, not from strong local biases
toward correct secondary structure. The molten globule from
which further guided searches take place in our mechanism is
a collapsed liquid-crystalline polymer. The compact configu-
rations of simple lattice model polymers have an entropy of
- 1.OkB per unit considering only the reasonably compact
states after fast collapse. Thus the renormalized entropy or
scope of configuration space of a 60-amino-acid helical protein
is a bit bigger than the 27-mer lattice model often studied.
Comparing the dynamics of free and collapsed chains yields

the ruggedness of the landscape. In a free chain, flickering
secondary structural elements reconfigure in roughly To = 1
nsec (24). This time is similar to interdiffusion times over
distances of the size of the molten globule diameter as
calculated using the Rouse-Zimm theory (25). Thus, to first
order, we can be agnostic as to the nature of the underlying
move set in comparing real proteins and minimalist models.
The dynamics of a condensed molten globule is slower than
that for free chains because of transient trapping in low-energy
states. The reconfiguration time Treconfig in a rough energy
landscape (5, 26) is given by Treconfig = Toexp(AE2/2 72).
Few experiments directly measure reconfiguration times

within the globule. For lactalbumin, Baum et at (27) observe
field-dependent broadening of 1H NMR resonances, suggest-
ing reconfiguration rates slower than 1 per millisecond. Wand
and co-workers (28) interpret their NMR studies on the
apocytochrome b562 molten globule with similar times. In the
fastest folding, the downhill scenario (type 0), folding takes
only a few times the typical reconfiguration time. Thus an
upper bound on the ruggedness is known since collapsed states
can completely fold in times ranging from a millisecond to a
second. These estimates for Treconfig suggest the ruggedness of
the energy landscape, at the folding temperature, AE2/2 Tf,
ranges from 11 to 18. The typical size of hydrophobic forces
needed for protein collapse gives directly a similar estimate
(29). The actual entropy of the molten globule state is lower
than SL, since low-energy states are preferentially occupied.
For the 60-amino-acid chain at 60% helicity, the random
energy model gives an entropy S(1) = SL - AE2/2 T2 = 21kB
to 28kB. At the folding transition, the energy loss in falling

Biophysics: Onuchic et al



Proc. NatL Acad Sci. USA 92 (1995)

down the funnel must equal the temperature times the entropy
loss. Thus the stability gap or energy gradient of the funnel is
SEs/Tf = SL + AE2/2 T2. The stability gap SE, measures the
difference in energy of the native protein and the average
compact state. The dimensionless ratio of the energy gradient
of the funnel to the overall ruggedness is then {aES/Tf}/
{ /AE2/2Tf} 14. Using the configurational entropy esti-
mate, the thermodynamic glass transition temperature is Tg =
AE/\/2L 0.6 Tf. If interaction strengths were temperature
independent, the thermodynamic glass transition temperature
for a compact denatured state would be 160 K. The dynamical
glass transition in folded myoglobin actually depends strongly
on solvent and occurs in glycerol at 180 K (30). The coinci-
dence might support the ideas of Frauenfelder and Wolynes
(31) and of Honeycutt and Thirumalai (7) that some taxonomic
substates of folded proteins correspond with the final protein
folding intermediates.
Comparing the estimate of gradient-to-ruggedness ratio

with the 27-mer simulations shows that the landscape is
smoother than landscapes generated for optimally designed
sequences using a two-letter code. The ratio between Tf and
the kinetic Tg (relevant to the folding time scale) is about 1.3
for the two-letter code sequences (32). The thermodynamic
glass temperature for the collapsed states of the two-letter
code 27-mers calculated using the random energy model
estimate is close to this kinetic Tg. Two-letter code lattice
models in the bulk limit usually exhibit ground-state degen-
eracy, probably connected with microphase separation (33).
Yue et at (34) suggest that designing foldable two-letter code
proteins is nontrivial.

Simulations have been performed with three-letter codes-
i.e., strong interactions for residues of the same kind and weak
interactions for different. When the values of the couplings are
the same as for the two-letter code, an optimized three-letter
code folded configuration still has only correct strong contacts,
but most three-letter code compact configurations have fewer
wrong strong contacts than for the two-letter code. Optimized
three-letter code proteins have a larger Tf and a smaller kinetic
Tg than two-letter ones. The Tf/Tg ratio increases to 1.6, close
to the ratio for realistic folding funnels. The mechanisms of
folding of the two- and three-letter code results differ since the
two-letter code model is closer to its global glass transition.

The Folding Scenario for a Realistic Folding Funnel

The corresponding state analysis allows us to sketch the
following folding scenario, based on the three-letter code
simulations, and to picture a folding funnel whose main fea-
tures are shown in Fig. 2. We have rendered this folding funnel
reasonably accurately to scale. The width is a measure of the
entropy, whereas the depth is illustrated with both an energy
and two correlated structural scales. Although no one-
dimensional scale reflects properly the multidimensionality of
the funnel and the multiple minima, the barrier heights in the
figure represent AE, whereas the total depth is scaled to the
energy of the folded state. The molten globule region, a
transition state region representing an ensemble of structures
that acts as a bottleneck, and a locally glassy region are
identified based on detailed examination of many folding
trajectories for the three-letter code model coupled with
numerical measurements of density of states, free energies,
and related quantities. Defining several collective coordinates
compresses much information about the trajectories into a
simple form. Our characterization of the transition state region
for a realistic folding funnel differs from the results of Sali et
at (35), which apparently model proteins near the border of
kinetic foldability.
Two coordinates examined are ones like that of Bryngelson

and Wolynes (26), the fraction of angles in their native
configuration, A, and the fraction of native contacts, Q. The
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FIG. 2. The schematic funnel for a realistic 60 amino acid helical
protein corresponding to the three-letter code. This shows the position
of the molten globule, the transition state ensemble, and the local glass
transition where discrete trapping states emerge as a function of the
order parameters described in the text, the energy E, the fraction of
native contacts Q, and the fraction of angles in their native configu-
rations A. Q andA have been normalized to their maximal values for
a 27-mer lattice model, 28 and 25, respectively. For the three-letter
code, the molten globule is stabilized by nearly half the native energy
(Enat) relative to the random coil. The stability gap SEs quantifies the
specificity of the native contacts.

reaction coordinateA only changes by a small amount on each
elementary step, so local gradients of free energies are
meaningful. For a random coil, the value of A should be
-0.68. Q is intimately connected with the interaction energy
function and is useful in describing overall topology. Care
must be used in interpreting gradients of free energies with
respect to Q since the elementary moves can lead to large Q
changes. Both coordinates refer to overall structure features.
For larger heteropolymers, additional coordinates describ-
ing distinct parts of the chain are needed to define critical
nuclei (36, 37) for large single-domain proteins or indepen-
dent folding of parts of multidomain proteins.
Time series of the reaction coordinates and interaction

energy are two-state-like with fast transitions between the
folded and unfolded regions. The mean folding time for this
sequence of -3 x 106 time steps corresponds to 3 msec of real
time using the estimates for To. As for simple reactions, the rate
for transition between the two main regions depends on short
time events.
The duration of a transition event fluctuates, but most

events are over in less than 10,000-50,000 time steps. Q andA
vary in a correlated manner through the transition. Sometimes
they quickly traverse between the stable regions, whereas in
other cases they are transiently trapped during the crossing.
The duration of the trapping events is much shorter than the
average folding time, indicating two-state kinetics.
The Monte Carlo histogram technique (38) was used to

determine the density of states as a function of energy and the
order parameters. This technique is similar to that used by
Hansmann and Okamoto (39) and Hao and Scheraga (40) to
determine overall thermodynamics. The densities of states
yield the free-energy plots, precisely locate the folding tem-
perature, and determine a local thermodynamic glass transi-
tion region where discrete intermediates appear.
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At Tf, the free-energy function for the optimal three-letter
code 27-mer is plotted as a function ofQ andA. Projected onto
these plots are two illustrative trajectories out of 86 examined
(Fig. 3). The free-energy function is bistable. The disordered
globule has Q 0.28 and A 0.73. The globule has a much
greater amount of native structure (Q) than that expected for
a random coil, but clearly an enrichment of pair contacts by a
factor of 10 does not by itself imply a "unique" structure for
a molten globule (41). The two-dimensional free energy has a
saddle atA 0.88 and Q 0.6. The Q value of 0.6 means that
each native contact is made three-fifths of the time in an
ensemble of configurations of the transition state. This is in
harmony with recent observations on chymotrypsin inhibitor
folding where the transfer coefficient for mutations at each site
4) varies between 0.3 and 0.7 (42). Since chymotrypsin inhibitor
has a good deal of (3-sheet as well as a helix, the agreement may
be fortuitous. The superimposed trajectories agree with as-
signing a transition state region encompassing Q values from
-0.57 to -0.64 and A values from -0.84 to -0.92. Late
barriers depending on Q alone are kinetically meaningless,
since reactive trajectories jump across such barriers in the Q
direction through crankshaft moves in which an entire arm of
the protein is retracted into its native position. The A coor-
dinate on the other hand varies only by one or two units per
elementary move and is a more appropriate reaction coordi-
nate (1). Because of the flatness of the free energy, the
thermodynamic barrier from the free-energy plot is small but
broad. There are numerous recrossings of the transition state
region caused by the trapping due to the landscape's rugged-
ness. Thus, as Bryngelson and Wolynes (26) suggest, folding
times must be computed using a diffusive picture instead of
standard transition state theory, which neglects recrossings.

Monitoring correlated fluctuations of the collected coordi-
nates gives the diffusion constants for Q in the molten globule
D 3.5 x 10-4 (correct contacts)2 per time step. A crude
diffusive rate theory that assumes the free energy well is
harmonic and that the barrier top curvature equals the well's
gives a folding time rF = 27rTcorrexp{F*/kBT}, where F* is the
activation barrier of 2.4kBTf from the two-dimensional plot
and Tcorr is the correlation time for the harmonic fluctuations.
Tcorr for bothA and Q is approximately 20,000 time steps. The
resulting rp 1.4 x 106 is a bit shorter than the simulated
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value. Since this system becomes glassy only after the transition
region is traversed, landscape ruggedness should be well
accounted for by the diffusion picture. The folding time from
the Bryngelson-Wolynes (26) approximation is good, but there
are more near-ballistic trajectories through the transition
region than expected, suggesting the relevance of the fre-
quency dependence of the structural diffusion or of additional
geometrical variables.

After leaving the transition region, the protein progresses to
become more native-like. Occasionally, the trajectory becomes
caught in a few longer lived native-like states whose lifetime is
shorter than the average folding time. These discrete states
arise from a local glass transition, which can be located by
computing Y = ZiP2, where Pi is the Boltzmann occupation of
a microstate. Y measures the inverse number of the thermally
accessible states and reveals the replica symmetry breaking of
spin glasses (43) and of random heteropolymers (44). To define
the local glass transition, we compute Y(Q) using only states with
a given value of the coordinate Q. Since the protein is of finite
size, Y(Q) never vanishes but instead varies from the inverse
density of states at Q up to unity. At Tf a rapid rise of Y(Q) occurs
at Q 0.7, defining a local glass transition (Fig. 4).
At Tf the transition state region occurs before the local glass

transition, so folding conforms to a type Ila scenario. Kinetic
constraints, which vary from sequence to sequence, are en-
countered after the transition state is reached for strong
folders just as in simulations of Honeycutt and Thirumalai (7)
and of Chan and Dill and co-workers (10, 12).
The small size of the thermodynamic barrier as opposed to

kinetic barriers from transient trapping suggests that proteins
are not just overall marginally stable but that a realistic folding
funnel describes a marginally stable system even for interme-
diate degrees of order-surprisingly much like a system near
a critical point. In vivo, proteins are not poised at Tf but are
stable by several kBT. The additional slope to the funnel's
energy gradient should suffice to make folding occur by a
downhill type Ob scenario where the only intermediates are
near native kinetic traps. Since folding does not dramatically
speed up with increasing stability once a downhill scenario is
reached, perhaps there is no evolutionary drive to greater
stability. The combination of marginal stability and proximity
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FIG. 3. Two transition trajectories projected onto the Q-A plane. The time span is roughly 25% of the folding time, which is -3 X 106 Monte
Carlo steps. (Left) The transition event occurs in 105 Monte Carlo steps. For this trajectory, there is some trapping in the transition region. In
the early part of the trajectories, the individual points are not connected, whereas in the latter segments the points are connected. The trajectories
are superimposed on a contour plot of the free energy with levels spanning the range from -67.5 to -82.5 in increments of 2.5. (Right) A very
fast event in which the system moves almost ballistically through the transition region. The last event occurs in roughly 3000 Monte Carlo steps.
The trajectories shown were chosen at random from a sample of 86. The sequence used was ABABBBCBACBABABACACBACAACAB and was
studied at the folding temperature (Tf = 1.509). The model is a three-dimensional cubic lattice heteropolymer with a contact potential. If the two
monomers are of the same type, then the energy for the contact is El = -3 and if the monomers are not the same the energy is Eu = -1. The
above sequence was designed to have an unfrustrated nondegenerate native states; i.e., in the native state all contacts are between monomers of
the same type.
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FIG. 4. A plot of Y(Q) = 1,[P,(Q)]2 vs. Q for three temperatures.
While at the global Tg discrete states are apparent even for small
degrees of nativeness, at Tf = 1.509 the discrete intermediate is highly
native-like.

to the local glass transition may explain the mutation sensi-
tivity of some collapsed globules (17).
Discussion

Experimental data along with simple geometrically based
statistical mechanics help locate small helical proteins in their
phase diagram, allowing an estimate of the parameters needed
to describe folding by statistical energy landscape analysis. A
law of corresponding states relates simple lattice models to the
laboratory situation, leading to an outline of the topography of
a realistic folding funnel, which can serve as a starting point for
other investigations. On the experimental side, our analysis
pinpoints a great need for more dynamic measurements on the
molten globule state itself, one of the weaker points in the
numerical estimates. Also the order of collapse and secondary
structure formation still needs resolution. The quantitative
features of the funnel should help guide and can be refined by
fast folding experiments made possible by laser-induced ini-
tiation of folding (45). For the folding funnel of the three-letter
code model, the minimal frustration of the protein results from
harmony between tertiary contacts. Direct local biases like
those in the framework picture (46) can be included as an

additional slope to the funnel through A rather than Q. Sim-
ilarly secondary structure may be more directly coupled to the
landscape if effective pair interactions depend specifically on
the helicity of segments. These considerations require a still
more multidimensional view of the funnel, but the low dimen-
sional picture here can serve as a zeroth order starting point.

The vigorous debates among members of the minimalist folding
community including J. Bryngelson, H. S. Chan, K. Dill, E. Shakh-
novich, and D. Thirumalai helped us crystallize our thoughts. We also
thank W. Eaton and H. Frauenfelder for reading the manuscript.
N.D.S. is a University of California at San Diego Chancellor Fellow.
This work was supported by the National Institutes of Health (Grant
iROl GM44557), the Beckman Foundation, and the National Science
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