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Abstract

The observation of a limited secondary-structural alphabet in native proteins, with significant 

sequence preferences, has profoundly influenced the fields of protein design and structure 

prediction (Simons et al., 1997; Verschueren et al., 2011). In the era of structural genomics, as the 

size of the structural dataset continues to grow rapidly, it is becoming possible to extend this 

analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate 

of its utilization in natural proteins may be used to assess its designability - the ease with which 

the motif can be realized with natural amino acids. This requires a structural similarity search 

methodology, which rather than looking for global topological agreement (more appropriate for 

functional categorization of proteins or domains), identifies detailed geometric matches. In this 

chapter we introduce such a method, called MaDCaT, and demonstrate its use by assessing the 

designability landscapes of two tertiary structural motifs. We also show that such analysis can 

establish structure/sequence links by providing the sequence constraints necessary to encode 

designable motifs. As a logical extension of their secondary-structure counterparts, statistics of 

tertiary structural preferences will likely prove extremely useful in de novo protein design and 

structure prediction.
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1. Introduction

The universe of natural protein structures appears to be degenerate, with many 

frequentlyrepeating structural motifs (Vanhee et al., 2010; Verschueren et al., 2011). This is 

certainly apparent on the level of secondary structure as the majority of structured residues 

in folded proteins are found in either α-helices or β-strands (Joosten et al., 2011). However, 
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the structural degeneracy goes beyond that. For example, clear preferences have been found 

for the ways in which secondary-structural elements come together in folded proteins. Helix-

helix interactions in trans-membrane (TM) proteins (Walters and DeGrado, 2006) as well as 

overall topologies of TM proteins (Fuchs and Frishman, 2010) have been effectively 

classified and shown to have strong geometric biases. In soluble proteins, helixhelix 

crossings represent a classical example of a structural motif with strong geometric 

preferences (Kallblad and Dean, 2004; Moutevelis and Woolfson, 2009; Testa et al., 2009; 

Grigoryan and Degrado, 2011). Other well-established biases in super-secondary 

arrangements include packing of α-helices against β-sheets (Hu and Koehl, 2010), shearing 

and twisting of β-sheets (Ho and Curmi, 2002), β-turn and α-α linking geometries 

(Hutchinson and Thornton, 1994; Engel and DeGrado, 2005), and others (Platt et al., 2003). 

In fact, when Fernandez-Fuentes and co-workers structurally classified all motifs consisting 

of two secondary-structural elements (α-helices or β-strands) connected by a loop, they 

found the different classes to occur at very different frequencies in the Protein Data Bank 

(PDB) (Fernandez-Fuentes et al., 2010). The structural degeneracy of proteins is further 

evident at the level of domains (i.e. separable globular segments of structure), which are 

highly reused in nature (Marchler-Bauer et al., 2011), domain-domain and domain-peptide 

interaction interfaces (Vanhee et al., 2009; London et al., 2010; Vanhee et al., 2010; Stein et 

al., 2011), and even at the level of full-length protein structures, which are amenable to 

systematic hierarchical classification (Greene et al., 2007; Andreeva et al., 2008).

There can be several explanations for why some seemingly reasonable geometries appear to 

be very rare in proteins while others are very frequent. This may in part be due to 

incomplete coverage of the protein structural universe by the PDB, though at its present size 

the database is believed to have nearly saturated many structural features (Zhang and 

Skolnick, 2005; Baeten et al., 2008; Fernandez-Fuentes et al., 2010). Stochasticity in early 

evolution may have also contributed to higher prevalence of some types of structures over 

others. However, an important reason is likely that some structures are simply more difficult 

to realize using the twenty naturally-occurring amino acids. This concept has been referred 

to as the designability of a protein structure, loosely defined as the number of amino-acid 

sequences capable of folding into it (Govindarajan and Goldstein, 1996; Li et al., 1996; 

Helling et al., 2001; England et al., 2003; Wingreen et al., 2004; Grigoryan and Degrado, 

2011). Designability is a complex property that combines many physical factors. Certainly, 

designable structures must be able to accommodate a variety of amino-acid combinations in 

an energetically-favored fashion. In fact, Koehl and Levitt have shown that the magnitude of 

the sequence space compatible with a natural protein backbone correlates well with natural 

sequence diversity (Koehl and Levitt, 2002). But designability is also related to less easily-

measurable properties such as fold specificity – that is, whether for a given sequence the 

structure is optimal from within the continuum of possible folds. Designable structures 

should represent such an optimum for many sequences and several investigators have 

demonstrated this to be highly structure dependent (Govindarajan and Goldstein, 1996; 

Wingreen et al., 2004). Additional factors contributing to natural utilization of structural 

motifs may include folding/unfolding rates and robustness to small changes in 

environmental conditions.
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As a result of combining many desirable but difficult-to-compute properties, designability is 

of significant utility in such fields as computational protein design or structure prediction. In 

design, one would like to a priori limit oneself to considering only highly designable 

structural templates. In structure prediction, designability would be a useful filter for 

discarding likely non-native structures. Natural structures are certainly expected to be at 

least somewhat designable. As a consequence, many methods in computational protein 

design have relied on using native backbone structures (Reina et al., 2002; Kortemme et al., 

2004), building novel structures from combinations of native segments (Kuhlman et al., 

2003; Azoitei et al., 2011), or incorporating measures of native-like structural arrangements 

into scoring functions (Simons et al., 1997). Related approaches have also shown significant 

promise in structure prediction (Rohl et al., 2004; Zhang et al., 2011).

The natural abundance of a structural motif and its designability are related. Thus, a 

potential approach for evaluating the designability of a motif is to measure the degree of its 

recurrence in natural structures. Larger structural motifs, which contain pairs of segments 

not in contact and free to evolve independently, may not be sampled well either in the PDB 

or indeed in nature. However, this concern is greatly diminished for compact structural 

motifs, whose possible geometries are more likely to be well represented in the known 

structural universe (Vanhee et al., 2009; Fernandez-Fuentes et al., 2010; Grigoryan and 

Degrado, 2011; Verschueren et al., 2011). Further, even without any assumptions on the 

saturation of the PDB, if we do observe a motif to be highly recurrent, it is very likely 

designable. That is, we do not expect many false positives. On the other hand, false 

negatives - designable motifs that are labeled undesignable owing to poor representation in 

the PDB, are possible due to limited database size (especially for large motifs). This type of 

an error is reasonably tolerable in the context of protein design, as long as designable 

structures can still be identified that meet all other design criteria. Finally, one may often 

need to compare the designabilities of different motifs of the same size (e.g. different 

specific geometries of a given topology). For this purpose, only relative recurrence rates are 

important, which are expected to be more robust to database size and bias effects.

To enable an abundance-based metric of designability, an efficient method of searching for 

protein structural similarity is required. Many computational approaches have been proposed 

under the general category of protein structural comparison (Choi et al., 2004; Hasegawa 

and Holm, 2009; Budowski-Tal et al., 2010; Holm and Rosenstrom, 2010). Since 

designability is likely highly sensitive to the precise local geometry, one needs a method for 

finding matches to the detailed arrangement of atoms in the query structure. Here we present 

such a method, which we term MaDCaT (Mapping of Distances for the Categorization of 

Topology), and provide example of its usage for describing the designability landscape of 

several structural motifs. A C++ implementation of MaDCaT, along with a web-based tool 

for structural similarity searching, can be found at: http://www.grigoryanlab.org/madcat/.

Quantification of designability provides a systematic filter for engineering novel protein 

structures. This is particularly useful in de novo design applications, where there is no 

guarantee that the hypothesized structure is easily achievable with natural amino acids. 

Further, it is known that many apparently feasible structural templates are in fact non-

designable (Grigoryan and Degrado, 2011). Recently, MaDCaT was used to impose 
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designability in engineering peptide assemblies around singlewalled carbon nanotubes 

(Grigoryan et al., 2011). Because the designed structure was entirely unprecedented in 

nature, there was not a clear basis for the choice of assembly geometry. Imposing high 

designability via MaDCaT provided such a basis, reducing the very large space of 

apparently reasonable geometries down to the single most appropriate structure. MaDCaT 

can be similarly used to provide a designability filter in other de novo design applications, 

provided that the desired structure is partitioned into motifs small enough to be likely well 

sampled in nature and the PDB, but large enough to capture important tertiary structural 

information. Designability may also provide a useful filter in structure prediction, where a 

localized density of non-designable motifs could serve as an indicator of a poorly predicted 

region.

2. MaDCaT

MaDCaT relies on a distance-map representation of protein structure. A distance map is a 2-

dimensional matrix that stores distances between atoms of a protein (Choi et al., 2004). This 

representation is essentially lossless in that there is a one-to-one correspondence between 3-

dimensional (3D) structures and distance maps, to within chirality (i.e. mirror-image 

structures produce the same distance matrices) (Dattorro, 2012). In its current 

implementation MaDCaT considers distances between only Cα atoms (see Fig. 1). Though 

some structural information is lost in this way, the overall backbone geometry is preserved 

(Gront et al., 2007). This also comes with the convenience of representing a structure in an 

amino-acid independent manner, which is useful for relating structure and sequence for 

designable motifs (see section 3). On the other hand, the search methodology does not 

assume that only Cα atoms are used, so it is easy to extend the approach to deal with 

additional backbone atoms, side-chain atoms or pseudo-atoms (e.g. side-chain centroids). 

Distance maps are a particularly convenient representation for structural similarity searches 

because 1) they contain enough information to identify detailed matches and 2) two distance 

maps can be compared in a computationally efficient manner (see below), without having to 

invoke optimal structural superpositions, as with other similarity metrics such as root mean 

squared deviation (RMSD).

2.1. Similarity Score

Consider two protein structures (or structural segments), S1 and S2, each with n residues. Let 

r1(i, j) and r2(i, j) be the distances between the Cα atoms of i-th and j-th residues in S1and 

S2, respectively. A reasonable metric of similarity between the two structures, assuming a 

linear correspondence between residues, is the Euclidian norm:

(1)

A possible issue with this score is that most of its magnitude is likely to arise from far-away 

Cα atoms, because larger distances imply larger potential deviations in two related 

structures. On the other hand, for the purpose of assessing designability and linking 

sequence to structure, it is the closely contacting residue pairs that are likely most important. 
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For this reason, in its current implementation MaDCaT uses inverse distances. Given S1 and 

S2, distance maps are stored as, respectively:

(2)

with the corresponding score:

(3)

a better indicator of local structural similarity. Though this score has worked well for our 

applications, the search method in MaDCaT is very general so any other functions of 

distance can be used. Hereafter, distance maps will refer to matrices of inverse distances, as 

in equation 2.

An added benefit of using maps of inverse distances is that they are particularly well suited 

for sparse representation. This is because the less “important” distances above a suitably 

chosen cutoff rcut, corresponding to map entries below 1/rcut, can be replaced with zeros in 

the map. Such sparse matrices not only reduce storage and memory requirements, but also 

result in significant speedups of the search procedure (see below). Finally, because they 

resemble interatomic interaction potentials, inverse distances (and their powers) are perhaps 

more natural basis functions for expressing structural similarity than distances themselves.

2.2. The Algorithm

As the input query, MaDCaT takes any structure composed of an arbitrary number of 

disjoint segments. The query is converted to its distance-map representation and used to 

search a database of proteins with pre-computed distance maps. Each segment within the 

query is considered as a whole and is only matched against segments of consecutive residues 

in database structures. The goal of the algorithm is to find alignments of segments in the 

query structure onto regions of database structures in a way that optimizes the score in 

equation 3. Because it is usually not know a priori what scores are good for a given query 

structure, MaDCaT finds the L best scoring alignments, where L is a user-specified value. In 

cases where an appropriate score cutoff does exist, it can be specified and will speed up the 

search. To introduce the algorithm, we shall first consider the case when the query is 

composed of a single segment and then generalize to multi-segment structures.

2.2.1. Single-segment structures—In this case, one only needs to consider alignments 

of the query distance map on the main diagonal of database maps (Fig. 1B). Although this is 

a straight-forward computation, its time cost of O(n2 · N · m) (where n is the length of the 

query structure, N is that for an average database structure, and m is the number of database 

structures) can get high in practice, especially for large query structures. MaDCaT mitigates 

this by taking advantage of the sparsity of distance maps. Consider a particular alignment of 

the query map Q onto a database map M, the score for which is s(Q,M,k) = Σi<j[Q(i, j) – M(i 

+ k, j + k)]2, where i and j iterate over the elements of Q, and k is the offset defining the 
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alignment (for simplicity, the square root in equation 3 will be omitted hereafter; this does 

not change the relative ordering of matches, and the root function can always be applied as a 

last stage in the calculation). Many elements M(i + k, j + k) may be zero, especially for large 

query maps (white cells in Figure 1C). The contribution to the total score of these elements 

is dependent only on Q, such that for a given Q a default score that assumes all 

corresponding elements in the database map to be zero can be computed once ahead of time, 

sd = Σi<j Q(i, j)2. Then, in order to find the score for a specific alignment, s(Q, M, k), sd 

needs to be updated to reflect only the non-zero elements of M corresponding to Q in the 

alignment:

(4)

Zero values in our distance maps, which store inverse distances, correspond to atom pairs 

farther apart than a given cutoff rcut (by default, 25 Å is used in MaDCaT). Because the 

number of atom pairs within a certain distance cutoff grows at most linearly with the number 

of residues in the structure, this modification gives an asymptotic time of O(n · N · m), and 

results in significant speedups in practice.

It is also easy to imagine how simple heuristics can be used to significantly cut down on the 

number of alignments that need to be considered for a given query map/database map pair. 

These could be based on secondary-structure matching, or other local structural properties. 

Whereas heuristics are reasonably safe for query structures with good matches in the 

database, they can present significant artifacts in cases of rare on unusual queries. Since one 

of the envisioned uses of MaDCaT was the ability to start with an implausible hypothetical 

structure and progressively move towards a nearby more designable one, no heuristic pre-

filters are currently available in MaDCaT, though the implementation does support them.

2.2.2. Multi-segment structures—In cases where the query structure consists of 

multiple disjoint segments, the query map can be thought of as composed of sub-maps (Fig. 

1D-E). Each of these sub-maps represents either a contiguous segment of structure or an 

interface between two segments (diagonal and off-diagonal sub-maps in Fig. 1E, 

respectively). An alignment of the query structure onto a database structure involves the 

placement of each segment of the query onto an equally-sized contiguous region in the 

database structure. In distance-map terms, this means that diagonal maps of the query line 

up along the diagonal of the database map (without overlaps), and off-diagonal maps align at 

the resulting intersection points (see Fig. 1F). Because the alignment of individual segments 

is independent, the number of potential alignments grows exponentially with the number of 

segments. In fact, finding the optimal alignment is known to be NP-hard (Lathrop, 1994).

MaDCaT applies a branch-and-bound approach to solving this combinatorial problem, 

reminiscent of the approach first introduced by Holm and Sander (Holm and Sander, 1996). 

The algorithm represents the space of possible alignments as a search tree. At each level i of 

the tree, a choice has to be made as to the alignment of the i-th segment. This tree is 

traversed, top to bottom, making a specific choice for the alignment of the i-th segment, and 
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moving onto the (i + l)-st. The key part of the algorithm, which enables it to give up on 

unproductive combinations of segment alignments early on, is the computation of a lower 

bound on the score of an incomplete alignment. Sub-map alignments are visited in the order 

of best to worst lower bound, such that as soon as the bound becomes larger than the L-th 

worst match found so far (where L is the desired number of top matches), the current branch 

can be safely terminated. When the top branch is terminated, the search tree is completely 

pruned. The lower bound is based on pre-scoring each individual sub-map of the query 

against the database map, in all relevant alignments (e.g. diagonal sub-maps are scored only 

in diagonal alignments). Based on these scores, lower bounds for incomplete alignments are 

estimated by relaxing some constraints on the remainder of the alignment (e.g. allowing sub-

maps in the same column of the query map to align in different columns of the database 

map).

To aid in searching for larger structures or those with more than a few segments, MaDCaT 

has an optional greedy setting that enables it to give up on segment alignments purely based 

on the score of the diagonal sub-map. Using this filter eliminates the optimality guarantee 

that MaDCaT otherwise provides, and may lead to significantly different results for queries 

without well-matching structures in the database. The greedy filter requires that the 

similarity score in equation 3 accumulate from throughout the query matrix, rather than 

originating heavily from a particular sub-map. For a given userspecified greediness level g, 

the filter requires that the score originating from each sub-map s be no worse than g · ms · 

(wL/m), where wL is the worst score among the top L solutions currently found, m is the total 

mass of the query matrix (the sum of all elements), and ms is the mass originating from sub-

map s. Although any value can be specified for g, values above 1.0 make most sense, with 

larger values corresponding to less greediness.

As described above, the search algorithm will consider alignments of query segments that 

map arbitrarily far apart in sequence of database structures. In fact, all sequence-order 

permutations of segments in the query structure are automatically considered by MaDCaT 

(e.g. the motif in Fig. 1D will match similar motifs in the database, even if the order of the 

three secondary-structure elements in the database structure is different). This is useful when 

one only cares to find matches to the segments themselves (e.g. segments represent 

discontinuous chains) or when all the ways of bridging the gaps between the segments are of 

interest. MaDCaT additionally enables one to limit the number of residues that map between 

two consecutive segments, by establishing lower and/or upper bounds. This can be useful 

when one aims to investigate motifs of a certain length for bridging two or more structural 

segments.

2.2.3. Interfacial searches—In some applications, the inter-segment interfacial geometry 

may be of more interest than the segments themselves. For example, this may be the case 

where one looks for starting structures to mimic one side of an existing protein-protein 

interface. For such cases, MaDCaT allows one to search for inter-segment portions of 

distance maps (e.g. the sub-map at the intersection of segments I and II in Fig. 1E). From the 

standpoint of computational efficiency, interfacial searches have the advantage of requiring 

fewer independent sub-maps, but also have the disadvantage that they can be aligned almost 

anywhere in database maps. Overall running times are thus comparable in practice.
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2.2.4. Dali versus MaDCaT—The algorithm underlying MaDCaT bares resemblance to 

the structure search technique by Holm and Sander, now part of the Dali search suite (Holm 

and Sander, 1996; Holm and Rosenstrom, 2010). However, there are important differences 

between MaDCaT and Dali. With MaDCaT, the query represents an exact specification of 

the structure of interest (e.g. precisely defined contiguous segments and locations of allowed 

gaps) and the results are provably optimal matches from the given database. On the other 

hand, the aim of Dali is to discover close matches to sub-structures of the query. These sub-

structures are not fixed a priori, and although they may cover the entire query in some cases, 

they are determined by a series of heuristic techniques that try to identify larger conserved 

regions but avoid visiting the entire search space (Holm and Sander, 1993; Holm and 

Sander, 1994; Holm and Sander, 1996). These differences arise primarily from different 

intended uses of the methods. Dali is very well suited for identifying overall structural 

similarities between proteins or larger protein fragments (in fact, it requires a minimum 

chain length of 30 residues to perform a search). For example, Dali has been used to identify 

topological “attractors” in protein structure space (Holm and Sander, 1996). On the other 

hand, with MaDCaT we aim to find close matches to precisely-defined tertiary structural 

motifs, aiming to quantify their designabilities. The provable optimality of MaDCaT 

matches is particularly critical for the latter goal.

2.2.5. Obtaining MaDCaT—MaDCaT is implemented as a C++ suite, freely available 

under the terms of the GNU General Public License (see http://www.grigoryanlab.org/

madcat/). Inquiries about commercial licensing should be directed to the corresponding 

author. Support programs for MaDCaT (e.g. for building database and query maps and 

analysis of results) utilize the Molecular Software Library (MSL)(Kulp et al., 2012), freely 

available at http://msl-libraries.org. The web interface for MaDCaT is currently limited to 

searching over a sub-sample of the PDB, which does not find the best available matches to a 

motif, but in our experience can still be used to grossly estimate its designability.

3. Quantifying Designability

Several investigators have shown that the universe of sequences compatible with a native 

protein backbone (or close structural variations thereof) in an in silico protein design 

experiment correlates with evolutionary sequence profiles of the protein (Kuhlman and 

Baker, 2000; Koehl and Levitt, 2002; Smith and Kortemme, 2011). So, when a structure is 

designable, computational protein design can often identify some of the sequence space 

compatible with it, albeit much room for improvement remains (Boas and Harbury, 2007; 

Pantazes et al., 2011). However, presently it is not easy to recognize that a structure is not 

designable using computation protein design. This is a particular limitation for de novo 

protein design, where novel protein structures are proposed and are not guaranteed to be 

designable. Thus, a method for quantifying designability is sorely needed.

3.1. Motif usage in nature varies significantly

We expect different local geometries of protein structure to have different designabilities 

and thus to have been sampled at different rates in nature. To illustrate the sensitivity of this 

effect, we shall consider abundance as a function of small perturbations in local geometry 
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for two structural motifs –the parallel dimeric α-helical coiled coil and an α-helix packed 

against a parallel two-strand β-sheet, αββ (see Fig. 2).

The backbone of a coiled-coil structure is well described with simple parametric equations 

modeling the α-helix wrapping around a larger superhelix (Crick, 1953; Grigoryan and 

Degrado, 2011). For an ideal parallel structure, critical parameters are R0 – the radius of the 

superhelix, α – the pitch angle of the superhelical curve with respect to the interface axis, 

and φ1 - the helical phase defining helical sides facing each other (see Fig. 2A). Whereas it 

is easy to imagine how superhelical radius may affect the designability of a structure (e.g. 

packing preferences of interface-lining amino acids at least partially explain R0 variations 

(Grigoryan and Degrado, 2011)), it is less clear that certain pitch angles and phases should 

necessarily be selectively preferred. To look at how α and φ1 affect designability, we 

systematically varied these parameters in the context of a 12-residue fragment of an ideal 

parallel dimeric coiled-coil backbone, using MaDCaT to find all non-redundant structural 

matches in the PDB for each sampled structure. Both phase and pitch angle were varied 

around their previously found canonical values (Grigoryan and Degrado, 2011) in 30 

increments (between –20° and +10° for α, and –24° and +6° for φ1), resulting in 900 

structures. A non-redundant subset of the PDB, generated by taking the first member of each 

sequence cluster produced by blastclust (Camacho et al., 2009) at 30% sequence identity, 

was used as the search database. Fig. 3A shows a contoured heatmap of the number of close 

structural hits as a function of structural parameters. The significant bias for specific 

geometries is obvious in this motif. Though both pitch angle and phase contribute to 

designability, changes in the latter are much more tolerable and many phases can be 

accommodated (see also Fig. 3B-C). The most designable region corresponds to the 

canonical range of values identified in an earlier analysis (Grigoryan and Degrado, 2011). 

Figs. 3A-B also show a less designable but still populated region of positive pitch angles 

corresponding to right-handed crossings.

Fig. 4 illustrates the results of a similar analysis for the αββ motif. Here the varied 

parameters were the helix-sheet crossing angle ε and the helical phase θ (see Fig. 2B). Both 

parameters were varied between -30° and +30°, in 31 steps, for a total of 961 structures. The 

heatmap in Fig. 4A describes the designability landscape of this motif. Once again, we see 

that phase is a weaker determinant of designability than crossing angle (see also Figs. 4B-

C).

With both motifs, very drastic changes in designability can result upon seemingly small 

perturbations to structure. Fig. 5 shows structures with very different designabilities for the 

αββ motif. It is difficult to tell a priori which structure is more designable. On the other 

hand, MaDCaT enables rapid quantification of designability in a systematic manner for an 

arbitrary motif.

3.2. Connection between structure and sequence

An important additional piece of information revealed by finding close matches to a 

structural motif are sequence constraints required to realize the given motif. Since the 

different matches come from different structure/sequence contexts, significantly conserved 

amino acids are likely important for stabilizing the motif itself or for encoding its structural 
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specificity. On the other hand, positions with weak conservation can tolerate many different 

amino acids and are likely important for adjusting to the specific context. Such insight is 

highly useful in protein design as it significantly constraints the productive sequence space 

(Grigoryan et al., 2011). This information can also, in principle, be used for structure 

prediction to assure that all local structural motifs in the predicted model are consistent with 

their corresponding sequences.

Figure 3D shows the amino-acid distributions in the sequences of close matches 

corresponding to two different designable coiled-coil geometries (Crooks et al., 2004). 

Canonical coiled coils exhibit a seven-residue sequence repeat, designated with letters 

abcdefg, with a and d positions generally occupied with hydrophobic amino acids. The 

main difference between the two motifs is the helical phase and this is clearly reflected in 

the sequence logos as a register shift. Whereas the first motif starts with position b, such that 

residues 3 (d), 7 (a), and 10 (d) are hydrophobic, the second motif starts with an f, leading to 

residues 3 (a), 6 (d), and 10 (a) being hydrophobic. Though decades of study have led to a 

very good understanding of coiled-coil position-specific amino-acid preferences, the above 

analysis can be performed for any structural motif, rapidly revealing sequence preferences in 

a geometry-specific manner.

Figure 4D shows a similar analysis for two designable geometries of the αββ motif. Though 

the amino-acid preferences here are less pronounced than for the coiled coil, clear trends are 

still evident and the differences between the two geometries are apparent. Such sequence 

trends can be used to encode a specific geometry in design.

The sequence logos above capture only position-specific distributions, ignoring inter-

position correlations. In principle, the latter can also be extracted from sequence alignments 

of matches, provided enough sequences are available, and these data can be equally useful in 

design or structure prediction. In fact, significant inter-positional correlations can flatten 

individual (marginalized) position distributions, leading to apparently lower information 

content by the standard sequence-logo analysis. Many methods for extracting meaningful 

mutual correlations between alignment positions have been proposed and can be employed 

here (for a recent example see (Morcos et al., 2011)).

4. Further developments

Though at present MaDCaT is efficient enough for many practical applications, further 

improvements in computational speed need to be pursued. Because structural searching is an 

example of an “embarrassingly parallel” problem, leveraging the massive parallelism 

offered by GPU technologies is one potential direction. Heuristics-based pre-filtering or pre-

classification of database structures, already explored in the literature (Kolodny et al., 2005; 

Hasegawa and Holm, 2009; Budowski-Tal et al., 2010), may offer another fruitful avenue 

for efficiency gains, though it must be performed carefully not to bias search accuracy based 

on motif type. In the limit of very rapid (lookup-like) structural searching, designability 

analysis may be incorporated as a routine step in such applications as structural sampling for 

structure prediction, in alternating between sequence and structure selection for de novo 

protein design, or in automatic refinement of experimentally-determined structures.
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5. Summary

Protein structural comparison, classification, and searching for structural similarity are 

problems that have received considerable attention in the last several decades (Hasegawa 

and Holm, 2009). It has been shown that such methodologies can be used for establishing 

evolutionary and functional relationships between proteins (Ouzounis et al., 2003). Here and 

in prior work (Grigoryan and Degrado, 2011; Grigoryan et al., 2011), we have demonstrated 

that structural similarity, when considered at a detailed local level, can also shed light on the 

designability of different structural motifs comprising proteins. It can provide a connection 

between structure and sequence, invaluable in de novo computational protein design, and 

potentially in structure prediction. MaDCaT is a tool particularly well suited for establishing 

such links, as its definition of similarity is focused on the precise local geometry, with 

particular emphasis on close contacts. By making MaDCaT freely available, we hope to 

stimulate its application in protein design and structure prediction, as well as its further 

development.
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Figure 1. 
Distance-map representation of protein structure. A) PDB entry 1HE4 used to demonstrate 

distance map-based representation. B) The matrix of inverse distances corresponding to 

1HE4 (values below 1/25 Å-1 are set to zero and shown in white). When searching this 

structure for a match against a single-segment query, only diagonal alignments of the query 

map need to be considered, with an example alignment outlined in black. C) Magnified 

version of the diagonal alignment region. D) and E) are a multi-segment query structure and 

its corresponding distance map, respectively. Dotted lines in E) denote breaks between 

adjacent segments and roman numerals illustrate the correspondence between query 

segments in D) and sub-maps in E). F) A potentially matching alignment of the query map 

onto a database map (outlined in black) may have gaps between adjacent segments of the 

query. Further, the sequence order of segments is not guaranteed to be the same in the query 

and the match.
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Figure 2. 
Some of the structural parameters defining a parallel α-helical coiled coil (in A) and an αββ 

motif (in B). A) For formal definitions of superhelical radius Ro, pitch angle α, and helical 

phase φ1 see references (Crick, 1953; Grigoryan and Degrado, 2011). In this work, Ro was 

fixed at 4.88 Å. B) To model the ideal αββ motif, an initial structure was generated by fitting 

a naturally occurring αββ motif (taken from PDB entry 3EGD, residue ranges 505-511, 

615-628, and 632-638) with ideal secondary structure elements (i.e. with exactly repeating 

backbone φ/ψ angles). Helical phase θ was defined as a rotation around the helical axis X. 

The crossing angle ε was encoded as a rotation around axis Y defined to be orthogonal to X 

and in the plane formed by X and the third principal axis of the β-sheet (the “out-of-plane” 

component). The two parameters were taken to be zero for the initially-fit ideal αββ motif.
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Figure 3. 
The designability landscape of the parallel dimeric coiled coil motif. A) The number of 

matches identified by MaDCaT within 1.0 Å RMSD of the query structure, as a function of 

its pitch angle α and helical phase ϕ1. For each value of α B) plots the number of matches 

maximized over all values of ϕ1 sampled. The equivalent for ϕ1 is plotted in C). For two 

highly designable structures (marked with circled numbers in A), D) shows sequence logos 

originating from close matches. RMSD cutoffs of 0.7 Å and 0.4 Å were used for generating 

the left and the right sequence logos, respectively.
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Figure 4. 
The designability landscape of the αββ motif. A) The number of matches identified by 

MaDCaT within 1.5 Å RMSD of the query structure, as a function of its crossing angle ε 

and helical phase θ. For each value of ε B) plots the number of matches maximized over all 

values of θ sampled. The equivalent for θ is plotted in C). For two highly designable 

structures (marked with circled numbers in A), D) shows sequence logos originating from 

close matches with RMSD to the query below 1.0 Å.
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Figure 5. 
Examples of designable and non-designable instances of the αββ motif. The structure in A) 
has 44 unique examples, within 1.0 Å RMSD, in the non-redundant subset of the PDB used 

for searching, compared to 0 such examples for the structure in B).
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