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Abstract

Meta-analysis techniques have been widely developed and applied in genomic applications, 

especially for combining multiple transcriptomic studies. In this paper, we propose an order 

statistic of p-values (rth ordered p-value, rOP) across combined studies as the test statistic. We 

illustrate different hypothesis settings that detect gene markers differentially expressed (DE) “in 

all studies”, “in the majority of studies”, or “in one or more studies”, and specify rOP as a suitable 

method for detecting DE genes “in the majority of studies”. We develop methods to estimate the 

parameter r in rOP for real applications. Statistical properties such as its asymptotic behavior and 

a one-sided testing correction for detecting markers of concordant expression changes are 

explored. Power calculation and simulation show better performance of rOP compared to classical 

Fisher's method, Stouffer's method, minimum p-value method and maximum p-value method 

under the focused hypothesis setting. Theoretically, rOP is found connected to the naïve vote 

counting method and can be viewed as a generalized form of vote counting with better statistical 

properties. The method is applied to three microarray meta-analysis examples including major 

depressive disorder, brain cancer and diabetes. The results demonstrate rOP as a more 

generalizable, robust and sensitive statistical framework to detect disease-related markers.

1. Introduction

With the advances in high-throughput experimental technology in the past decade, the 

production of genomic data has become affordable and thus prevalent in biomedical 

research. Accumulation of experimental data in the public domain has grown rapidly, 

particularly of microarray data for gene expression analysis and single nucleotide 

polymorphism (SNP) genotyping data for genome-wide association studies (GWAS). For 

example, the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) from the 

National Center for Biotechnology Information (NCBI) and the Gene Expression Atlas 

(http://www.ebi.ac.uk/gxa/) from the European Bioinformatics Institute (EBI) are the two 

largest public depository websites for gene expression data and the database of Geno-types 

and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap/) has the largest collection of 

genotype data. Because individual studies usually contain limited numbers of samples, and 

the reproducibility of genomic studies is relatively low, the generalizability of their 

conclusions is often criticized. Therefore, combining multiple studies to improve statistical 

power and to provide validated conclusions has emerged as a common practice (see recent 
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review papers by Tseng, Ghosh and Feingold, 2012 and Begum et al., 2012). Such genomic 

meta-analysis is particularly useful in microarray analysis and GWAS. In this paper, we 

focus on microarray meta-analysis while the proposed methodology can be applied to the 

traditional “univariate” meta-analysis or other types of genomic meta-analysis.

Microarray experiments measure transcriptional activities of thousands of genes 

simultaneously. One commonly seen application of microarray data is to detect differentially 

expressed (DE) genes in samples labeled with two conditions (e.g. tumor recurrence versus 

non-recurrence), multiple conditions (e.g. multiple tumor subtypes), survival information or 

time series. In the literature, microarray meta-analysis usually refers to combining multiple 

studies of related hypotheses or conditions to better detect DE genes (also called candidate 

biomarkers). For this problem, two major types of statistical procedures have been used: 

combining effect sizes or combining p-values. Generally speaking, no single method 

performs uniformly better than the others in all datasets for various biological objectives, 

both from a theoretical point of view (Littell and Folks, 1971, 1973) and from empirical 

experiences. In combining effect sizes, the fixed effects model and the random effects model 

are the most popular methods (Cooper, Hedges and Valentine, 2009). These methods are 

usually more straightforward and powerful to directly synthesize information of the effect 

size estimates, compared to p-value combination methods. They are, however, only 

applicable to samples with two conditions when the effect sizes can be defined and 

combined. On the other hand, methods combining p-values provide better flexibility for 

various outcome conditions as long as p-values can be assessed for integration. Fisher's 

method is among the earliest p-value methods applied to microarray meta-analysis (Rhodes 

et al., 2002). It sums the log-transformed p-values to aggregate statistical significance across 

studies. Under the null hypothesis, assuming that the studies are independent and the 

hypothesis testing procedure correctly fits the observed data, Fisher's statistic follows a chi-

squared distribution with degrees of freedom 2K, where K is the number of studies 

combined. Other methods such as Stouffer's method (Stouffer et al., 1949), minP method 

(Tippett, 1931) and maxP method (Wilkinson, 1951) have also been widely used in 

microarray meta-analysis. It can be shown that these test statistics have simple analytical 

forms of null distributions and thus they are easy to apply to the genomic settings. The 

assumptions and hypothesis settings behind these methods are, however, very different and 

have not been carefully considered in most microarray meta-analysis applications so far. In 

Fisher, Stouffer and minP, the methods detect markers that are differentially expressed in 

“one or more” studies (see the definition of HSB in Section 2.1). In other words, an 

extremely small p-value in one study is usually enough to impact the meta-analysis and 

cause statistical significance. On the contrary, methods like maxP tend to detect markers that 

are differentially expressed in “all” studies (called HSA in Section 2.1) since maxP requires 

that all combined p-values are small for a marker to be detected. In this paper, we begin in 

Section 2.1 to elucidate the hypothesis settings and biological implications behind these 

methods. In many meta-analysis applications, detecting markers differentially expressed in 

all studies is more appealing. The requirement of DE in “all” studies, however, is too 

stringent when K is large and in light of the fact that experimental data are peppered with 

noisy measurements from probe design, sample collection, data generation and analysis. 

Thus, we describe in Section 2.1 a robust hypothesis setting (called HSr) that detects 

Song and Tseng Page 2

Ann Appl Stat. Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



biomarkers differentially expressed “in the majority of” studies (e.g. > 70% of the studies) 

and we propose a robust order statistic, rth ordered p-value (rOP), for this hypothesis setting.

The remainder of this paper is structured as follows to develop the rOP method. In Section 

2.2, the rationale and algorithm of rOP are outlined, and the methods for parameter 

estimation are described in Section 2.3. Section 2.4 extends rOP with a one-sided test 

correction to avoid detection of DE genes with discordant fold change directions across 

studies. Section 3 demonstrates applications of rOP to three examples in brain cancer, major 

depressive disorder (MDD) and diabetes, and compares the result with other classical meta-

analysis methods. We further explore power calculation and asymptotic properties of rOP in 

Section 4.1, and evaluate rOP in genomic settings by simulation in Section 4.2. We also 

establish an unexpected but insightful connection of rOP with the classical naïve vote 

counting method in Section 4.3. Section 5 contains final conclusions and discussions.

2. rth Ordered P-value (rOP)

2.1. Hypothesis settings and motivation

We consider the situation when K transcriptomic studies are combined for a meta-analysis 

where each study contains G genes for information integration. Denote by θgk the underlying 

true effect size for gene g and study k (1 ≤ g ≤ G, 1 ≤ k ≤ K). For a given gene g, we follow 

the convention of Birnbaum (1954) and Li and Tseng (2011) to consider two complementary 

hypothesis settings, depending on the pursuit of different types of targeted markers:

In HSA, the targeted biomarkers are those differentially expressed in all studies (i.e. the 

alternative hypothesis is the intersection event that effect sizes of all K studies are non-zero), 

while HSB pursues biomarkers differentially expressed in one or more studies (the 

alternative hypothesis is the union event instead of the intersection in HSA). Biologically 

speaking, HSA is more stringent and more desirable to identify consistent biomarkers across 

all studies if the studies are homogeneous. HSB, however, is useful when heterogeneity is 

expected. For example, if studies analyzing different tissues are combined (e.g. study 1 uses 

epithelial tissues and study 2 uses blood samples), it is reasonable to identify tissue-specific 

biomarkers detected by HSB. We note that HSB is identical to the classical union-

intersection test (UIT) (Roy, 1953) but HSA is different from intersection-union test (IUT) 

(Berger, 1982; Berger and Hsu, 1996). In IUT, the statistical hypothesis is in complementary 

form between null and alternative hypothesis 

. Solutions for IUT require more 

sophisticated mixture or Bayesian modeling to accommodate the composite null hypothesis 

and are not the focus of this paper (for more details, see Erickson, Kim and Allison, 2009).

As discussed in Tseng, Ghosh and Feingold (2012), most existing genomic meta-analysis 

methods target on HSB. Popular methods include classical Fisher's method (sum of minus 
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log-transformed p-values; Fisher, 1925), Stouffer's method (sum of inverse-normal-

transformed p-values; Stouffer et al., 1949), minP (minimum of combined p-values; Tippett, 

1931) and a recently proposed adaptively weighted (AW) Fisher's method (Li and Tseng, 

2011). The random effects model targets on a slight variation of HSA, where the effect sizes 

in the alternative hypothesis are random effects drawn from a Gaussian distribution centered 

away from zero (but are not guaranteed to be all non-zero). The maximum p-value method 

(maxP) is probably the only method available to specifically target on HSA so far. By taking 

the maximum of p-values from combined studies as the test statistic, the method requires 

that all p-values to be small for a gene to be detected. Assuming independence across studies 

and that the inferences to generate p-values in single studies are correctly specified, p-values 

(pk as the p-value of study k) are i.i.d. uniformly distributed in [0, 1]. Fisher's statistic 

(SFisher = −2Σlog pk follows a chi-squared distribution with degree of freedom 2K (i.e. 

SFisher ~ χ2(2K)) under null hypothesis H0; Stouffer's statistic (SStouffer = ΣΦ−1(1–pk), where 

Φ−1(·) is the quantile function of a standard normal distribution) follows a normal 

distribution with variance K (i.e. SStouffer ~ N(0, K)); minP statistic (SminP = min{pk}) 

follows a Beta distribution with parameters 1 and K (i.e. SminP ~ Beta(1, K)); and maxP 

statistic (SmaxP = max{pk}) follows a Beta distribution with parameters K and 1 (i.e SmaxP ~ 

Beta(K, 1)).

The HSA hypothesis setting and maxP method are obviously too stringent in light of the 

generally noisy nature of microarray experiments. When K is large, HSA is not robust and 

inevitably detects very few genes. Instead of requiring differential expression in all studies, 

biologists are more interested in, for example, “biomarkers that are differentially expressed 

in more than 70% of the combined studies.” Denote by  the 

situation that exactly h out of K studies are differentially expressed. The new robust 

hypothesis setting becomes:

where r = ⌈p·K⌉, ⌈x⌉ is the smallest integer no less than x and p (0 < p ≤ 1) is the minimal 

percentage of studies required to call differential expression (e.g. p = 70%). We note that 

HSA and HSB are both special cases of the extended HSr class (i.e. HSA = HSK and HSB = 

HS1), but we will focus on large r (i.e. p > 50%) in this paper and view HSr as a relaxed and 

robust form of HSA.

In the literature, maxP has been used for HSA and minP has been used for HSB. An intuitive 

extension of these two methods for HSr is to use the rth ordered p-value (rOP). Before 

introducing the algorithm and properties of rOP, we illustrate the motivation of it by the 

following example. Suppose we consider four genes in five studies, gene A has marginally 

significant p-values (p = 0.1) in all five studies; gene B has a strong p-value in study 1 (p = 

1e − 20) but p = 0.9 in the other four studies; gene C is similar to Gene A but has much 

weaker statistical significance (p = 0.25 in all five studies); gene D differs from gene C in 

that studies 1-4 have small p-values (p = 0.15) but study 5 has a large p-value (p = 0.9). 
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Table 1 shows the resulting p-values from five meta-analysis methods that are derived from 

classical parametric inference in Section 1. Comparing Fisher and minP in HSB, minP is 

sensitive to a study that has a very small p-value (see gene B) while Fisher, as an evidence 

aggregation method, is more sensitive when all or most studies are marginally statistically 

significant (e.g. gene A). Stouffer behaves similarly to Fisher except that it is less sensitive 

to the extremely small p-value in gene B. When we turn our attention to HSA, gene C and 

gene D cannot be detected by all three of Fisher, Stouffer and minP methods. Gene C can be 

detected by both maxP and rOP as expected (p = 0.001 and 0.015, respectively). For gene D, 

it cannot be identified by maxP method (p = 0.59) but can be detected by rOP at r = 4 (p = 

0.002). Gene D gives a good motivating example that maxP may be too stringent when 

many studies are combined and rOP provides additional robustness when one or a small 

portion of studies are not statistically significant. In genomic meta-analysis, genes similar to 

gene D are common due to the noisy nature of high-throughput genomic experiments or 

when a low quality study is accidentally included in the meta-analysis. Although the types of 

desired markers (under HSA, HSB or HSr) depend on the biological goal of a specific 

application, gene A, C and D are normally desirable marker candidates that researchers wish 

to detect in most situations while gene B is not (unless study-specific markers are expected 

as mentioned in Section 1). This toy example motivates the development of a robust order 

statistic of rOP below.

2.2. The rOP method

Below is the algorithm for rOP when the parameter r is fixed. For a given gene g, without 

loss of generality, we ignore the subscript g and denote by Sr = p(r) where p(r) is the rth 

order statistic of p-values {p1, p2, . . . , pK}. Under the null hypothesis H0, Sr follows a beta 

distribution with shape parameters r and K−r+1, assuming that the model to generate p-

values under the null hypothesis is correctly specified and all studies are independent. To 

implement rOP, one may apply this parametric null distribution to calculate the p-values for 

all genes and perform a Benjamini-Hochberg (BH) correction (Benjamini and Hochberg, 

1995) to control the false discovery rate (FDR) under general dependence structure. The 

Benjamini-Hochberg procedure can control the FDR at the nominal level or less when the 

multiple comparisons are independent or positively dependent. Although the Benjamini-

Yekutieli (BY) procedure can be applied to a more general dependence structure of the 

comparisons, it is often too conservative and unnecessary (Benjamini and Yekutieli, 2001), 

especially in gene expression analysis where the comparisons are more likely to be 

positively dependent and the effect sizes are usually small to moderate (also see Section 4.2 

for simulation results). As a result, we will not consider the BY procedure in this paper. The 

parametric BH approach has the advantage of fast computation but in many situations the 

parametric beta null distribution may be violated because the assumptions to obtain p-values 

from each single study are not met and the null distributions of p-values are not uniformly 

distributed. When such violations of assumptions are suspected, we alternatively 

recommend a conventional permutation analysis (PA) instead. Class labels of the samples in 

each study are randomly permuted and the entire DE and meta-analysis procedures are 

followed. The permutation is repeated for B times (B = 500 in this paper) to simulate the null 

distribution and assess the p-values and q-values. The permutation analysis is used for all 
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meta-analysis methods (including rOP, Fisher, Stouffer, minP and maxP) in this paper 

unless otherwise stated.

We note that both minP and maxP are special cases of rOP, but in this paper we mainly 

consider properties of rOP as a robust form of maxP (specifically, K/2 ≤ r ≤ K).

2.3. Selection of r in an application

The best selection of r should depend on the biological interests. Ideally, r is a tuning 

parameter that is selected by the biologists based on the biological questions asked and the 

experimental designs of the studies. However, in many cases, biologists may not have a 

strong prior knowledge for the selection of r and data-driven methods for estimating r may 

provide additional guidance in applications. The purpose of selecting r < K is to tolerate 

potentially outlying studies and noises in the data. The noises may come from experimental 

limitations (e.g. failure in probe design, erroneous gene annotation or bias from 

experimental protocol) or heterogeneous patient cohorts in different studies. Another 

extreme case may come from inappropriate inclusion of a low-quality study into the 

genomic meta-analysis. Below we introduce two complementary guidelines to help select r 

for rOP. The first method comes from the adjusted number of detected DE genes and the 

second is based on pathway association (a.k.a. gene set analysis), incorporating external 

biological knowledge.

2.3.1. Evaluation based on the number of detected DE genes—In the first 

method, we use a heuristic criterion to find the best r such that the number of detected DE 

genes is the largest. The dashed line in Figure 1(a) shows the number of detected DE genes 

using different r in rOP in a brain cancer application. The result shows a general decreasing 

trend in the number of detected DE genes when r increases. However, when we randomly 

permute the p-values across genes within each study, the detected number of DE genes also 

shows a bias towards small r’s (dotted line). It shows that a large number of DE genes can 

be detected by a small r (e.g. r=1 or 2) simply by chance. To eliminate this artifact, we apply 

a de-trending method by subtracting the dotted permuted baseline from the dashed line. The 

resulting adjusted number of DE genes (solid line) is then used to seek the maximum that 

correspond to the suggested r. This de-trend adjustment is similar to what was used in GAP 

statistic (Tibshirani, Walther and Hastie, 2001) when estimating the number of clusters in 

cluster analysis. In such a scenario, the curve of number of clusters (on x-axis) versus sum 

of squared within-cluster dispersions is used to estimate the number of clusters. The curve 

always has a decreasing trend even in random datasets and the goal is usually to find an 

“elbow-like” turning point. GAP statistic permutes the data to generate a baseline curve and 

subtract it from the observed curve. The problem becomes to find the maximum point in the 

de-trended curve, a setting very similar to ours.

Below we describe the algorithm for the first criterion. Using the original K studies, the 

number of DE genes detected by rOP using different r (1 ≤ r ≤ K) is first calculated as Nr 

(under certain false discovery rate threshold, e.g. FDR = 5%; see dashed line in Figure 1(a)). 

We then randomly permute p-values in each study independently and re-calculate the 

number of DE genes as  in the bth permutation. The permutation is repeated for B times 
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(B = 100 in this paper) and the adjusted number of detected DE genes is defined as 

 (see solid line in Figure 1(a)). In other words, the adjusted number 

of DE genes is de-trended so that it is purely contributed by the consistent DE information 

among studies. The parameter r is selected so that  is maximized (or we manually select r 

as large as possible when  reaches among the largest).

Remark 1. Note that  could sometimes be negative. This happens mostly when the signal 

in a single study is strong and r is small. However, since we usually apply rOP for relatively 

large K and r, the negative value is usually not an issue. We also note that, unlike GAP 

statistic, the criterion to choose r with the maximal adjusted number of detected DE genes is 

heuristic and has no theoretical guarantee. In simulations and real applications to be shown 

later, this method performs well and provides results consistent with the second criterion 

described below.

2.3.2. Evaluation based on biological association—Pathway analysis (a.k.a. gene 

set analysis) is a statistical tool to infer the correlation of differential expression evidence in 

the data with pathway knowledge (usually sets of genes with known common biological 

function or interactions) from established databases. In this approach, we hypothesize that 

the best selection of r will produce a DE analysis result that generates the strongest 

statistical association with “important” (i.e. disease-related) pathways. Such pathways can 

be provided by biologists or obtained from pathway databases. However, it is well-

recognized that our understanding of biological and disease-related pathways are relatively 

poor and subject to change every few years. This is especially true for many complex 

diseases, such as cancers, psychiatric disorders and diabetes. In this case, it is more practical 

to use computational methods to generate “pseudo” disease-related pathways that are further 

reviewed by biologists before being utilized to estimate r. Below, we develop a 

computational procedure for selecting disease-related pathways. We perform pathway 

analysis using a large pathway database (e.g. GO, KEGG or Bio-Carta) and select pathways 

that are top-ranked by aggregated committee decision of different r from rOP. The detailed 

algorithm is as follows:

Step I. Identification of disease-related pathways: (committee decision by [K/2] + 1 ≤ r ≤ K)

1. Apply rOP method to combine studies and generate p-values for each gene. Run 

through different r, [K/2] + 1 ≤ r ≤ K.

2. For a given pathway m, apply Kolmogorov-Smirnov test to compare the p-values of 

genes in the pathway and those outside the pathway. The pathway enrichment p-

values are generated as pr,m. Its rank among all pathways for a given r is calculated 

as Rr,m = rankm(pr,m). Small ranks suggest strong pathway enrichment for pathway 

m.

3.
The sums of ranks of different r are calculated as . The top U 

= 100 pathways with the smallest Sm scores are selected and denoted as M. We treat 

M as the “pseudo” disease-related pathway set.
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Step II. Sequential testing of improved pathway enrichment significance:

1. We perform sequential hypothesis testing that starts from r′ = K since conceptually 

we would like to pick r as large as possible. We first perform a Wilcoxon signed 

rank test to test for di erence of pathway enrichment significance for r′ = K and r′ = 

K − 1. In other words, we perform a two-sample test on the paired vectors of (pK,m; 

m ∈ M) and (pK−1,m; m ∈ M) and record the p-value as p̃K,K−1.

2. If the test is rejected (using the conventional type I error of 0.05), it indicates that 

reducing from r = K to r = K − 1 can generate DE gene list that produce more 

significant pathway enrichment in M. We will continue to reduce r′ by one (i.e. r′ = 

K − 1) and repeat the test between (pr
′,m; m ∈ M) and (pr′−1,m; m ∈ M). Similarly, 

the resulting p-values are recorded as p̃r′,r′−1. The procedure is repeated until the 

test from r′ is not rejected. The final r′ is selected for rOP.

Remark 2. Note that for simplicity and since this evaluation should be examined together 

with the first criterion in Section 2.3.1, we will not perform p-value correction for multiple 

comparison or sequentially dependent hypothesis testings here. Practically, we suggest to 

select r based on the diagnostic plots of the two criteria simultaneously. Examples of the 

selection will be shown in Section 3.

Remark 3. We have tested different U in real applications. As can be expected, the selection 

of U did not a ect the result much. In Supplement Figure 7, we show that the ranks for rOP 

with different selection of r as well as other methods become stable enough when U = 100 

for all our applications.

2.4. One-sided test modification to avoid discordant effect sizes

Methods combining effect sizes (e.g. random or fixed effects models) are suitable to 

combine studies with binary outcome, in which case the effect sizes are well-defined as the 

standardized mean di erences or odds ratios. Methods combining p-values, however, have 

advantages in combining studies with non-binary outcomes (e.g. multi-class, continuous or 

censored data), in which case F-test, simple linear regression or Cox proportional hazard 

model can be used to generate p-values for integration. On the other hand, p-value 

combination methods usually combine two-sided p-values in binary outcome data. A gene 

may be found statistically significant with up-regulation in one study and down-regulation in 

another study. Such a confusing discordance, although sometimes a reflection of the 

biological truth, is often undesirable in most applications. Therefore, we make a one-sided 

test modification to the rOP method similar to the modification that Owen (2009) and 

Pearson (1934) applied on Fisher's method. The modified rOP statistic is defined as the 

minimum of the two rOP statistics combining the one-sided tests of both tails. Details of this 

test statistic can be found in the Supplement Text.

3. Applications

We applied rOP as well as other meta-analysis methods to three microarray meta-analysis 

applications with different strength of DE signal and different degrees of heterogeneity. 

Supplement Table 1A-1C lists the detailed information on seven brain cancer studies, nine 
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major depressive disorder (MDD) studies, and 16 diabetes studies for meta-analysis. Data 

were preprocessed and normalized by standard procedures in each array platform. A ymetrix 

datasets were processed by RMA method and Illumina datasets were processed by 

manufacturer's software with quantile normalization for probe analysis. Probes were 

matched to the same gene symbols. When multiple probes (or probe sets) matched to one 

gene symbol, the probe that contained the largest variability (i.e. inter-quartile range) was 

used to represent the gene. After gene matching and filtering, 5,836, 7,577 and 6,645 genes 

remained in brain cancer, MDD and diabetes datasets, respectively. The brain cancer studies 

were collected from the GEO database. The MDD studies were obtained from Dr. Etienne 

Sibille's lab. A random intercept model adjusted for potential confounders was applied to 

each MDD study to obtain p-values (Wang et al., 2012a). Preprocessed data of 16 diabetes 

studies described by Park et al. (2009) were obtained from the authors. For studies with 

multiple groups, we followed the procedure of Park et al. by taking the minimum p-value of 

all the pairwise comparisons and adjusted for multiple tests. All the pathways used in this 

paper were downloaded from Molecular Signatures Database (MSigDB, Subramanian et al., 

2005). Pathway collections c2, c3 and c5 were used for r selection purpose.

3.1. Application of rOP

In all three applications, we demonstrate the estimation of r for rOP using the two evaluation 

criteria in Section 2.3. In the first dataset, two important subtypes of brain tumors - 

anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM) - were compared in seven 

microarray studies. To estimate an adequate r for rOP application, we calculated the 

unadjusted number, the baseline number from permutation and the adjusted number of 

detected DE genes using 1 ≤ r ≤ 7 under FDR=5% (Figure 1(a)). The result showed a peak 

at r = 5. For the second estimation method by pathway analysis, boxplots of − log10(p) (p-

values calculated from association of DE gene list with top pathways) versus r were plotted 

(Figure 1(b)). The Wilcoxon signed rank tests showed that the result from r = 6 is 

significantly more associated with pathways than that from r = 7 (p = 2.7e − 11) and 

similarly for r = 5 versus r = 6 (p = 4.4e − 9). Combining the results from Figures 1(a) and 

1(b), we decided to choose r = 5 for this application. Figure 1(c) shows the heatmap of 

studies effective in rOP (when r = 5) for each detected DE gene (a total of 1,469 DE genes 

on the rows and seven studies on the columns). For example, if p-values for the seven 

studies are (0.13, 0.11, 0.03, 0.001, 0.4, 0.7, 0.15), the test statistic for rOP is SrOP = 0.15 

and the five effective studies that contribute to rOP are indicated as (1, 1, 1, 1, 0, 0, 1). In the 

heatmap, effective studies were indicated by black color and non-effective studies were in 

light gray. As shown in Figure 1(c), Paugh and Yamanaka were non-effective studies in 

almost all detected DE genes, suggesting that the two studies did not contribute to the meta-

analysis and may potentially be problematic studies. This finding agrees with a recent 

MetaQC assessment result using the same seven studies (Kang et al., 2012). In our 

application, AA and GBM patients were compared in all seven studies. We expected to 

detect biomarkers that have consistent fold change direction across studies and the one-sided 

corrected rOP method was more preferable. Supplement Figure 1 showed plots similar to 

Figure 1 for one-sided corrected rOP. The result similarly concluded that r = 5 was the most 

suitable choice for this application.
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For the second application, nine microarray studies used different areas of post-mortem 

brain tissues from MDD patients and control samples (Supplement Table 1B). MDD is a 

complex genetic disease with largely unknown disease mechanism and gene regulatory 

networks. The post-mortem brain tissues usually result in weak signals, compared to blood 

or tumor tissues, which makes meta-analysis an appealing approach. In Supplement Figure 

2(a), the maximizer of adjusted DE gene detection was at r = 6 (r = 7 or 8 are also good 

choices). For Supplement Figure 2(b), the statistical significance improved “from r = 9 to r 

= 8” (p = 5.6e − 14), “from r = 8 to r = 7” (p = 8.7e − 7) and “from r= 7 to r = 6” (p = 

0.045). We also obtained 98 pathways that were potentially related to MDD from Dr. 

Etienne Sibille. As shown in Supplement Figure 2(c), the statistical significance improved 

“from r = 8 to r = 7” using the 98 expert selected pathways. Combining the results, we 

decided to choose r = 7 (since r = 6 only provided marginal improvement in both criteria 

and we prefered r as large as possible) for the rOP method in this application. Supplement 

Figure 2(d) showed the heatmap of effective studies in rOP. No obvious problematic study 

was observed. The one-sided rOP was also applied (results not shown), good selection of r 

appeared to be between 5 and 7.

In the last application, 16 diabetes microarray studies were combined. These 16 studies were 

very heterogeneous in terms of the organisms, tissues and experimental design (Supplement 

Table 1C). Supplement Figure 7 showed diagnostic plots to estimate r. Although the number 

of studies and heterogeneity across datasets were relatively larger than the previous two 

examples, we could still observe similar trends in Supplement Figure 7. Specifically, for 

Supplement Figure 3(a), it was shown that r = 7 ~ 12 detected higher adjusted number of DE 

genes. For pathway analysis, results from r = 12 was more associated with the top pathways. 

As a result, we decided to use r = 12 in this application. It was noticeable that the r selection 

in this diabetes example was relatively vague, compared to the previous examples. 

Supplemnt Figure 3(c) showed the heatmap of effective studies in rOP. Two to four studies 

(s01, s05, s08 and s14) appeared to be candidates of problematic studies, but the evidence 

was not as clear as the brain cancer example in Figure 1(c). It should be noted that the 

results of Supplement Figure 3 used the beta null distribution inference and Benjamini-

Hochberg correction. Permutation analysis generated a relatively unstable result 

(Supplement Figure 4), although it suggested a similar selection of r. This was possibly due 

to the unusual ad hoc DE analysis from minimum p-values of all possible pairs of 

comparisons (procedures that were used in the original paper Park et al., 2009).

Next, we explored the robustness of rOP by mixing a randomly chosen MDD study into 

seven brain cancer studies as an outlier. The results in Supplement Figure 5 showed that r = 

5 or 6 may be a good choice (Supplement Figures 5(a) and 5(b)). We used r = 6 in rOP for 

this application. Supplement Figure 5(c) interestingly showed that the mixed MDD study, 

together with Paugh and Yamanaka studies, were potentially problematic studies in the rOP 

meta-analysis. This result verified our intuition that rOP is robust to outlying studies and the 

p-values of the outlying studies minimally contribute to the rOP statistic.
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3.2. Comparison of rOP with other meta-analysis methods

We performed rOP using r determined from Section 3.1 in four applications (brain cancer, 

MDD, diabetes, and brain cancer + 1 random MDD) and compared to Fisher's method, 

Stouffer's method, minP, maxP and vote counting. The vote counting method will be 

discussed in greater detail in Section 4.3. Two quantitative measures were used to compare 

the methods. The first measure compared the number of detected DE genes from each 

method as a surrogate of sensitivity (although the true list of DE genes is unknown and 

sensitivity cannot be calculated). The second approach was by pathway analysis, very 

similar to the method we introduced to select parameter r. However, in order to avoid bias in 

top pathway selection, single study analysis results were used as the committee to select 

disease-related pathways. KEGG, BioCarta, Reactome and GO pathways were used in the 

pathway analysis. Wilcoxon signed rank test was then used to test if two methods detected 

DE genes with differential association with disease-related pathways.

Table 2 showed the number of detected DE genes under FDR=5%. We can immediately 

observe that Fisher and Stouffer generally detected many more biomarkers because they 

targeted on HSB (genes differentially expressed in one or more studies). Although minP also 

targeted on HSB, it sometimes detected extremely small numbers of DE genes in weak-

signal data such as the MDD and diabetes examples. This is reasonable because minP has 

very weak power to detect consistent but weak signals acorss studies (e.g. p-values=(0.1, 

0.1, ..., 0.1)). The stringent maxP method detected few numbers of DE genes in general. 

Vote counting detected very few genes especially when the effect sizes were moderate (in 

the MDD and diabetes examples). rOP detected more DE genes than maxP because of its 

relaxed HSr hypothesis setting. It identified about 50 ~ 65% fewer DE genes than the 

Fisher's and Stouffer's methods but guaranteed that the genes detected were differentially 

expressed in the majority of the studies. We also performed the one-sided corrected rOP for 

comparison. This method detected similar numbers of DE genes compared to two-sided 

rOP, and the majority of detected DE genes in two-sided and one-sided rOP were 

overlapped in the brain cancer example. The result showed that almost all DE genes detected 

by two-sided rOP had a consistent fold change direction across studies. In MDD, the one-

sided rOP detected much fewer genes than the two-sided method. This implied that many 

genes related to MDD acted differently in different brain regions and in different cohorts.

Figure 2 showed the results of biological association from pathway analysis that were 

similarly shown in 1(b). The result showed that the DE gene lists generated by Fisher and 

Stouffer were more associated with biological pathways. The rOP method generally 

performed better than maxP and minP and had similar biological association performance to 

Fisher's and Stouffer's methods.

4. Statistical properties of rOP

4.1 Power calculation of rOP and asymptotic properties

When K studies are combined, suppose r0 of the K studies have equal non-zero effect sizes 

and the rest of the (K − r0) studies have zero effect sizes. That is,
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For a single study, the power function given effect size θ is known as Pr(pi ≤ α0|θ ). We will 

derive the statistical power of rOP under this simplified hypothesis setting when r0 and r for 

rOP are given. Under H0, the rejection threshold for rOP statistic is β = Bα (r, K−r+1) (the α 

quantile of a beta distribution with shape parameters r and K −r+1), where the significance 

level of the meta-analysis is set at α. The power of rejection threshold β under Ha is 

. By definition Pr(pi ≤ β|θi = 0) = β and 

we further denote β′ = Pr(pi ≤ β|θi = θ). The power calculation of interest is equivalent to 

finding the probabilities of having at least r successes in K independent Bernoulli trials, 

among which r0 have success probabilities β′, and K − r0 have success probabilities β:

Remark 4. We note that the assumption of r0 equal non-zero effect sizes can be relaxed. 

When the non-zero effects are not equal, the power calculation can be done in polynomial 

time using dynamic programming.

Below we demonstrate some asymptotic properties of rOP.

Theorem 4.1. Assume r0 is fixed. When the effect size θ and K are fixed and the sample size 

of study k Nk → ∞, Pr (p(r) ≤ β|Ha) → 1 if r ≤ rO. When r > r0, Pr (p(r) ≤ β|Ha) → c(r) < 1 

and c(r) is a decreasing function in r.

Proof. When Nk → ∞, β′ → 1. The theorem easily follows from the power calculation 

formulae.

Theorem 4.1 states that asymptotically if the parameter r in rOP is spec-ified less or equal to 

the true r0, the statistical power converges to 1 as intuitively expected. When specifying r 

greater than r0, the statistical power is weakened with increasing r. Particularly, maxP will 

have weak power. In contrast to Theorem 4.1, for methods designed for HSB (e.g. Fisher's 

method, Stouffer's method and minP), the power always converges to 1 if Nk → ∞ and r0 > 

0. Figure 3(a) shows the power curve of rOP for different r when K = 10, r0 = 6 and Nk → 

∞.

Lemma 4.1. Assume the parameter r used in rOP is fixed. When the effect size θ and K are 

fixed and the sample sizes Nk → ∞, Pr (p(r) ≤ β|Ha) → 1 if r0 ≥ r. When r0 < r, Pr (p(r) ≤ β|

Ha) → c(r0) < 1 and c(r0) is a increasing function in r0.

Lemma 4.1 takes a different angle from Theorem 4.1. When the parameter r used in rOP is 

fixed, it asymptotically has perfect power to detect all genes that are differentially expressed 

in r or more studies. It then does not have strong power to detect genes that are differentially 
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expressed in less than r studies. Figure 3(b) shows a power curve of rOP for K = 10,r= 6 and 

Nk → ∞ (solid line). We note that the dashed line (f(r) = 0 when 0 ≤ r0 < 6 and f(r) = 1 

when 6 ≤ r0 ≤ 10) is the ideal power curve for HSr (i.e. it detects all genes that are 

differentially expressed in r or more studies but does not detect any gene that are 

differentially expressed in less than r studies). Methods like Fisher, Stouffer and minP target 

on HSB and their power is always 1 asymptotically when r0 > 0. The maxP method has 

perfect asymptotic power when r0 = K = 10 but has relatively weak power when r0 < K. The 

rOP method lies between maxP and the methods designed for HSB. The power of rOP for r0 

≥ 6 converges to 1, and for r0 ≤ 5, the power is always smaller than 1 as the sample sizes in 

single studies go to infinity. Although the asymptotic powers of rOP for r0 = 4 and r0 = 5 are 

not too small, we are less concerned of these genes because they are still very likely to be 

important biomarkers.

4.2 Power comparison in simulated studies

To evaluate the performance of rOP in the genomic setting, we simulated a dataset using the 

following procedure.

Step I. Sample 200 gene clusters, with 20 genes in each and other 6,000 genes that do not 

belong to any cluster. Denote Cg ∈ {0, 1, 2, . . . , 200} as the cluster membership of gene g, 

where Cg = 0 means that gene g is not in a gene cluster.

Step II. Sample the covariance matrix Σck for genes in cluster c and in study k, where 1 ≤ c ≤ 

200 and 1 ≤ k ≤ 10. First, sample , where Ψ = 0.5I20×20 + 0.5J20×20, W−1 

denotes the inverse Wishart distribution, I is the identity matrix and J is the matrix with all 

the elements equal 1. Then Σck is calculated by standardizing  such that the diagonal 

elements are all 1's.

Step III. Denote gc1, . . . , gc20 as the indices for the 20 genes in cluster c, i.e. Cgcj = c, where 

1 ≤ c ≤ 200 and 1 ≤ j ≤ 20. Assuming the effect sizes are all zeros, sample gene expression 

levels of genes in cluster c for sample n as , where 

1 ≤ n ≤ 100 and 1 ≤ k ≤ 10, and sample expression level for gene g which is not in a cluster 

(i.e. Cg = 0) for sample n as , where 1 ≤ n ≤ 100 and 1 ≤ k ≤ 10.

Step IV. Sample the true number of studies that gene g is DE, tg, from a discrete uniform 

distribution that takes values on 1, 2, . . . , 10, for 1 ≤ g ≤ 1, 000; and set tg = 0 for 1, 001 ≤ g 

≤ 10, 000.

Step V. Sample δgk, which indicates whether gene g is DE in study k, from a discrete 

uniform distribution that takes values on 0 or 1 and with the constraint that Σk δgk = tg, 

where 1 ≤ g ≤ 1, 000 and 1 ≤ k ≤ 10. For 1, 001 ≤ g ≤ 10, 000 and 1 ≤ k ≤ 10, set δgk = 0.

Step VI. Sample the effect size μgk uniformly from [−1, −0.5]υ[0.5, 1]. For control samples, 

set the expression levels as ; for case samples, set the expression levels as 

, for 1 ≤ g ≤ 10, 000, 1 ≤ n ≤ 50 and 1 ≤ k ≤ 10.
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In the simulated dataset, 10 studies with 10,000 genes were simulated. Within each study, 

there were 50 cases and 50 controls. The first 1,000 genes were DE in 1 to 10 studies with 

equal probabilities; and the rest 9,000 genes were DE in none of the studies. We denoted tg 

as the true number of studies where gene g was DE. To mimic the gene dependencies in real 

gene expression dataset, within the 10,000 genes, we drew 200 gene clusters with 20 genes 

in each. We sampled the data such that the genes within the same cluster were correlated. 

The correlation matrices for different studies and different gene clusters were sampled from 

an inverse Wishart distribution. Suppose the goal of the meta-analysis was to obtain 

biomarkers differentially expressed in at least 60% (6 out of 10) studies (i.e. HSr with r = 6). 

We performed two sample t-tests in each study and combined the p-values using rOP with r 

= 6. FDR ≤ 5% was controlled using the permutation analysis. To compare rOP with other 

methods in the HSr setting, we defined two FDR criteria as follows. Note that FDR1 targets 

on H0 : tg = 0 and FDR2 targets on H0 : tg < r.

Table 3 listed the average FDR1 and FDR2 for different methods calculated using 100 

simulations. We can see that although FDR1 was well-controlled, all the methods were anti-

conservative in terms of FDR2, since the inference of the five methods was based on H0 : tg 

= 0 while genes with 1 ≤ tg ≤ 5 existed and were calculated towards FDR2. To compare 

different FDR control methods, we also included the results of the Benjamini-Hochberg and 

Benjamini-Yekutieli procedures. According to the simulation, the Benjamini-Hochberg 

procedure controled FDR similarly to the permutation test. The Benjamini-Yekutieli 

Procedure, on the other hand, was too conservative that the FDR1 was controlled at about 

1/10 of the nominal FDR level. Figure 4 showed the number of detected DE genes and the 

statistical power of different methods for genes with tg from 1 to 10. From Figure 4(a), we 

noticed that Fisher, Stouffer and minP methods detected many genes with 1 ≤ tg ≤ 5, which 

violated our targeted HSr with r = 6. MaxP detected very few genes and missed many 

targeted markers with 6 ≤ tg ≤ 9. Only rOP generated result most compatible with HSr (r = 

6). Most genes with 6 ≤ tg ≤ 10 were detected. The high FDR2 = 18.2% mostly came from 

genes with 4 ≤ tg ≤ 5, genes that were very likely important markers and were minor 

mistakes. Vote counting detected genes with tg ≥ 6 but was less powerful. Relationship of 

vote counting and rOP will be further discussed in Section 4.3. We also performed rOP (r = 

5) and rOP (r = 7) to compare the robustness of slightly different selections of r. Among the 

620.16 DE genes (averaged over 100 simulations) detected by rOP (r = 6), 594.15 (95.8%) 

of them were also detected by rOP (r = 5) and 516.28 (83.3%) of them were also detected by 

rOP (r = 7). The result of Figure 4(b) was consistent with the theoretical power calculation 

as shown in Figure 3(b).

We also performed the simulation without correlated genes. The results were shown in the 

Supplement Table 2 and Supplement Figure 6. We noticed that the FDRs were controlled 

well in both correlated and uncorrelated cases. However, the standard deviations of FDRs 

with correlated genes were higher than the FDRs with only independent genes, which 

Song and Tseng Page 14

Ann Appl Stat. Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



indicated some instability of the FDR control with correlated genes reported by Qiu et al. 

(2006).

4.3 Connection with vote counting

Vote counting has been used in many meta-analysis applications due to its simplicity, while 

it has been criticized as being problematic and statistically inefficient. Hedges and Olkin 

(1980) showed that the power of vote counting converges to 0 when many studies of 

moderate effect sizes are combined (see Supplement Theorem 1). We, however, surprisingly 

found that rOP has a close connection with vote counting, and rOP can be viewed as a 

generalized vote counting with better statistical properties. There are many variations of vote 

counting in the literature. One popular approach is to count the number of studies that have 

p-values smaller than a pre-specified threshold, α. We define this quantity as

(1)

and define its related proportion as π = E(r)/K. The test hypothesis is

where π0 = 0.5 is often used in the applications. Under null hypothesis, r ~ BIN(K, α) and π 

= α, so the rejection region can be established. In the vote counting procedure, α and π0 are 

two preset parameters and the inference is made on the test statistic r.

In the rOP method, we view equation (1) from another direction. We can easily show that if 

we solve equation (1) to obtain α = f–1(r), the solution will be α ∈ [p(r), p(r+1)), and one may 

choose α = p(r) as the solution. In other words, rOP presets r as a given parameter, and the 

inference is based on the test statistic α = p(r).

It is widely criticized that vote counting is powerless because when the effect sizes are 

moderate and the power of single studies is lower than π0, as K increases, the percentage of 

significant studies will converge to the single study power. However, in the rOP method, 

because the rth quantile is used, tests of the top r studies are combined, which helps the 

rejection probability of rOP achieve 1 as K → ∞. It should be noted that the major di erence 

between rOP and vote counting is that the test statistic α = p(r) in rOP increases as K and r = 

K · c increase, which keeps information of the r smallest p-values. On the contrary, for vote 

counting, α is often chosen small and fixed when K increases. In Supplement Theorem 1, 

the power of vote counting converges to 0 as K → ∞, while the power of rOP converges 1 

asymptotically as proved in Supplement Theorem 2.

5. Conclusion

In this paper, we proposed a general class of order statistics of p-values, called rth ordered 

p-value (rOP), for genomic meta-analysis. This family of statistics included the traditional 
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maximum p-value (maxP) and minimum p-value (minP) statistics that target on DE genes in 

“all studies” (HSA) or “one or more studies” (HSB). We extended HSA to a robust form that 

detected DE genes “in the majority of studies” (HSr) and developed the rOP method for this 

purpose. The new robust hypothesis setting has an intuitive interpretation and is more 

adequate in genomic applications where unexpected noise is common in the data. We 

developed the algorithm of rOP for microarray meta-analysis and proposed two methods to 

estimate r in real applications. Under “two-class” comparisons, we proposed a one-sided 

corrected form of rOP to avoid detection of discordant expression change across studies (i.e. 

significant up-regulation in some studies but down-regulation in other studies). Finally, we 

performed power analysis and examined asymptotic properties of rOP to demonstrate 

appropriateness of rOP for HSr over existing methods such as Fisher, Stouffer, minP and 

maxP. We further showed a surprising connection between vote counting and rOP that rOP 

can be viewed as a generalized vote counting with better statistical property. Applications of 

rOP to three examples of brain cancer, major depressive disorder (MDD) and diabetes 

showed better performance of rOP over maxP in terms of detection power (number of 

detected markers) and biological association by pathway analysis.

There are two major limitations of rOP. Firstly, rOP is for HSr but the null and alternative 

hypotheses are not complementary (see Section 2.1). Thus, it has weaker ability to exclude 

markers that are differentially expressed in “less than r” studies since the null of HSr is 

“differentially expressed in none of the studies”. One solution to improve the anti-

conservative inference (which is also our future work) is by Bayesian modeling of p-values 

with a family of beta distributions (Erickson, Kim and Allison, 2009). Secondly, selection of 

r may not always be conclusive from the two methods we proposed; especially the external 

pathway information may be prone to errors and may not be informative to the data. But 

since choosing slightly different r usually gives similar results, this is not a severe problem 

in most applications. We have tested a different approach by adaptively choosing the best 

gene-specific r that generates the best p-value. The result is, however, not stable and the 

gene-specific parameter r is hard to interpret in applications.

Although many meta-analysis methods have been proposed and applied to microarray 

applications, it is still not clear which method enjoys better performance under what 

condition. The selection of an adequate (or best) method heavily depends on the biological 

goal (as illustrated by the hypothesis settings in this paper) and the data structure. In this 

paper, we stated a robust hypothesis setting (HSr) that is commonly targeted in biological 

applications (i.e. identify markers statistically significant in the majority of studies) and 

developed an order statistic method (rOP) as a solution. The three applications covered 

“cleaner” data (brain cancer) to “noisier” data (complex genetics in MDD and diabetes), and 

rOP performed well in all three examples. We expect that the robust hypothesis setting and 

the order statistic methodology will find many more applications in genomic research and 

traditional univariate meta-analysis in the future.

For multiple comparison control, we propose to either apply the parametric beta null 

distribution to assess the p-value and perform the Benjamini-Hochberg (BH) procedure for 

p-value adjustment or conduct a conventional permutation analysis by permuting class labels 

in each study. The former approach is easy to implement, and the latter approach better 
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preserves the gene correlation structure in the inference. Instead of the BH procedure, we 

also tested the Benjamini-Yekutieli (BY) procedure which is applicable to general 

dependence structure but found that it is overly conservative for genomic applications. The 

problem of FDR control under general high-dimensional dependence structures is beyond 

the scope of this paper but is critical in applications and deserves future research.

Implementation of rOP is available in the “MetaDE” package in R together with over 12 

microarray meta-analysis methods in the package. MetaDE has been integrated with other 

quality control methods (“MetaQC” package, Kang et al., 2012) and pathway enrichment 

analysis methods (“MetaPath” package, Shen and Tseng, 2010). The future plan is to 

integrate the three packages with other genomic meta-analysis tools into a “MetaOmics” 

software suite (Wang et al., 2012b).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Results of brain cancer dataset applying rOP.
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Fig 2. 
Comparison of different meta-analysis methods using pathway analysis.
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Fig 3. 
Power of rOP method when Nk → ∞, K = 10.
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Fig 4. 
Simulation results for rOP and other methods with correlated genes.
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Table 1

Four hypothetical genes to compare different meta-analysis methods and to illustrate the motivation of rOP

gene A gene B gene C gene D

Study 1 0.1 1E-20 0.25 0.15

Study 2 0.1 0.9 0.25 0.15

Study 3 0.1 0.9 0.25 0.15

Study 4 0.1 0.9 0.25 0.15

Study 5 0.1 0.9 0.25 0.9

Fisher (HSB)
0.01

*
1E-15

* 0.18 0.12

Stouffer (HSB)
0.002

*
0.03

* 0.07 0.10

minP (HSB) 0.41
5E-20

* 0.76 0.56

maxP (HSA)
1E-5

* 0.59
0.001

* 0.59

rOP (r = 4) (HSr) 5E-4
* 0.92

0.015
*

0.002
*

*
p-values smaller than 0.05
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Table 2

Number of DE gene detected by different methods under FDR=5%.

rOP Fisher Stouffer minP maxP VC

Two-sided One-sided

Brain Cancer 1469 (r = 5) 1625 (r = 5) 2918 2449 2380 273 328

overlap=1139

MDD 617 (r = 7) 86 (r = 7) 1124 1423 0 310 0

overlap=48

Diabetes 636 (r = 12) Not applicable 1698 1492 1 85 0

Brain + 1 MDD 751 (r = 6) Not applicable 2081 1773 1648 132 64
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Table 3

Mean FDRs for different methods in HSr with r = 6 by simulation analysis with correlated genes. The standard 

deviations of the FDRs in using 100 simulations are shown in the parentheses.

FDR1 FDR2 # of detected genes

rOP (r = 6, PA) 0.0439 (±0.0106) 0.1818 (±0.0179) 620.16

rOP (r = 6, BH) 0.0472 (±0.0094) 0.2029 (±0.0184) 617.53

rOP (r = 6, BY) 0.0043 (±0.0031) 0.1044 (±0.0139) 539.85

Fisher 0.0441 (±0.0090) 0.4186 (±0.0212) 934.91

Stouffer 0.0440 (±0.0089) 0.3623 (±0.0217) 858.86

minP 0.0466 (±0.0103) 0.4567 (±0.0207) 958.26

maxP 0.0459 (±0.0199) 0.0729 (±0.0251) 201.02

Vote Counting 0.0000 (±0.0000) 0.0003 (±0.0016) 234.43
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