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Abstract

Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic

Circumpolar Current, is coined to be one of the main drivers of the biological

silicate pump. Here, we study the distribution of this important species and

expected consequences of climate change upon it, using correlative species dis-

tribution modeling and publicly available presence-only data. As experience

with SDM is scarce for marine phytoplankton, this also serves as a pilot study

for this organism group. We used the maximum entropy method to calculate

distribution models for the diatom F. kerguelensis based on yearly and monthly

environmental data (sea surface temperature, salinity, nitrate and silicate con-

centrations). Observation data were harvested from GBIF and the Global Dia-

tom Database, and for further analyses also from the Hustedt Diatom

Collection (BRM). The models were projected on current yearly and seasonal

environmental data to study current distribution and its seasonality. Further-

more, we projected the seasonal model on future environmental data obtained

from climate models for the year 2100. Projected on current yearly averaged

environmental data, all models showed similar distribution patterns for F. kerg-

uelensis. The monthly model showed seasonality, for example, a shift of the

southern distribution boundary toward the north in the winter. Projections on

future scenarios resulted in a moderately to negligibly shrinking distribution

area and a change in seasonality. We found a substantial bias in the pub-

licly available observation datasets, which could be reduced by additional obser-

vation records we obtained from the Hustedt Diatom Collection. Present-day

distribution patterns inferred from the models coincided well with back-

ground knowledge and previous reports about F. kerguelensis distribution,

showing that maximum entropy-based distribution models are suitable to map

distribution patterns for oceanic planktonic organisms. Our scenario projec-

tions indicate moderate effects of climate change upon the biogeography of

F. kerguelensis.

Introduction

Diatoms are the most important group of primary

producers in the Southern Ocean, with Fragilariopsis

kerguelensis (Fig. 1) being one of the dominant species

occurring throughout the Antarctic Circumpolar Current

(ACC) (Queguiner et al. 1997; Mohan et al. 2011; Lee et al.

2012). Due to its dominance in the water column and high

sinking rate into the underlying siliceous ooze belt, F. kerg-

uelensis contributes significantly to the removal of silicate

from surface waters of the Southern Ocean (Zielinski and

Gersonde 1997; Smetacek 1999; DeMaster 2002; Smetacek

et al. 2012), leading to the low silicate concentrations

observed at lower latitudes (Sarmiento et al. 2004). Hence,

F. kerguelensis is often seen as a keystone species of the

region, and its fate might have far-reaching consequences

for global biogeochemical cycles, mainly for the silicate

cycle.

Coupled global biogeochemical ocean and climate

models have been applied to assess the potential conse-

quences of climate change on diatoms (Bopp et al. 2005).

Their results indicate that diatom productivity will

decrease during the upcoming decades, leading to changes

in ecosystem structure and the efficiency of the biological
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pump. However, the broad diversity of diatoms is

reduced to one parameter set in such models. Diatom

taxa have a wide range of variation both in their ecophys-

iological traits which determine their distribution and

population dynamics and in their elemental composition

and sinking rates, leading to widely differing impacts

on biogeochemistry. Consequently, a complementary

approach focusing on potential climate change responses

of individual species can provide additional insights to

those available from biogeochemical modeling. To date,

little is known about the potential consequences of cli-

mate change upon the distribution of individual diatom

species, including F. kerguelensis.

Occurrence of F. kerguelensis was reported from

numerous phytoplankton surveys (Burckle and Cirilli

1987; Lee et al. 2012) as well as from sediment cores

(Zielinski and Gersonde 1997; Crosta et al. 2005; Esper

et al. 2010). A synthesis of data across multiple surveys

and quantification and mapping of the biogeographic

range of this species has not yet been attempted. In order

to address this gap, and to get first insights into how cli-

mate change might affect the distribution range of

F. kerguelensis, we applied species distribution modeling

to a compilation of publicly available F. kerguelensis

occurrence records from the plankton.

Species distribution modeling (SDM) is a commonly

used approach in ecological-biogeographic research and

to assess potential effects of climate change upon species

distribution ranges. The technique is attractive for our

purpose because, as opposed to process models, SDM

does not require parameterization of population behavior

and dynamics for our target organism. SDMs are capable

of making use of the simplest types of distributional data,

that is, presence-only records of occurrence, and of cor-

relatively linking environmental and oceanographic fac-

tors to species distribution patterns. It is thus possible to

project suitable habitats, as estimated using SDM method-

ology, upon future oceanographic scenarios and thereby

assess potential biogeographic consequences of climate

change. Differently from freshwater lake phytoplankton

(Verleyen et al. 2009), distribution of oceanic phytoplank-

ton organisms, and, in particular, of diatoms, has been

shown to be more strongly affected by environmental

parameters such as nutrients (nitrate, nitrite, phosphate,

silicate) and oceanographic parameters (temperature,

salinity), determining the water masses than by dispersal

limitation (Cermeno and Falkowski 2009; Cermeno et al.

2010; Chust et al. 2013). The correlative approach of

SDM seems promising to capture this effect and is thus

expected to provide realistic distribution range assess-

ments for planktonic diatoms.

Experience with species distribution modeling of mar-

ine planktonic (micro-)organisms is scarce (Sorte et al.

2010; Robinson et al. 2011), although SDM itself has been

used for decades and is now a standard tool in terrestrial

biogeography (Elith and Leathwick 2009). SDM studies in

the marine realm are much scarcer, and their majority

focused upon vertebrates (mainly fish and mammals);

macro algae and invertebrates received less attention

(Robinson et al. 2011), and for plankton organisms,

hardly any experience is available (Weinmann et al.

2013). Concerning diatoms, SDM has been applied to

forecast the potential spread of the invasive freshwater

species Didymosphenia geminata (Kumar et al. 2009).

Although this is the SDM study performed with the most

closely related organism to our target species, there are

huge differences in the particular habitat types (freshwater

benthic vs. pelagic open ocean) between both species.

Accordingly, our study is also a pilot study about the

applicability of SDM methodology for studying distribu-

tion of open-ocean planktonic microorganisms and mod-

eling habitat changes for future climate scenarios

(Beaumont et al. 2008). We address several issues includ-

ing choice of modeling methodology, availability, quan-

tity, and spatial and environmental bias of observation

data in public repositories, choice of oceanographic

explanatory variables, and the effects of seasonality. We

would like to emphasize, following the intensive debate in

recent literature (McInerny and Etienne 2012a,b,c), that

our primary interest here is in modeling potential distri-

bution ranges and not niche parameters which are

expected to be difficult to obtain for our target species

due to strong correlations among several relevant envi-

ronmental parameters throughout the Southern Ocean.

For clarification, under distribution model, we will refer

to a statistical model describing a relationship between

environmental variables and taxon occurrences (presence-

only data); whereas under distribution range, we will refer

to the (observed or modeled) spatial extent of the area

occupied by a particular taxon. Under distribution pat-

terns, in this study, we also understand the temporal (for

instance, seasonal) changes of this distribution range.

Under projection, we will refer to displaying a distribu-

tion model output in a map to show potential distribu-

tion ranges.

Data and Methods

Environmental data

All models are based on four environmental parameters,

selected based on availability (both for present conditions

and future scenario model outputs) as well as ecological

relevance: sea surface temperature, salinity, and nitrate

and silicate concentrations. We also considered phosphate

and iron concentrations, mixed layer depth,
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photosynthetically active radiation, pH, and sea-ice con-

centration. These were found to show hardly any influ-

ence in distribution models of F. kerguelensis or were not

available in both data products describing present-day

oceanographic conditions and in climate model outputs.

Source of the datasets for current values is the World

Ocean Atlas 2009 (Garcia et al. 2009; Antonov et al.

2010; Locarnini et al. 2010). For model construction, we

used both yearly and monthly average values from this

dataset. Future projections are based on the outputs of

five climate models, which provide the full set of environ-

mental variables used: CESM1-BGC (Long et al. 2013),

IPSL-CM5A_LR (Dufresne et al. 2013), MPI_ESM_LR

(Giorgetta et al. 2013), NorESM1-ME (Tjiputra et al.

2013), and HadGEM2-ES (Jones et al. 2011; Martin et al.

2011). For this study, we chose the RCP4.5 (see supple-

ments) and RCP8.5 scenarios, where radiative forcings of

4.5 W m�2 (~650 ppm CO2 equivalent) and 8.5 W m�2

(~1370 ppm CO2 equivalent) are expected, respectively,

for the year 2100 (Moss et al. 2010; van Vuuren et al.

2011).

All WOA layers have the same resolution (1 9 1°),
extent, units (temperature in °C, nutrients in lmol L�1,

salinity in PSU), and coordinate system (Gauss Kr€uger

Coordinate System, GCS_WGS_1984). Climate model

outputs were regridded, and measurement units were har-

monized with those available in WOA.

Observation data

Observation data (presence-only) for F. kerguelensis were

retrieved from two public databases: GBIF (http://www.

gbif.org) and the Global Diatom Database (Leblanc et al.

2012). GBIF entries were obtained on 31 July 2013 from

data resources with the following IDs: 318, 8383, 1769,

8388, 8387, 1916, 13094, and 13095 (Conkright et al.

2002; Kopczy�nska et al. 2007; Trull and Bray 2012). This

compilation is referred to as dataset A throughout this

study. For dataset B, observations from three transects at

90°W, 120°W, and 150°W were used additionally, com-

bined from a station list published in (Hasle 1969) and a

map showing occurrence of F. kerguelensis at these sta-

tions (Balech 1968). After calculating distribution models

for these datasets, the collection of the Hustedt Diatom

Study Centre was searched for samples from areas of dis-

agreement between different algorithms: especially, the

area directly north of the inferred northern distribution

boundary, as well as the Weddell Sea and the Ross Sea.

Microscopic slides from samples from these areas were

screened using 4009 magnification for F. kerguelensis

valves. We will refer to the final observation dataset con-

taining also these additional observations as dataset C.

Dataset A contained 129 presence entries, dataset B 166,

and dataset C 210. Locations and sources of the observa-

tion data are shown in Fig. 2. The full observation dataset

C (reduced to 157 points, due to identical sampling loca-

tions visited in multiple months) was used for construct-

ing the model based on yearly averages of environmental

parameters.

Figure 1. Scanning electron microscopic image of Fragilariopsis

kerguelensis valves (image by Friedel Hinz, AWI).

Figure 2. Observation data for Fragilariopsis kerguelensis. Red dots:

presence locations based on GBIF or Global Diatom Database; yellow

dots: transects of the Brategg expedition (Hasle 1969); white dots:

locations of not F. kerguelensis diatom records from GBIF; stars:

locations at which F. kerguelensis was found (red) and not found

(white) on slides from the Hustedt Diatom Collection (BRM). Note that

in this study, only the F. kerguelensis presence records were analyzed.

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 3149

S. Pinkernell & B. Beszteri Phytoplankton SDM



Distribution models

To compare different methods for distribution modeling,

we used OpenModeller (v1.3.0), an open framework

implementing a broad variety of algorithms (Morin and

Thuiller 2009; Souza Mu~noz et al. 2009), and compared

the following algorithms: Artificial Neural Network, Bioc-

lim, Climate Space Model, Ecological-Niche Factor Analy-

sis, Environmental Distance (4 distance metrics:

Euclidian, Mahalanobis, Manhattan/Gower, Chebyshev),

Envelope Score, GARP (DesktopGARP- and OpenModel-

ler-Implementation, each with and without best subsets),

Niche Mosaic, Random Forests and Support Vector

Machines (SVM). Altogether, we constructed 16 distribu-

tion models with OpenModeller. For comparing models,

the projection for each was thresholded at a value of 0.2,

and for each grid cell, the number of models indicating

presence of the species after this thresholding was dis-

played in a map. For final model construction and projec-

tions, we used the maximum entropy method as

implemented in Maxent version 3.3.3k (Phillips et al.

2004, 2006; Phillips and Dudik 2008; Elith et al. 2011),

using a beta multiplier of 1 and hinge features only. We

calculated two models using the maximum entropy

method: the first built on yearly averages of environmen-

tal data from WOA. For the second (monthly) model,

environmental data for each observation record were

extracted from the monthly dataset of its particular sam-

pling month. For comparison, both models were pro-

jected upon the yearly averaged set of environmental

data. We used the area under the curve of the receiver

operating characteristic (AUC-ROC), shapes of the

response curves, Jackknife tests (all with replicates using

cross-validation), and consistency with background

knowledge for model evaluation and comparison.

The models built using monthly environmental data

were also projected on monthly environmental conditions

to allow an appreciation of the seasonality of the distribu-

tion range of F. kerguelensis. Furthermore, these (monthly

resolved) models were projected on future environmental

conditions expected for the year 2100 (i.e., the five cli-

mate models listed under Environmental data), again for

environmental conditions for each month of the year. In

order to capture variation between differing modeling

methods and starting conditions used to generate the

environmental datasets, the model was projected on each

of the five different climate model outputs. Means and

standard deviations of these projections were displayed in

maps, for each monthly average from WOA and for the

RCP4.5 (see supplements) and the RCP8.5 scenario. To

study effects of different sets of taxon observation records

upon SDM inferences, this was carried out with all three

observation datasets.

All maps were projected to South Pole Lambert

Azimuthal Equal Area projection using the original color

scheme of Maxent (except the algorithm consensus map

in Fig. 2C). Average position of the Subantarctic Front,

plotted in some maps, was obtained from http://gcmd.

nasa.gov/records/AADC_southern_ocean_fronts.html

(Orsi et al. 1995).

Results

For algorithm comparison, 16 distribution models were

constructed with different methods using yearly averages

of environmental data. These 16 models were compared

with models constructed with the maximum entropy

method (Maxent) using yearly and monthly environmen-

tal datasets for each of the three observation datasets

(Fig. 3; we will refer to these models as yearly and

monthly Maxent models, also naming the dataset the

model is based on, respectively). The consensus map

(Fig. 3A) shows the consensus distribution range of

F. kerguelensis from the 16 different models calculated for

method comparison. Projections upon current yearly aver-

aged environmental conditions of the algorithm consensus

(Fig. 3A), of the yearly Maxent model (Fig. 3B), and of

the monthly Maxent model (Fig. 3C) all showed the

northern boundary of the potential distribution range

near, but not exactly following, the Subantarctic Front

(SAF). An exception was the eastern section of the Pacific

Ocean, where this boundary was located further north-

ward from the SAF. Models based on the full observation

dataset (dataset C) show a slightly northward shifted

northern boundary (Fig. 3A–C) compared with models

based only on publicly available observations (dataset B,

Fig. 3D). The projections of the monthly Maxent models

(Fig. 3C and D) both showed a gap in the potential distri-

bution in the southern Weddell Sea, which was not pres-

ent in the yearly Maxent model projection (Fig. 3B). Some

observation points in the region between Australia and

Antarctica and in the Atlantic sector of the Southern

Ocean were located outside the projected potential distri-

bution ranges. In all other regions, observation points fell

within the potential distribution ranges estimated using all

methods. The algorithm consensus plot (Fig. 3A) shows

that differences among algorithms in the estimated poten-

tial distribution area were mainly located south of 60°S,
especially in the region affected by the Weddell Gyre, as

well as in the belt north of the main predicted distribution

area up to 30°S. The emerging pattern, that is, the main

distribution range of F. kerguelensis being the Antarctic

Circumpolar Current, is consistent with literature reports.

The maximum entropy method had similar results to

the consensus of numerous different modeling algorithms.

It provides a coherent toolset for niche modeling and
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projection, also allowing the use of multiple environmen-

tal data layers per variable for model construction.

Because of this consistency and good experiences in the

literature (Townsend Peterson et al. 2007), all further

analyses about seasonality and for future projections were

performed using the maximum entropy method.

(A) (B)

(C) (D)

Figure 3. Modelled distribution of Fragilariopsis kerguelensis as projected on current yearly averaged environmental conditions. (A) consensus

plot of 16 yearly models (calculated by different algorithms using yearly averages, see Methods for details) showing the number of models where

a threshold of 0.2 was reached; (B) model based on the full dataset C calculated using yearly averages of environmental variables; (C) model

based on the full dataset C calculated using monthly averages of environmental variables; (D) model based on observation dataset B calculated

using yearly averages of environmental variables. Average position of the Subantarctic Front is shown by a black line. Dots represent the locations

of the presence-only observation records.
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Projections of the monthly Maxent model (dataset C)

on current summer and winter environmental conditions

(Fig. 4) agreed well with the projection on yearly aver-

aged data (Fig. 3), although the former indicated some

seasonal differences (for projections for all 12 months, see

Figs. S1, S4, and S7). The models based on dataset B

(Fig. 4A and C) only slightly differed from those based

on dataset C (Fig. 4B and D), mainly in the east pacific

sector of the Southern Ocean. For datasets B and C, the

area between South America and the Falkland Plateau

(A) (B)

(C) (D)

Figure 4. Monthly distribution models of Fragilariopsis kerguelensis (based on dataset B – to the left and dataset C – to the right) as projected

on World Ocean Atlas data for current summer (February, upper half) and winter (August, lower half) conditions. (A) February, dataset B; (B)

February, dataset C; (C) August, dataset B; (D) August, dataset C. Red dots represent the presence-only observation records upon which the

model is based. Average position of the Subantarctic Front is shown by a black line.
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appeared as part of the potential distribution range only

in the winter projection of the monthly Maxent models

(although some other methods indicated this area to be

part of the potential distribution range of F. kerguelensis,

see Fig. 3A). The northern boundary of the distribution

range roughly followed the SAF, except for the eastern

part of the Pacific sector of the Southern Ocean: Similarly

to the yearly models, the northern range boundary was

located further north from the SAF. Toward the Antarctic

continent, only small gaps in the potential distribution

range of F. kerguelensis were found in the Weddell Sea

and the Ross Sea under summer conditions. Projection of

the monthly Maxent model on winter environmental con-

ditions resulted in a different potential distribution map

(Fig. 4B). The northern boundary of the distribution was

similar to the other projections except for a bulge at

60°W, around the Falkland Islands, with its northern tip

at 40°S. The southern boundary of the distribution range

was shifted northwards, to near the southern boundary of

the ACC, except for the Ross Sea which was still part of

the potential distribution area.

Although both Maxent models (yearly and monthly)

based on the full observation dataset C were built on the

same set of “raw” observation data, 210 presence records

were used for the training of the monthly model, but only

157 records for the yearly model. This is explained by

multiple sampling events at identical positions in different

months. Such observations were counted as duplicates for

the yearly averages model, whereas they represented dis-

tinct observation records (with distinct values for their

associated environmental variables) for the monthly

model. The yearly model reached an AUC-ROC value of

0.902. The monthly model performed slightly better,

reaching 0.923. In both models, nitrate was the most

influential variable (96.3% and 88.5%, respectively, in the

yearly and monthly models). Relative contributions of the

other variables to the models differed. Sea surface temper-

ature became more important in the monthly model with

a contribution of 7% in contrast to only 2% in the yearly

model. In the monthly model, the oceanographic variables

salinity and silicate together made up 4.6%, in contrast to

only 1.7% for sea surface temperature and no effect of

salinity in the yearly model.

Projections of the monthly Maxent model based on

datasets A and B on summer and winter environmental

conditions modeled for the year 2100 (Fig. 5) showed a

decreased distribution area, along with an overall decrease

in Maxent scores throughout (projections for all

12 months are provided in Figs. S2, S5, and S8 for

RCP4.5 and S3, S6, and S9 for RCP8.5).

Whereas a cutoff selection between 0.1 and 0.3 of Max-

ent’s logistic output score would hardly affect the pres-

ent-day northern distribution boundary of F. kerguelensis

(Fig. 4), this choice makes a bigger difference in the case

of future scenarios. At a cutoff of 0.3, the northern range

boundary shifts poleward to south of the polar front in

the RCP8.5 (Fig. 5A–C) scenario. For dataset B, at a cut-

off of 0.1, the northern distribution boundary would be

inferred close to the northern range boundary for pres-

ent-day conditions for the winter (Fig. 5C), but would

still substantially shift to the south in the summer

(Fig. 5A). In contrast, the northern boundary inferred for

summer conditions lies close to the Subantarctic Front

(and thus the current position of the northern range

boundary) for the Atlantic and Indian Ocean sector of

the Southern Ocean for dataset C. In the Pacific sector,

this boundary again depends on the threshold value rang-

ing from 52°S at threshold of 0.3 up to roughly 46°S at

0.1 (Fig. 5B). For winter conditions, threshold selection

has an even higher impact on the location of the distribu-

tion boarder ranging from 41°S to 47°S (threshold 0.1

and 0.3) in the Pacific sector. Because we have no mean-

ingful criterion for selecting a cutoff value, the uncer-

tainty in the northern boundary of the future distribution

range of F. kerguelensis remains substantially higher than

for the current distribution. The lower Maxent logistic

scores/habitat gaps observed in the austral winter for cur-

rent conditions were not present in any of the scenario

projections in any season.

Projections of the monthly Maxent model based on

dataset C show different future distributions: Compared

with current summer distribution, this model shows an

only slightly decreased distribution area. For the winter

conditions, the northern boundary does not shift to the

south, as in the models based on datasets A and B, but

remains close to its current position or even shifts slightly

to the north in the Atlantic sector.

Notably, several projections on future environmental

conditions showed a gap in the potential distribution area

around and in the continuation of the Antarctic Penin-

sula, most pronouncedly in the case of summer RCP8.5

(Fig. 5A and B). The underlying pattern in the environ-

mental datasets is lower silicate and nitrate concentrations

and lower salinity than in the neighboring areas. The

CESM1-BGC model predicted substantially lower nitrate

concentrations for the end of this century in the Southern

Ocean compared to the other four GCMs, and this also

resulted in substantially reduced projected distribution

areas for F. kerguelensis. However, this had only negligible

impacts on the mean distribution area over the five

GCMs considered (see Fig. S15 for a comparison).

Discussion

In this study, we present the first quantitative models char-

acterizing the current distribution range and forecasting
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potential range shifts for the main silica sinker of the world

ocean, the diatom F. kerguelensis. Due to the scarcity of

experience with distribution modeling of plankton organ-

isms, we first compared numerous modeling algorithms

and found that both the consensus of several different

modeling algorithms and the maximum entropy method

estimated similar potential distribution ranges which

were also in accord with previous literature reports and

(A) (B)

(C) (D)

Figure 5. Potential distribution of Fragilariopsis kerguelensis (monthly model): mean (by color) and standard deviation (as black contour lines) of

projections to five different climate model outputs. (A) RCP 8.5 scenario, February 2100, based on dataset B; (B) RCP 8.5 scenario, February

2100, based on dataset C; (C) RCP 8.5 scenario, August 2100, based on dataset B; (D) RCP 8.5 scenario, August 2100, based on dataset C. Red

dots represent the presence-only observation records upon which the model is based. Average position of the Subantarctic Front is shown by a

black line.
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background knowledge. Taking into account sampling date

and using monthly (as opposed to annual) average values

of environmental parameters, we could calculate seasonally

resolved distribution models and range projections. These

monthly models incorporate the strong seasonality effects

at these high latitudes and can be expected to be more

accurate representations of distribution patterns than those

calculated based on yearly averages. Nonetheless, the sea-

sonal–spatial coverage of observations that would be

required to validate this assumption is currently not avail-

able. The fact that most sampling campaigns at these high

latitudes take place in the austral summer leads to a strong

seasonal bias in the dataset. Another issue of importance

for seasonal models is that sampling date is not available

for all database entries. For F. kerguelensis, the number of

observations containing date information was sufficient for

producing meaningful model outputs. Besides the loss of

precision in environmental data brought about by the use

of yearly averages, yearly models also discard potentially

useful information in the case of seasonally distinct samples

from the same or nearby locations. The 210 entries used for

the seasonal model resulted in only 157 distinct entries for

the yearly model due to multiple samples taken at different

times of the year at nearly identical locations. For many

other phytoplankton taxa, public availability of georefer-

enced taxon observations is much worse than for our target

species and currently limiting for the application of species

distribution modeling methodology.

The AUC-ROC values were high in all models (yearly

models: dataset B: 0.933, dataset C: 0.902; monthly mod-

els: dataset B: 0.94, dataset C: 0.923). These uncommonly

high values can be explained by the relatively small distri-

bution area of F. kerguelensis and the distinct oceano-

graphic characteristics of the Southern Ocean, compared

with the sampling area of the background points covering

the entire world oceans. Although our high AUC-ROC

values are difficult to compare with other studies, they

are appropriate for comparing similar models among each

other and indicate a somewhat superior performance of

the monthly models over the yearly ones.

Besides public availability and spatial and seasonal

spreads, taxonomic accuracy of taxon observation records

is also crucial for model quality. When using GBIF and

GDD data, we had to rely on identifications of the data

sources as they do not provide voucher images that

would enable taxonomic cross-checking. We expect this

not to be problematic for our target taxon as it can easily

be identified even with little experience, but this does not

hold to marine diatom and phytoplankton taxa in gen-

eral. A few locations from the public databases could be

validated by cross-checking of associated microscopic

slides of the Hustedt Collection – notably a full set of

slides from the Pacific transects of the Brategg expedition

which are reported about in (Hasle 1969) and (Balech

1968) are available here. Surprisingly, evaluation of har-

vesting of different data sources (data not shown) showed

that part of the observation data is apparently not shared

among three interconnected data providers GBIF, OBIS

(http://www.iobis.org), and PANGAEA (http://www.pan-

gaea.de). This issue needs to be circumvented for taxa

where few observational records are available through

querying of different data sources and cleaning the data

of duplicates.

Sampling bias turned out to be a rather complex and

subtle issue during this study. It is expected that even

moderately sized observation datasets can be sufficient to

create meaningful distribution models if the underlying

data points are properly distributed. For F. kerguelensis,

the number of entries in public databases is relatively

high (at least compared to other phytoplankton taxa), but

a regional bias is immediately apparent in the distribution

of data points. Entries are concentrated in the Atlantic

and Indian Ocean sectors of the Southern Ocean, and in

the region between Australia and Antarctica, whereas the

Pacific sector is underrepresented (dataset A). We could

somewhat counter this bias by including observation

points from three Pacific transects in dataset B from

Hasle (Balech 1968; Hasle 1969). The addition of these

data points resulted in no substantial changes in the

inferred biogeographic range and its seasonality, which we

attribute to the fact that environmental gradients are stee-

per in the north–south direction than along lines accom-

panying the circumpolar movement of the ACC water

masses. Accordingly, circumpolar extrapolation of distri-

bution ranges should be possible as long as the latitudinal

environmental gradients are well sampled (to the latter

aspect we return below).

Global sampling biases for marine diatom taxa obvi-

ously also exist: As a query for Bacillariophyta on the

GBIF portal quickly reveals, almost all other regions of

the world ocean are undersampled when compared to the

North Atlantic. Nevertheless, it could be argued that sam-

pling effort resulting in the GBIF and Global Diatom

Database records is well distributed across the world

ocean at least at a broad geographic scale of relevance for

the spatial resolution applicable for passively floating

pelagic organisms like planktonic diatoms. For the genus

“Fragilariopsis”, GBIF lists over 4000 entries, and over

600.000 entries for the phylum “diatoms” (Bacilla-

riophyta), distributed worldwide over the oceans. To

probe the effect of this global bias upon our results, we

constructed a bias grid reflecting the spatial distribution

of these diatom entries from GBIF and calculated a

Maxent model incorporating this information. The

inferred distribution range hardly differed from those

resulting from models without the bias grid, further
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supporting that the heterogeneity in sampling effort did

not substantially affect our results (see Fig. S10). In spite

of this, closer inspection revealed a more subtle sampling

bias, which had a pronounced effect upon distribution

range projections for future oceanographic scenarios.

When looking at the distribution of all diatom observa-

tion records from Southern Hemisphere marine locations

(Fig. 2), it became apparent that around the northern

edge of the ACC and just north of it very few diatom

observations are available. It appears that most phyto-

plankton sampling effort in the Southern Hemisphere is

targeted at the Antarctic/Subantarctic regions, and most

of these expeditions do not sample north of around 40°S.
Thus, the question arose if the F. kerguelensis observations

from GBIF and GDD covered the real northern distribu-

tion boundary of the species, and if this sampling bias

influenced our inferences about its distribution range.

Therefore, we searched the Hustedt Diatom Collection

(BRM) for microscopic slides originating from locations

around and just north of the northern boundary of the

inferred distribution area based on datasets A and B and

scored these for the presence of F. kerguelensis valves

(dataset C). This analysis revealed that the species indeed

can be found somewhat further north than the publicly

available observation points suggest, even if mostly at low

abundances. The addition of these data points to the

SDM input (dataset C) led to only a minor northward

shift of the inferred northern distribution boundary, now

located somewhat north of the Subantarctic Front. Its

effects upon scenario projections were, however, more

substantial. These still indicated a change in seasonality

(increasing habitat suitability in the southern coastal areas

in the winter), and we could generally observe decreased

values of the Maxent logistic output throughout the dis-

tribution area when compared to the current distribution.

The southward shift projected for the northern distribu-

tion boundary of the species, however, became smaller

and limited to the summer.

The main environmental drivers of the distribution of

F. kerguelensis, according to our models, are nitrate con-

centrations and sea surface temperatures (SST). Whereas

both variables contribute to defining the inferred north-

ern distribution boundary, the southern “boundary” (gaps

in the inferred distribution area in some areas next to

Antarctic continent in the winter) is mainly defined by

low SST which here probably functions as a proxy to the

sea ice, directly not included in our models. The over-

whelming importance of nitrate, accompanied by the

almost negligible influence of silicate, in defining the

northern distribution boundary of F. kerguelensis might

appear surprising at first sight because F. kerguelensis is

known to have an atypically high Si:N ratio when com-

pared to most other diatoms (Brzezinski 1985; Hoffmann

et al. 2007), and, accordingly, has a high silicate demand.

Silicate and nitrate distributions are highly correlated in

the ocean, and it could be that this correlation leads to

an exchangeability of the two variables in our distribution

models. However, one of the notable regional exceptions

from this global correlation is represented by the northern

rim of the ACC, a region encompassing the northern dis-

tribution boundary of F. kerguelensis (see Fig. S11). Here,

silicate is depleted (due to the growth of highly silicified

diatoms, not the least F. kerguelensis itself) toward the

north, while nitrate is not consumed fully and reaches

concentrations which are atypically high for water masses

so strongly depleted of silicate. Distribution of nitrate and

silicate concentrations at the observation locations indeed

reveals that whereas F. kerguelensis is rarely observed at

low nitrate concentrations, many observation points fall

into silicate-depleted locations (Fig. S14). Thus, although

paradoxical at first sight, it appears that sea surface distri-

bution of nitrate is more informative about the biogeog-

raphy of this highly silicified diatom than silicate is.

Whereas the position of the inferred northern distribu-

tion boundary proved insensitive to the addition of obser-

vation points from the South Pacific, it did respond to

the addition of records from around the northern edge of

the ACC. This is less surprising than it might seem upon

first sight, as the South Pacific observation points had

rather similar environmental characteristics to those

already in the dataset from the South Atlantic (Fig. S14),

but the northernmost observation substantially increased

the range of influential environmental variables in the

dataset. In dataset B, with three exceptions, all observa-

tions came from locations with a nitrate concentration

>15 lmol/L and SST <7.5°C (see Fig. S14). Interactive

visualization of the models based on dataset B with the

Maxent explain tool also indicated that the northern dis-

tribution boundary was defined by nitrate concentrations

around 15 lmol/L in these models. When adding our

newly captured observation records from around the

northern edge of the ACC, both SST and nitrate concen-

tration for several data points fell beyond these limits (to

below 5 lmol/L nitrate and to almost 15°C SST, apart

from one extreme outlier observation for both variables,

Fig. S14). According to the Maxent explain tool, the

northern distribution boundary was now located at a

nitrate concentration below 10 lmol/L and an SST of

10°C. The fact that future distribution range projections

are affected more strongly by this change than the current

distribution patterns can be explained by the differing

strength of the south to north nitrate gradient today and

in the oceanographic model outputs for 2100 (shown in

Fig. S12). While areas of peak nitrate concentrations are

projected to sink substantially in RCP8.5 compared with

the current situation, areas with moderately high nitrate
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concentrations (between 10 and 20 mmol/L) are extend-

ing, especially in the summer. But the latitudinal nitrate

gradient is projected to weaken also in the winter, as indi-

cated by the wider spacing of lmol/L isolines in Fig. S12.

If the full dataset C (including the additional records

obtained from the northern ACC) is taken to be a more

accurate representation of the distribution of F. kerguelensis,

we can conclude that oceanographic changes projected for

2100 for RCP8.5 will likely not affect its distribution

range substantially. On the other hand, the decreasing

nutrient supply over the ACC (as shown by Fig. S12)

might well lead to changes in its abundance, but address-

ing these would require a different approach.

We also cannot exclude from our results that SST shifts

(Fig. S13) projected for the next century might affect the

distribution range of F. kerguelensis. Although in the cor-

relative framework used here, nitrate seems the single

most important variable explaining the distribution of

F. kerguelensis, SST and temperature tolerance might nev-

ertheless be important mechanistic drivers of its future

distribution. However, the conclusions we can draw from

our analyses about temperature tolerance of this species

are rather limited. Although several observation points

have associated SST values > 11°C (one even reaching

almost 20°C), this cannot safely be interpreted to imply

that F. kerguelensis can survive longer periods at such

temperatures. Fiala and Oriol (1990) observed the upper

growing temperature for F. kerguelensis in a culture at

7°C. In a small experiment where we incubated three

F. kerguelensis cultures at 4, 7, and 11°C, all cultures dis-
integrated and died after around one week at the highest

temperature (data not shown). This does not exclude the

possibility that F. kerguelensis can acclimate to higher

temperatures when given more time (in our experiment,

they were transferred to 11°C from their usual growing

temperature of 4°C after 1 week acclimation at 7°C), and
a more systematic investigation of the temperature toler-

ance of this species is needed before far-reaching conse-

quences can be drawn.

Hasle located the northern distribution boundary of

F. kerguelensis at 40 to 56°S (Hasle 1976). In this region,

roughly also corresponding to the Subantarctic Front, a

sharp increase in chlorophyll-a concentrations can be

observed, marking “a rapid transition from unproductive

subtropical waters to highly productive temperate and

subpolar systems” (Cermeno et al. 2010). The northern

boundaries of the projected ranges of the models pre-

sented in this study are usually near the SAF. The largest

exception is the southwest Pacific where the northern dis-

tribution boundary in our results usually lies substantially

further north than the SAF. In the southwest Pacific, we

can observe less marked latitudinal gradients in environ-

mental parameters than in the other ocean basins crossed

by the ACC, probably partially caused by cold, nutrient-

rich Antarctic surface waters transported by the Hum-

boldt Current. The distance between the Subantarctic and

Subtropical Fronts is also greater in this region than in

the South Atlantic and South Indian Ocean (Orsi et al.

1995). It seems that these regional oceanographic fea-

tures lead to a more blurred distribution boundary for

F. kerguelensis in the South Pacific than in other regions.

In the sediment, F. kerguelensis was found further

north, up to the Subtropical Front (STF) (Zielinski and

Gersonde 1997; Crosta et al. 2005). In sediment studies,

F. kerguelensis is reported as an endemic Southern Ocean

species with a temperature range of �1 to 18°C and a

“significant drop in abundance at temperatures > 13.5°C”
(Zielinski and Gersonde 1997). Highest abundances can

be observed in open-ocean regions, not or only weakly

effected by sea ice, but in the sediment, F. kerguelensis

was also reported to be found in regions with up to

8 month of sea-ice cover (Crosta et al. 2005). Altogether,

the distribution range of F. kerguelensis based on sedi-

ment records appears somewhat broader than indicated

by plankton records.

Environmental data in the World Ocean Atlas of the

high latitudes, especially south of 70°S, are reported to be

less accurate than for lower latitudes (Tyberghein et al.

2012). This cautions for care in the interpretation of the

southern distribution boundaries of F. kerguelensis. How-

ever, the northern distribution boundary of this species is

of more ecological/biogeochemical significance, and as

this boundary lies north of 55°S, we expect it to be

devoid of these accuracy problems. The gaps in the

inferred distribution area next to the Antarctic continent

should also be interpreted with caution, as water mass

movements are expected to transport the species into and

through these areas when it grows in neighboring regions.

In terms of environmental variables, these gaps are

defined by SST < �1.8°C, and these values are indicative of

substantial sea-ice coverage. Although ice-covered regions

are not seen as the typical habitat of F. kerguelensis, and

the species indeed usually appears at low abundance in

ice-covered areas, a large number of observation records

(including several we have obtained ourselves, and for

which physical vouchers are deposited in the Hustedt

Diatom Collection) confirm the presence of F. kerguelen-

sis under sea ice, for example, in the Weddell Sea and

Ross Sea.

Our choice of explanatory variables was strongly influ-

enced by practical considerations, that is, the availability

of high-quality interpolated data products for present-day

distributions and availability of the same variables in

climate model outputs for future scenarios. Notably, we

could not include iron availability as an explanatory vari-

able. It is widely appreciated that iron is an important
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factor influencing phytoplankton growth and species dis-

tributions in the Southern Ocean (Smetacek et al. 2004;

Assmy et al. 2013). However, iron concentrations are

more difficult and costly to measure than macronutrients

such as silicate or nitrate. Presently, no iron concentration

datasets with a global coverage are available that could be

used in the distribution modeling setup used in this work.

Its complex biogeochemistry also makes iron distributions

difficult to model, and availability of iron concentrations

in biogeochemical model output is also limiting currently.

The seasonal model allows us to appreciate the season-

ality in distribution patterns expected for phytoplankton

taxa of high latitudes. Interestingly, the seasonality

revealed by our distribution models for F. kerguelensis for

present-day conditions differs from the seasonality pros-

pected for the climate change scenarios. At present, the

most marked seasonal change inferred by the model

seems to relate to the southern distribution boundary,

which moves somewhat toward north and away from

Antarctica in the austral winter, whereas the northern

range boundary changes little.

A notable feature of our distribution range projections

upon environmental data modeled for the year 2100 is

the presence of a gap with substantially lower or zero

values of habitat suitability northeast of the Antarctic

Peninsula (Fig. 5A and B). Inspection of the underlying

environmental datasets (especially of the HadGEM2-ES

outputs) reveals that in this area, water masses with lower

salinity and nutrient concentrations are found than in the

direct neighborhood. This effect seems to be stronger in

the austral summer and might represent a melting signal,

but was not previously noted or interpreted by oceano-

graphic modeling studies. The biological/biogeographic

significance of such a water band with distinct physico-

chemical characteristics from the rest of the ACC is diffi-

cult to assess, but in the worst case, it might lead to a

population dynamic bottleneck for F. kerguelensis on their

circumpolar drift within this current. Insofar, further

investigation of this anomaly would be of ecological rele-

vance.

The method used here, that is, correlative modeling of

presence-only data, represents the simplest methodology

that can be used for characterizing species distributions.

As this discussion shows, the method has strong limita-

tions both in terms of capturing mechanistic determi-

nants of biogeography and in ecological interpretability of

the results. As far as biogeography goes, the compilation

of presence–absence datasets and experimental determina-

tion of tolerance limits could represent next steps to

address these issues. Beyond that, modeling absolute

abundances or species specific biomasses would of course

be of substantially more ecological relevance than model-

ing distribution ranges, but it has to be noted that iron

concentrations are probably more crucial determinants of

F. kerguelensis population dynamics than they are for the

distribution range of the species, and this presents the

challenge of compilation of a large interpolated data

product for iron concentrations similar to World Ocean

Atlas. Alternatively, iron concentrations for such analyses

could perhaps be obtained from biogeochemical modeling

constrained by observation data.
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Figure S1. Monthly Maxent model based on dataset A

projected on maps of current environmental values from

World Ocean Atlas (WOA).

Figure S2. Monthly Maxent model based on dataset A

projected on RCP 4.5 scenarios for year 2100.

Figure S3. Monthly Maxent model based on dataset A

projected on RCP 8.5 scenarios for year 2100.

Figure S4. Monthly Maxent model based on dataset B

projected on WOA.

Figure S5. Monthly Maxent model based on dataset B

projected on RCP 4.5 scenarios for year 2100.

Figure S6. Monthly Maxent model based on dataset B

projected on RCP 8.5 scenarios for year 2100.

Figure S7. Monthly Maxent model based on dataset C

projected on WOA.

Figure S8. Monthly Maxent model based on dataset C

projected on RCP 4.5 scenarios for year 2100.

Figure S9. Monthly Maxent model based on dataset C
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projected on RCP 8.5 scenarios for year 2100.

Figure S10. Yearly Maxent model based on dataset B

built using a bias grid.

Figure S11. Principal component analysis of environmen-

tal predictors from WOA.

Figure S12. Current and predicted future distribution of

nitrate (WOA and RCP 8.5 scenario for 2100).

Figure S13. Distribution of sea surface temperature

(current WOA and RCP 8.5 scenario for 2100).

Figure S14. Distribution of environmental parameter

values (SST, nitrate, and silicate) at sampling sites for the

three observation datasets.

Figure S15. Comparison of mean distribution projections

upon all 5 GCMs vs. only 4 GCMs (without the outlier

CESM1-BGC).
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