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Abstract

Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs).
The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and
robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how
specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we
used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability
and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection,
including mutation and recombination. Each generation simulated the development of a population of organisms modeled
by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable
networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results
suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for
most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals.
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Introduction

Gene regulatory networks (GRNs) are believed to play a central

role in organismal development and evolution [1–3]. Recent

theoretical and experimental studies have revealed that GRNs

have many interesting quantitative and qualitative features,

including scale-free structure [4], recurring motifs [5], robustness

[6], and evolvability [7]. Here we focus on a very specific and

common network motif, autoregulation [8], and its contribution to

stability and mutational robustness [9].

A direct autoregulation motif in transcriptional GRNs consists

of a regulator that binds to the promoter region of its own gene,

thus regulating its own transcription. It constitutes the simplest

case of a feedback mechanism. Two thirds of E. coli’s transcrip-

tional factors (TFs) are believed to be autoregulated [10]. The

fraction of autoregulated TFs is lower for yeast (10% [11]), but

extensive autoregulation at the post-transcriptional level has been

suggested [12]. Two rules relating the presence of feedback loops

in GRNs to their dynamical properties have been proposed [13]:

(i) a necessary condition for multistability (i.e., the existence of

several stable fixed points in the dynamics) is the existence of a

positive circuit in the regulatory network (the sign of a circuit being

defined as the product of the signs of its edges); and (ii) a necessary

condition for the existence of an attractive cycle in the dynamics is

the existence of a negative circuit.

These two types of dynamical properties have been associated

with important biological phenomena: cell differentiation and

stochastic switching in the first case [14], homeostasis [9] and

periodic behaviors (e.g., cell cycle [15] and circadian rhythms [16])

in the second. Although these conditions are necessary, they are

often not sufficient to define network dynamics, which can depend

on other details of the GRN model [13]. For example, negative

autoregulation (NAR), the shortest negative circuit possible, has

been traditionally associated with robustness of gene expression to

noise [9]. However, if the NAR feedback contains a long delay,

noise may be amplified [17]. Moreover, both positive and negative

feedback circuits are usually embedded in larger networks, and the

relative contributions of multiple positive and negative feedback

loops to the dynamics of a whole network are largely unknown

[13,14,18–20].

Here, we investigate the relationship between the sign of

autoregulation and the stability and mutational robustness of

genetic networks. We study this in the context of a widely used

gene network model [21–23], related to the modeling framework
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of Boolean networks [24]. We find that stability and robustness are

highly correlated with the sign of autoregulation, and that selection

for stability leads to positive autoregulation. Despite these positive

associations, we show that selection does not maximize robustness

and that it is possible to engineer networks with higher robustness

by manipulating their diagonal and off-diagonal elements. We also

show that autoregulation is conserved over time and that evolved

networks are a special subset of stable networks (networks that

show fixed point dynamics) with high robustness. Finally, we

discuss some implications for biological systems and compare our

results with biological networks of different organisms.

Methods

Developmental model
To study how stability, robustness and autoregulation change

during evolution, we use a standard model for GRN. In one

generation, we assume that that the phenotype of an organism S(t)
develops over time t, starting from an initial phenotype S(t = 0),

under the influence of a gene-interaction network W. In general,

phenotypes are thought of as expression levels of the genes of the

organism at time t. Thus, they are vectors of dimension N,

S(t)~(s1(t), . . . ,sN (t)), with binary entry values si[f{1,1g,
where N is the number of genes of the organism.

Phenotypes S(t) change by the action of a gene-interaction

network that drives their development, and is represented by an

N|N matrix, W, whose elements, wij, denote the effect on gene i
of the product of gene j. These interaction weights wij are nonzero

and binary, wij[f{1,1g. Thus, all genes either repress or activate

each other’s expression.

In this study, we assume that size of the gene interaction

network is N = 10 genes. The matrix W is not necessarily

symmetric. Diagonal elements, wii, represent autoregulation, i.e.,

the action of the ith gene on itself.

Each network W determines the dynamics of the phenotype S(t)
in a series of development steps. The repeated application of such

development steps on a phenotype results in deterministic,

discrete-time dynamics of S(t), modeled by the set of nonlinear

coupled difference equations:

si(tz1)~sgn
XN

j~1

wijsj(t)

 !
, ð1Þ

where sgn(0) = 1. This spin glass or neural network-type model

[22] represents a subclass of Random Boolean Networks [24]

known as Random Threshold Networks [25].

When simulating development, the network is updated

synchronously, that is, only values of si from time step t are used

for the calculation of si (t+1) (see [26–28] for asynchronous

updates.) We refer to Equation (1) as the development process (see

[23,29] for model illustration, biological motivation and assump-

tions).

The development process can be extended to include sparse
networks G. Sparse networks are used to model gene interactions

in which only a fraction of the genes repress or activate a fraction

of all the other genes, in contrast to fully connected networks W,

where all genes have some effect on all other genes.

Let G denote an interaction network represented by a N|N,

N = 10 square matrix whose entries, gij, take the values of {2

1,0,1}. The parameter c, the density of the network, determines

the proportion of non-zero matrix elements. When simulating

sparse networks (see Results), we chose c = 0.2 (due to similarity to

the biological networks in Table 1) and a regular, directed graph

topology, where all genes have degree 2. This means that all genes

in a network are regulated by two genes and also regulate two

other genes.

Examining model behavior. Starting from an initial gene

expression state the system described in Equation (1) will

eventually reach an attractor. Such an attractor may be a fixed

point or a limit cycle. In a biological context, a fixed point can be

interpreted as one mature phenotype of the organism after the

completion of development.

Simulation experiment setups. To investigate how specific

network features change within populations under development as

well as under evolution, we devised two main simulation

experiment setups.

Each organism is represented by a network W and an initial

state S(0). In this study we limit ourselves to two experimental

setups: pairs of randomly chosen networks and random initial

conditions (RNRC setup), and n randomly chosen networks that

each act on one single randomly chosen initial condition (termed

RNIC setup). We use RNRC for populations that don’t evolve,

and RNIC for populations subject to evolution (as explained

below). The random initial conditions for the simulation experi-

ments are generated by sampling one phenotype with uniform

probability from the entire phenotype space (si(0) = 1,21 with

probability 0.5).

Random and stable networks
To generate a random network Wr the matrix-elements wij are

sampled from {21,1} with equal probability (0.5 per element and

entry). Additionally, we can generate stable networks Ws with a

pre-selection procedure. In this procedure, a random network Wr

and random initial state pair are first generated. This pair

undergoes the development process. If no fixed point is attained, a

new pair is sampled and developed. This step is repeated until

some (W, S(0))- pair generates a fixed point. The final network Ws,

is a stable network. This notion of stability refers to an individual
level stability, which differs from a notion of population level
stability that will be introduced below.

Author Summary

Multicellular organisms show an incredible diversity of cell
types in their different tissues. Functional classes of cells
can be attributed to the activation and repression of
genes, which enable each cell type to support different
functions within the organism. These patterns of activity
have been studied by means of gene regulatory networks
(GRNs). How these gene networks generate stable pheno-
typic states is thought to underlie the development and
evolution of organisms. The pathways to these states are
influenced by the autoregulatory properties of these
networks. The stability and robustness of gene networks
are used to investigate how such states are maintained.
This study sheds light on how these properties relate to
one another. By simulating the evolution of these
networks, we show that genes depend on positive self-
regulation to remain stable and robust when faced with
random mutations or environmental perturbations. As-
suming biological networks correspond to stable net-
works, our results suggest that biological networks should
often be dominated by positive autoregulatory loops. This
seems to be the case for most studied eukaryotic
transcription factor networks, including those in yeast,
flies and mammals.

Stability Selects for Positive Autoregulation
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In this study, we refer to stability as the property of a network,

while strictly speaking, it is a property of a W, S(0) pair. However,

we have previously shown [30] that the network is by far the most

important determinant of stability. If a network is stable/unstable

with a random initial state, it most likely remains stable/unstable

with any other initial state. For this reason, we classify networks as

stable or unstable, even if we just solve Equation (1) for one

possible initial state.

Evolved and non-evolved networks
Two types of simulation experiments are our primary focus in

this study. First, experiments in which a population of organisms

undergoes the development process only, which we refer to as non-
evolved. Secondly, experiments with multiple generations

(evolved), where after each development process (one generation)

the composition of the population of organisms is additionally

altered by evolutionary mechanisms. The development process is

completed after all organisms have reached some stage of

development: either a fixed point or a cycle. We implemented

standard evolutionary mechanisms, such as selection, mutation

and recombination. After these evolutionary forces have acted on

the population, a new development process starts in the next

generation with identical initial phenotypes for each organism.

In this study, we set the population size to n = 500 across all

experiments (unless otherwise noted). This population size remains

constant during evolutionary simulations (Wright-Fisher model

with sampling with replacement).

Selection
To study how selection affects evolving populations, we

implemented different types of selection or selection models. The

mutation and recombination mechanisms applied were the same

for all evolved populations.

Selection mechanisms modify the number of copies of one

specific network within the population depending on the fitness of

the phenotype that specific network has generated through

development. In a selection mechanism, one phenotypic state

can be marked as the optimal state, with the highest possible

fitness. If such an optimal state, Sopt(‘) is specified, the fitness of a

network with attractor S(‘) is given by:

fitness(S)~exp {
d S(?),Sopt(?)ð Þ2

s

 !
, ð2Þ

where d is the normalized Hamming distance and s.0 determines

selection strength [23].

Small values of s imply strong selection against deviations from

the optimal state. Large values minimize the fitness difference

between phenotypes. The Hamming distance d corresponds to the

number of differing expression states of individual genes between

two phenotypic states [31], subsequently normalized to the

interval [0,1] in this study.

Equation (2) is valid under the assumption that Sopt(‘) and S(‘)

are attractors with identical, optimal cycle lengths lopt. The cycle

length of the attractor with highest fitness is denoted with lopt. The

fitness of attractors of length l?lopt depends on the selection

model. We use attractor length and cycle size or period as

synonyms.

Selection models
We implemented selection models similar to those used by other

authors [23,29] and also introduced new ones. In these models, the

fitness of a developed organism depends on two parameters:

selection strength, s, and optimal period, lopt.

Selection model 1 (selecting for stability): lopt = 1,
fitness(l?lopt) = 0

s = 0.1 ‘target’ model
Selects for fixed points and an optimal gene expression state.

Fitness is given by Equation (2) for fixed points and is 0 for cycles.

s = ‘ ‘no target’ model
Fitness is 1 for all fixed points and 0 for cycles.

Selection model 2 (selecting against stability): lopt.1,
fitness(l?lopt) = 0

s = ‘, lopt = 2,3,…,7 (cycles)
We generalize the ‘no target’ model to select for cycles.

Fitness is 1 for cycles of length l = lopt and 0 otherwise, including

fixed points. We try different lopt.1.

Selection model 3 (neutral for stability):
s = 0.1, fitness = max(fitness(S)) for all S in S(‘), any

l (S represents any state in the attractor S(‘))

Table 1. Most studied eukaryotic transcription factor networks (including yeast, flies and mammals) show values of p ranging from
0.76 to 1.

Species TF System p # autoregulated # TFs Reference

Mammals core pluripotency network 1 5 5 [42]

Drosophila gap genes 1 4 4–7 [48,49]

Drosophila segment polarity 1 5 10 [37]

Drosophila circadian clock 1 5 6 [50]

Arabidopsis circadian clock 1 4 4 [51]

Arabidopsis flower morphogenesis 1 2 10 [38]

Mouse blood stem cells 1 7 11 [52]

Human genome-wide 0.76 21 301 [46]

Drosophila melanogaster genome-wide 0.78 14 87 [46]

Saccharomyces cerevisiae genome-wide 0.75 12 169 [46]

E. coli genome-wide 0.26 109 182 [45]

Sea urchin endomesoderm development 0.25 16 50 [53]

Description of different regulatory networks of different organisms in terms of size, ubiquity and sign of autoregulation.
doi:10.1371/journal.pcbi.1003916.t001

Stability Selects for Positive Autoregulation
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We generalize the ‘target’ model to not require stability.

When l = 1, we have the ‘target’ model as a special case and fitness

is given by Equation (2). When l.1, fitness is the maximum fitness

given by Equation (2) for all states in the cycle. The attractor S(‘)

can be a fixed point or a cycle.

Selection model 4 (random sampling):

s = ‘, fitness = 1, any l

No selection. We take this as the null model.

For each selection model, we generated between z = 100 and

z = 300 independent populations (depending on the model).

Specifically: z = 200 for the ‘target’ model; z = 300 for the ‘no

target’ model; z = 200 for Selection model 2; z = 100 for Selection

models 3 and 4. We denote such an aggregation of populations as

a set of populations and z as its set size. Each evolved population

has a different initial state, but all individuals within the same

population have the same initial state.

Mutation
Mutations randomly change the sign of wij at a rate m = 0.1 per

network per generation. All matrix entries, wij, including diagonal

elements, wii, have equal probability of changing sign, namely m/

N2 = 0.001 per generation. For sparse networks we use a

probability for changing sign of m/(c N2).

Recombination
To model recombination we follow the methods in [23], where

full chromosome segregation (no crossover) is implemented. The

two offspring of a randomly chosen pair of recombinant parents

are generated by randomly taking half the rows from each parent

matrix. This procedure is performed on the entire population.

Population metrics
We define a population-level stability (henceforth referred to as

stability if not otherwise stated) as the fraction of networks that are

stable (individual-level) in a given population [30]:

stability~nf =n ð3Þ

where nf#n is the number of times the attractor is a fixed point,

and n is population size, that is, the number of network matrices.

Stability takes values between 0 and 1.

Similarly, we define the robustness of a population as the

fraction of all possible mutated networks in a population that reach

the same fixed point attractor as their un-mutated originals [23],

conditional on the fact that the attractor did not become a limit-

cycle. Specifically, we estimate robustness by looping through the

population of networks and mutating every element of each

network matrix W (changing the sign of wij for binary matrices),

thus generating N2 single-mutants per network. Then, the n|N2

networks undergo the development process starting from the same

initial phenotypes as their originals, and are further analyzed.

For a single network, we define individual-level viability as the

fraction of single-mutants that attain a fixed point:

viabilityind~nfixed=N2 ð4Þ

where nfixed,N2 is the number of times the N2 single-mutants

have still generated a fixed point. With this metric, we can now

define individual-level robustness:

robustnessind~n~=nfixed ð5Þ

and n = #nfixed is the number of times the same attractor state as

the one attained by the un-mutated original is reached starting

with identical initial conditions (i.e., the mutant has the same

phenotype as its wildtype). The population-level viability and

robustness measures are computed from the averages of all

networks in the entire set of populations.

Both robustness and viability take values between 0 and 1. In

normalizing robustness by nfixed instead of N2, we attempt to

decouple the effects of stability and robustness. In the vast majority

of cases, mutations that change the stability of a network do not

affect its robustness score. Exceptions to this are the rare occasions

when nfixed = 0 (robustness is not defined), or when nfixed is low

(robustness can only take a few specific values).

In an extension of the fraction of activating connections-statistic

[32], we found it useful to measure properties of diagonal and off-

diagonal elements of a matrix W separately, thereby decoupling

the effects of direct autoregulation and off-diagonal regulation. For

a single network matrix W, we define:

p~Nz
p =N

q~Nz
q =N(N{1)

ð6Þ

where N+
p and N+

q are the number of positive diagonal and

off-diagonal elements of W, respectively. Both p and q are

always positive and take values between 0 and 1. We call p the

sign of autoregulation, because autoregulation is predomi-

nantly positive when p.0.5 (we call this positive autoregula-
tion), and mostly negative when p,0.5 (we call this negative
autoregulation).

The metrics p and q measure direct regulatory influence.

However, network dynamics can also be affected by long-range

interactions. To assess the role of such long-range regulation, we

introduce a metric of indirect positive autoregulation r, which

measures the fraction of autoregulatory paths over two genes that

are positive (i.e., gene A activates gene B, which activates gene A).

For a single network W, we define:

r~Nz
r =N(N{1) ð7Þ

where N+
r is the number of positive off-diagonal elements of WWT

(WT is the transpose of W). Because WWT is symmetrical, it

suffices to count the fraction of positive entries in either of the

triangles of the matrix.

We also define metrics to assess the population-average of gene

interaction strengths:

oij~nz
ij=n

conservationij~1{abs oij t1ð Þoij t2ð Þ
� �

,
ð8Þ

where n+
ij is the number of positive elements in position i,j across

all n networks in a population, abs is the absolute value function,

and t1 and t2 are two different evolutionary time points. Here, oij,

is referred to as average positive ij- interaction strength, and

measures how much gene i activates gene j on average, whereas

the conservation statistics between population-averaged gene

interaction strengths measures how much these interaction

strengths are maintained over time. In evolutionary experiments,

conservation, p, q, and r are averaged over all individuals and all

populations.

The code utilized in this paper can be downloaded from

https://github.com/rpinho/phd.

Stability Selects for Positive Autoregulation
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Results

Individual- and population-level stability and
autoregulation are correlated in Boolean GRNs

To study the relationship between the sign of autoregulation (p)

and stability during development, we devised two experiments.

First, for each p = 0, 0.1, …, 1, a pair consisting of one random

network and one random initial condition was sampled (RNRC

setup; see Methods). Equation (1) was then evaluated for each pair:

if the attractor was a fixed point, the network was considered

stable. Instead, if the solution to Equation (1) was a limit cycle, the

network was considered unstable. This process was repeated

n = 105 times for each p.

Figure 1A shows that individual-level stability is strongly

associated with p. Stable networks have significantly higher values

of p than unstable networks (median of 0.9 compared to 0.4 for

unstable networks; Mann-Whitney U p-value ,0, Figure 1A).

This positive association was also observed for population-level

stability in a second experiment. We subdivided the networks

generated in the first experiment into populations of identical p,

and measured the average population-level stability for each p. We

observed that the fraction of stable networks increases rapidly with

higher values of p (Figure 1B). These results also indicate that p
and stability are strongly associated.

Evolution of autoregulation when selecting for stability is
non-linear

We next studied how p changes when explicitly selecting for and

against individual-level stability in evolutionary simulations. To

this end, we founded sets of populations with random networks

and the same initial state for each population (RNIC setup; see

Methods) [23,29]. The average p was set to p = 0.5 at generation 0.

We then evolved all populations under the six different selection

models (including mutation and recombination) described in the

Methods. For all of these selection models, we followed the

evolution of the sign of autoregulation p over 106–107 generations

(until equilibrium was attained).

Consistent with the observations for non-evolving networks,

positive autoregulation is strongly favored during evolution, both

under the ‘target’ and ‘no target’ models (Figure 2A). However,

the evolution of p follows a complex, non-linear pattern. After a

sharp initial increase over the first ,50 generations, p reaches its

maximum when population-level stability is above 95% (stability-

metric not shown in the Figure), and starts to decay slowly to a

stable evolutionary equilibrium of p,0.8 from t,103 generations

for both models (Figure 2A). At the peak, a fraction of up to

p,0.95, or 19/20 surviving matrices show positive autoregulation

for all genes under the ‘no target’ selection model.

Interestingly, selecting for cycles of length l = 2 (i.e. against

individual-level stability), has the opposite effect on evolving

networks: p decreases sharply down to ,0.3 (Figure 2B), leading

to negative autoregulation. A similar, but less pronounced pattern

is observed when selecting for longer cycles with lengths l.2

(Figures 2B and S2).

As expected, a neutral model with no selection for individual-

level stability or a specific target produces random networks, with

values of p centered on p,0.5 (Figure 2C). However, mean values

of p,0.5 also evolve when not selecting for any particular attractor

length, but still selecting for a specific target (Figure 2C).

Thus, the selection for stability leads to positive autoregulation.

Figure 1. Positive autoregulation favors stability. A. Boxplots of the sign of autoregulation (p in Equation (6)) for two network classes: stable
(fixed points) and unstable (cycles). Whiskers are 1.5 times the inter-quartile range (the difference between the first and third quartiles). All outliers are
represented. B. Histogram of the values of p for stable matrices, i.e., stability (Equation (3)) as a function of p. The dotted line is an exponential
function of p. Networks are random and non-evolved. Panels A and B represent the same data in different form. Equation (1) is solved n = 105 times
for each p = 0, 0.1,…, 1 (11 bins).
doi:10.1371/journal.pcbi.1003916.g001

Stability Selects for Positive Autoregulation

PLOS Computational Biology | www.ploscompbiol.org 5 November 2014 | Volume 10 | Issue 11 | e1003916



Autoregulatory motifs are highly conserved over time
These results suggest that selection may act over direct

autoregulatory motifs (i.e. the diagonal elements of the GRN

matrix) to promote individual-level stability. If this is the case,

positive diagonal elements should be overrepresented across

evolved populations relative to off-diagonal elements, since

selection for individual-level stability could be achieved by

maximizing autoregulation p.

To test this hypothesis, we calculated the average interaction

weights SSwijTn|z
TT in populations evolved from a RNIC setup

(the number of populations, z, was 100, and the population size

n = 500). The metric SSwijTn|z
TT is the average value of the wij

entry of individual networks W, taken across a set of populations

(including individuals within the populations) as well as evolution-

ary time. Extreme values of SSwijTn|zTT~{1 or 1 indicate that

the matrix element i,j is identical across individuals, different

populations and different generations, whereas a neutral value of

SSwijTn|zTT~0 means the matrix element i,j fluctuates randomly

in individuals and populations and is not conserved over time.

We found that, in our evolution experiments, the averaged

diagonal elements SSwijTn|zTT
for each i

� �
attained higher

values than the off-diagonal elements, consistent with stronger

selection for positive autoregulation acting on the diagonal

elements (Figure S3). This is further supported by the observation

that selecting for individual-level stability leads to positive values of

SSwijTn|z
TT , whereas selecting against individual-level stability

leads to negative SSwijTn|z
TT values. Selecting neither for nor

against stability, but still selecting for a specific target, also yields

negative SSwijTn|zTT .

To increase our confidence that the value of p = 0.8 emerging

under the no-target model is maintained by selection for stability,

we compared the effects of diagonal and off-diagonal mutations on

individual-level stability in the evolved networks. We hypothesized

that since single mutations in diagonal elements could result in

unstable networks more often than in off-diagonal elements,

networks carrying diagonal entry mutations would therefore be

weeded out at higher rates. Because p and stability are correlated,

p would then be maintained at a high value.

In a first approach, we sampled n = 105 stable networks at

t = 106 generations (equilibrium reached) evolved under the ‘no-

target’ model. The overall fraction of networks that survive after

acquiring single mutations (viability in Equation (4)) is high (95%).

Consistent with our hypothesized maintenance mechanism, the

population-level viability of networks is significantly higher for off-

diagonal elements (median of 0.97 compared to 0.93 for diagonal;

Mann-Whitney U p-value,0, Figure 3A). Intriguingly, the

difference in viability is even higher for t = 48 generations, when

p is close to maximum (Figure 3B), and the evolutionary dynamic

has not yet reached equilibrium. These results suggest that a

mutation of a diagonal element is more likely to lead to a cycle

than mutation of off-diagonal elements.

In a second approach, we studied the conservation of values in

diagonal versus non-diagonal elements between two given time

points. To this end, we sampled n = 105 evolved stable networks at

t1 = 105 and t2 = 106 generations from the ‘no-target’ and the

random models. Subsequently, we counted the fraction of positive

elements oij, (Equation (8)) across all networks and for each

position in the gene regulatory matrix (wij) for both t1 and t2, and

estimated conservation values as in Equation (8).

For the no-target model, we found that diagonal entries wii with

positive sign are significantly more conserved over time than off-

diagonal matrix elements (medians of 0.86 and 0.70, respectively;

Mann Whitney U p-value,0, Figure 4A). These diagonal

Figure 2. Stability selects for positive autoregulation. Time evolution of p (Equation (6)) on the vertical axis for different selection models. A.
Selecting for stability: only fixed points are allowed to survive. ‘no target’ means all fixed points have fitness of 1 and all cycles have fitness of 0.
‘target’ means selection for a specific fixed point, with fitness given by Equation (2) as a function of the hamming distance from the target phenotype.
B. Selecting against stability: only cycles of specific length are allowed to survive. Shown are selection for cycles of size 2 and 3. C. Neutral for stability:
fitness does not depend on stability. ‘no target’ means random sampling. ‘target’ means selection for a specific fixed point, with fitness given by the
maximum value of Equation (2) applied to all points of the attractor as explained in Methods (allows cycles of all sizes including fixed points). Sample
size is n,105 evolved networks per generation.
doi:10.1371/journal.pcbi.1003916.g002
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elements under the no-target model are also more conserved when

compared to diagonal elements evolved under the random model

(medians of 0.86 and 0.68 respectively; Mann-Whitney U

p-value,0, Figure 4A). We found no significant differences in

conservation of the off-diagonal entries between the ‘no-target’

and the random models (one-sided Mann-Whitney U

Figure 3. Changing the sign of an autoregulatory element is more likely to kill a network than a random mutation. A. Boxplots of
average viability (Equation (4)) for diagonal and off-diagonal elements of the network matrices at evolutionary equilibrium (t = 106 generations). B.
Same as (A) but at t = 48, when p (Equation (6)) is largest. C. Heat map of average viability for all matrix elements at t = 106 generations. Darker blue
(off-diagonal elements) means higher viability after mutation than lighter blue (diagonal elements). D. Same as (C) but at t = 48. Sample size is n,105

evolved networks per generation.
doi:10.1371/journal.pcbi.1003916.g003
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Figure 4. Autoregulation is conserved over time. A. Boxplots of average conservation (Equation (8), t1 = 105 and t2 = 106 generations) for
diagonal and off-diagonal elements of random and evolved ‘no target’ networks. B. Heat map of average conservation for all matrix elements under
the ‘no-target’ model. Darker blue (diagonal elements) means higher conservation than lighter blue (off-diagonal elements). C. Same as (B) but for
random networks. Sample size is n,105 evolved networks per generation.
doi:10.1371/journal.pcbi.1003916.g004
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p-value,0.1, Figure 4A). This finding provides further evidence

that positive autoregulation is maintained by selection for stability.

Stability, robustness and autoregulation coevolve
The time course of p displays an intriguing complexity. After the

stability metric reaches its maximum and ceases to change, p keeps

evolving and decreases to a lower equilibrium value (Figure 2A).

To investigate this behavior, we asked which other network

parameters may also affect the evolution of p. Since Wagner [23]

has previously shown that during network evolution robustness is

also (indirectly) selected for when selecting for stability, we studied

how this robustness compares with p over the course of evolution.

Intriguingly, during the simulation experiments under the no-

target model, we observed that robustness (Equation (5)) increases

with time and appears to coevolve with p, reaching its maximum

at the same time point at which p reaches equilibrium (Figure 5).

This association, however, is also not linear: shortly after stability

has reached equilibrium, robustness still increases despite the fact

that p has started decreasing.

Robustness and autoregulation are associated, but this
relationship is dynamic during evolution

Because robustness and p reach equilibrium at about the same

time, we hypothesized that p could be adapting under indirect

selection for robustness. In that case, the equilibrium value of

p,0.8 would favor higher robustness (or perhaps: ‘‘maximize

robustness’’).

To test this, we generated groups of 105 random stable networks

for p = {0.1,0.2,0.3,…,1}, and calculated the robustness for each

group. Robustness was assessed after running one single develop-

ment process for each network in the RNRC setup. Only stable

networks were considered for this analysis.

Surprisingly, we found that, similarly to stability, robustness is

also positively associated with p and does not have a maximum at

an intermediate p,0.8 (Figure 6A). Contrary to our hypothesis,

robustness of stable, non-evolved networks is maximized by p = 1

(see Figure S4 for random networks not pre-selected for stability).

This positive association was also observed when representing the

data differently: stable networks binned by increasing average

values of robustness also show increasing p (Figure 6B).

This general positive association is inconsistent with the

hypothesized relationship between p and robustness after stability

reaches its maximum. However, a more in-depth analysis of

robustness of evolving networks at different time points reveals a

completely different picture to the situation in non-evolved

matrices (Figures 6C and D).

At both early (t = 48, pmax) and late (t = 106, pequilibrium)

evolutionary stages, robustness is maximal in evolving matrices

with values of p,1. At early time points, when p has reached its

maximum, the relationship between p and robustness is fully

inverted compared to non-evolved networks, with lower p having

significantly higher robustness, thus suggesting strong selection for

lower p to increase robustness (Figure 6C). Strikingly, at equilib-

rium values, robustness is non-monotonic in p and is maximal for

p,0.7–0.8, coinciding with the equilibrium value of p (Figure 6D).

Therefore, these results strongly suggest that, as we hypothesized,

it is the maximization of robustness during evolution that

determines the equilibrium value of p.

Evolved networks are a distinct subset of stable networks
The above results may seem contradictory: whereas p and

robustness show a positive association in stable networks generated

completely at random (i.e. for all non-evolved stable networks), this

association is non-monotonic for stable networks selected by

evolution (i.e. evolved networks), where robustness is maximized

for more intermediate values of p (0.7–0.8). The solution to this

apparent paradox might lie in the fact that evolved networks

constitute only a subset of all stable networks.

Remarkably, the average robustness for the subset of evolved

networks is twice as high as that of non-evolved networks with

similar p (compare Figures 6A and 6D), suggesting that the

relationship between p and robustness is modulated by other

matrix characteristics on which selection can act.

In order to investigate this possibility, we studied the

evolution of the sign of off-diagonal elements (q). There are

more off-diagonal than diagonal elements; thus the former offer

many more targets for mutation. However, a mutation in the

off-diagonal has a smaller effect on q than a mutation on the

diagonal has on p. For this reason, q may seem to evolve at

lower rates than p. More importantly, off-diagonal elements

represent regulation of other genes and can form larger and

more complex motifs than autoregulatory loops of size one. For

this reason, they are harder to study and to interpret. However,

under a random model, it is clear that the expected average

value of q equals 0.5.

The evolution of q occurs over a much smaller range than that

of p, with values spanning from 0.5 to ,0.63. However, it also

shows a non-linear pattern of co-evolution with the other variables

(Figure 5). q increases up to its maximum approximately until p
stabilizes, and then it starts to slowly decrease to its equilibrium

value at t,105. It reaches equilibrium around the same time as

robustness.

These co-evolutionary dynamics suggests that stability and

robustness may not only depend on p, but also on q. Therefore,

Figure 5. Positive/negative regulation evolves non-linearly
with robustness. Coevolution of stability (Equation (3)), robustness
(Equation (5)), p and q (Equation (6)) under selection for stability (‘no-
target’ model). Black line (p) is the same as in Figure 2A. White and grey
regions serve as guides to the eye signaling different phases of
evolution. From t = 1 to t,48, p reaches its maximum and stability
reaches 0.96. From t,48 to t,103, p approaches equilibrium and q
reaches its maximum. From t,103 to t,105, robustness and q approach
equilibrium. From t,105 onwards, all represented quantities are at
evolutionary equilibrium. Sample size is n,105 evolved networks per
generation.
doi:10.1371/journal.pcbi.1003916.g005
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Figure 6. Maximization of robustness during evolution determines the equilibrium values of p. The relationship between robustness
and autoregulation changes during evolution. A. Boxplots of robustness (Equation (5)) for each p = 0, 0.1,…, 1 (11 bins) for stable, non-evolved
networks (q = 0.5). B. The inverse of (A), i.e., boxplots of p (Equation (6)) for 5 bins of increasing robustness, each of size 0.2, from 0 to 1. C. Same as (A)
but for evolved networks, at t = 48, when p is largest. At this stage of evolution, there are no significant samples of networks with p,0.6. D. Same as
(C) but at evolutionary equilibrium (t = 106 generations); there are no significant samples of evolved networks with p,0.3. q = 0.5 (Equation (6)) for
panels A and B but q is not constant or controlled for in panels C and D. (It varies with p in a non-linear fashion in evolved networks.) Sample size is
n = 104 networks for each p (total n,105) for (A) and (B). Sample size of evolved networks varies with p but total size is n,105 for (C) and (D).
Robustness is measured by Equation (5) with N2 = 100 mutations per network.
doi:10.1371/journal.pcbi.1003916.g006
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although robustness is maximized by high p for stable networks

with q = 0.5, the same is not necessarily true when q.0.5. This is

the case at q.0.65, for which robustness is higher for p = 0.7–0.8

than for p = 1 (Figure S5). Interestingly, these values correspond

closely to (p = 0.8, q = 0.63) of evolved networks at generation

,1000, when both stability and p reach their equilibrium values.

Engineering super-robust networks: robustness is not
fully maximized in evolution

A prediction from our results is that certain combinations of p
and q are more likely to provide stable networks.

To test this, we combined the off-diagonal elements (determin-

ing q) of stable networks with low p and a q similar to that of

equilibrium (q = 0.53 or 0.54), with diagonal elements of high p
(p = 0.9 or 1.0). We call these networks ‘‘engineered’’. As before,

we generated groups of 105 random stable networks for different

values of (p,q) and calculated the robustness for each group.

Robustness was assessed after running one single development

process for each network in the RNRC setup. Only stable

networks were considered for this analysis.

The engineered networks resulted in extremely stable and

robust networks (Figure S6A); importantly, randomly sampled

stable networks with the same average p and q are not nearly as

stable and robust to mutations (Figure S6B). These observations

support the idea that features in the topology of off-diagonal

elements of these matrices (i.e., how genes regulate one another)

may buffer the destabilizing effects of mutations.

These findings also show that it is possible to engineer networks

more robust than those evolved under selection for stability. Thus,

robustness is not fully maximized during evolution. In fact, when

the founding populations (t = 0) have a mean of q = 0.9 (rather

than being normally distributed around 0.5, see Methods),

robustness decreases throughout evolution (Figure S7).

Positive autoregulatory motifs of length two are also
associated with stability and robustness

Direct regulatory influence of genes on one another can explain

qualitatively why p and q are being maximized at the beginning of

evolution experiments. Their subsequent decline below the

maximum values is related to constraints imposed by the indirect

selection on robustness. To further elucidate how these constraints

operate, we investigated how long-range interactions embedded in

the matrix of direct influences (direct interaction, i.e., W) of an

organism could contribute to the settling of p and q below their

maximum values.

To this end, we repeated the evolutionary experiments tracking

the measure for length-2 autoregulatory interaction r, which

measures the frequency of networks that contain self-reinforcing

interaction loops (gene A activates gene B, which reactivates A, see

Methods). We found that r is maximized early and attains values

above 0.5 throughout evolution, indicating positive long-range

autoregulation (Figure S8). Additionally, r lags behind the

evolution of p and q, adapting to selective pressures at lower rates.

To understand why engineered networks are more robust to

mutations than random stable networks with the same values of p
and q, we measured r for networks similar to the ones shown in

Figure S6. We find that r is larger for the engineered networks

(Figure S9), which explains why engineered networks are more

robust for the same values of p and q.

Discussion

In this study, we have shown that stability and robustness

positively correlate with autoregulation in a Boolean network

model of gene regulation, where stable networks have mostly

positive autoregulation (p.0.5). During evolution in the no-target

model, selecting for stability leads to indirect selection for

robustness. Strong selection for stability is expressed in the

adaptation of direct autoregulatory network properties summa-

rized by p, which is maximized early in evolution. The subsequent

decline of p is explained by additional autoregulatory effects

stemming from long-range gene interactions that allow mainte-

nance of high stability values, while simultaneously increasing

robustness.

We have limited this study to small networks of 10 genes,

comparable to some sub-circuits in genomes found in organisms,

summarized in Table 1. We hypothesize that larger gene numbers

would lead to similar results. In previous work we have shown that

stability decreases with network size, which we simulated for up to

N = 104 for sparse networks (c = 0.2) with scale-free topology [30].

We expect such a decrease in stability with N to increase the

direct selective pressure on stability, as well as the indirect selective

pressure on robustness in an evolutionary experiment. This is

supported by the finding that large networks show a increase in

robustness after selection for a target compared to small networks

[23].

We have also neglected the role of bistability in the evolution of

the networks. In other models of gene-regulatory networks it has

been shown that mutational robustness correlates with the

robustness of phenotypes to changes in initial conditions of the

networks Ri [33]. If a similar correlation exists for the model

presented in this study, we would expect indirect selection for less

multi-stable networks due to the indirect selection for higher Ri.

Networks with high Ri are expected to have large basins of

attraction, decreasing the number of possible fixed points and thus

multi-stability.

The model presented here deviates in some important aspects

from Wagner’s model [23] and Siegal & Bergman’s model [29] by

which it is inspired. In particular, our model only includes binary

matrix elements, whereas [23,29] allow for real valued entries.

Also, in contrast to [29], the normalization function used is not a

sigmoidal, but a sign function. That results in the state vectors

having real values in [29], whereas in our model we only allow for

binary states.

The motivation to deviate from [23] lies in the focus on the sign

of autoregulation. Since previous work [30] has shown that the

behaviors of real-valued and binary-valued networks show little or

no qualitative difference in the context of the questions asked here,

it is technically more feasible to implement the easier, binary form

of networks. Furthermore, most of the knowledge about gene

regulatory networks exists in binary form, given as qualitative

information about activation or repression interactions between

genes. Thus, to make comparisons with the available data

calculated on the basis of binary data, it was justified to limit the

study to binary networks.

The assumption that a population of organisms consists of

random networks or has random initial conditions is unrealistic.

We use random samples of networks or initial phenotypic states

because we are interested in the general, overall behavior of

populations with respect to some metrics. Random sampling

allows us to obtain an unbiased sample of all possible networks,

and to capture a part of the heterogeneity in their behavior. To

satisfy more realistic assumptions, a sub-space of phenotypes that

corresponds to more realistic biological phenotypes needs to be

specified. How to achieve this is currently unknown, and such a

restriction would have amounted to studying random initial

conditions.
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The Boolean network model of gene regulation has recently been

shown to predict specific patterns of protein and gene activity observed

in a wide diversity of biological systems, including yeast [34,35] and

mammalian [36] cell cycles, embryonic segmentation in D.

melanogaster [36,37], and flower development in A. thaliana [38–40].

Assuming biological networks correspond to stable networks

[23,29,34], our results suggest that biological networks should

often be dominated by positive autoregulatory loops (i.e. have high

p). This seems to be the case for most eukaryotic transcription

factor networks (including yeast, flies and mammals), with various

studies showing values of p ranging from 0.76 to 1 (Table 1; with

the exception of early sea urchin developmental gene regulatory

networks), and with autoregulatory loops being highly conserved

across vertebrates [41].

Moreover, in some cases, the presence of strong positive

autoregulatory loops seems to be crucial to achieving a stable

biological state. For example, in mammalian embryonic stem cells,

the core pluripotency network of Oct4, Sox2 and Nanog (plus Klf4

and Esrrb [42]) forms a tight autoregulated circuit, in which each

gene activates its own expression as well as the expression of the

others, and these interactions are crucial to maintaining a stable

pluripotent state [43]. Furthermore, this autoregulatory circuit is

likely behind the capacity of somatic cells to be reprogrammed

into induced pluripotent stem (iPS) cells when reprogramming

factors are expressed exogenously [44].

On the other hand, negative autoregulation seems to dominate

in the bacterium E. coli (p = 0.26) [45]. Stewart and coworkers

[46] have recently suggested that this difference may be due to the

presence/absence of sexual reproduction. To test this hypothesis,

we reproduced our simulations for evolution without recombina-

tion (see Methods) under the no-target model, as a proxy for a

model with asexual reproduction, but obtained essentially the

same equilibrium values of p, despite divergent intermediate

evolutionary dynamics and robustness at equilibrium (Figure S10).

Another caveat may lie in the density of the networks employed

in our simulations. Biological networks are often sparse [47], and

may vary between species as well as for different gene regulatory

subcircuits within species; however, we have used fully connected

networks in our analyses. Thus, we tested Boolean networks with

the same average connectivity as some biological networks

(average degree of 2, [47]) (see Methods, Sparse Networks). The

evolutionary simulations were conducted under the RNIC setup
(no pre-selected networks, see Methods), in a similar fashion to the

previous simulations. We obtained similar results for the long-term

evolution of q, and for p in sparse networks without recombina-

tion, while we obtained even larger values of p at equilibrium for

sparse networks with recombination (Figure S11), suggesting that

connectivity density has a minor impact on the evolution of these

parameters. These results are aligned with our previous study

showing that network density and topology have only a small effect

on the stability of networks of 10 genes [30].

Finally, the differences between eukaryotic and bacterial

autoregulation values may also relate to the distinct regulatory

processes of bacteria (e.g. common presence of operons) and

eukaryotes (e.g. more widespread post-transcriptional regulation).

As new circuits of transcription factor networks are elucidated in

detail, the roles of negative and positive autoregulation in

organismal development and evolution should be more clearly

understood.

Supporting Information

Figure S1 Stability favors positive autoregulation. Error

bar chart of sign of autoregulation (p, Equation (6)) as a function of

stability (Equation (3)) for two network sizes N = 4 and 10. This

represents the inverse relationship of Figure 1B. Error bars

represent standard deviations.

(EPS)

Figure S2 Stability and cycles select for opposite signs
of autoregulation. Time evolution of p (Equation (6)) for

different selection models. This reproduces Figure 2 with the

added results of cycles of length up to 7, all in the same panel.

Symbols and selection models are explained in Methods.

(EPS)

Figure S3 Stability and cycles select for opposite signs
of regulation. Heat maps of the average matrix for different

selection models. This is a different way of representing Figures 2

and S2, with the added information of the sign of off-diagonal

elements. The matrices were averaged across individuals,

populations and evolutionary time as explained in Results.

(EPS)

Figure S4 Positive autoregulation favors robustness.
Same as Figures 6A and B but for random networks not pre-

selected for stability. A. Boxplots of robustness (Equation (5)) for

each p = 0, 0.1,…, 1. B. The inverse of (A), i.e., boxplots of p
(Equation (6)) for 5 bins of increasing robustness, each of size 0.2,

from 0 to 1.

(EPS)

Figure S5 The sign of off-diagonal elements changes the
relationship between robustness and autoregulation.
Robustness is not always maximized by p = 1 in stable networks.

Here we show maximization at (p = 0.9, q = 0.65) and (p = 0.6,

q = 0.70), for example. Networks are non-evolved. Lines serve as

guides to the eye as p takes discrete values between 0 and 1.

(EPS)

Figure S6 Engineering super-robust networks: there’s
more to the topology of robust networks. Boxplots of

robustness for specific values of p and q. A. Networks were

engineered by combining the off-diagonal elements of stable

networks with low p and a q similar to that of the equilibrium

(q = 0.53 or 0.54), with a diagonal with high p (p = 0.9 or 1.0). B.

Randomly sampled stable networks with same average p and q as

the engineered ones.

(EPS)

Figure S7 Robustness is not fully maximized in evolu-
tion. Coevolution of p (A), q (B), stability (C), and robustness (D)

under selection for stability (‘no-target’ model). Same as Figure 5

but for five different starting conditions: (p0, q0) = (0.5, 0.5), (0.5,

0.9), (0.5, 0.1), (0.9, 0.9), (0.9, 0.1). All networks in a population

have the same (p0, q0) at the start of evolution.

(EPS)

Figure S8 Positive long-range autoregulatory motifs are
also associated with stability and robustness. Same as

Figure 5 with the inclusion of r given by Equation (7).

(EPS)

Figure S9 Engineered networks have positive long-
range autoregulatory interactions. Boxplots of r (Equation

(7)) for a subset of the networks shown in Figure S6. A. Stable

networks with p = 0.1 and q = 0.54 (‘‘engineered’’). B. Stable

networks with p = 0.9, q = 0.53 (‘‘stable’’). Population size is

n = 104 for each.

(EPS)

Figure S10 Sign of regulation evolves to the same values
with or without recombination. Coevolution of p (A), q (B),
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stability (C), and robustness (D) with and without recombination.

Black lines (recombination) are the same as Figure 5. Recombi-

nation is modeled as full chromosome segregation (no crossover) as

described by Wagner [23].

(EPS)

Figure S11 Autoregulation is even more positive for
sparse networks with recombination. Coevolution of p (A),

q (B), stability (C), and robustness (D) for dense and sparse

networks with and without recombination. Black lines (dense

networks with recombination) are the same as Figure 5. Dense

networks are fully connected (all genes regulate themselves and

each other). Each gene in sparse networks regulates and is

regulated by two other genes (average network degree of 2, as in

biological networks [47]).

(EPS)
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