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Abstract

Herpes simplex virus-2 (HSV-2) is a chronic reactivating infection that leads to recurrent shedding episodes in the genital
tract. A minority of episodes are prolonged, and associated with development of painful ulcers. However, currently,
available tools poorly predict viral trajectories and timing of reactivations in infected individuals. We employed principal
components analysis (PCA) and singular value decomposition (SVD) to interpret HSV-2 genital tract shedding time series
data, as well as simulation output from a stochastic spatial mathematical model. Empirical and model-derived, time-series
data gathered over .30 days consists of multiple complex episodes that could not be reduced to a manageable number of
descriptive features with PCA and SVD. However, single HSV-2 shedding episodes, even those with prolonged duration and
complex morphologies consisting of multiple erratic peaks, were consistently described using a maximum of four dominant
features. Modeled and clinical episodes had equivalent distributions of dominant features, implying similar dynamics in real
and simulated episodes. We applied linear discriminant analysis (LDA) to simulation output and identified that local immune
cell density at the viral reactivation site had a predictive effect on episode duration, though longer term shedding
suggested chaotic dynamics and could not be predicted based on spatial patterns of immune cell density. These findings
suggest that HSV-2 shedding patterns within an individual are impossible to predict over weeks or months, and that even
highly complex single HSV-2 episodes can only be partially predicted based on spatial distribution of immune cell density.
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Introduction

Mechanistic mathematical models have proven to be of critical

importance in identifying key features of viral infections in

humans. For certain infections such as HIV, hepatitis B and

hepatitis C, viral kinetics can often be recapitulated with relatively

simple models that capture the balance between viral invasion,

target cell depletion, and immunologic containment [1]. Results

from models have driven key therapeutic insights for treatment of

infection [2,3], and overturned dogmatic principles regarding

mechanisms of viral persistence [4].

Other human viral infections pose a greater challenge due to

more complex replication and clearance patterns. Human herpes

viruses such as cytomegalovirus (CMV), Ebstein Barr Virus (EBV)

and Herpes Simplex Virus 1 and 2 (HSV-1 and 2) reactivate in an

unpredictable fashion throughout the lifetime of the infected host.

Of these viruses, the viral shedding patterns of HSV-2 are

characterized in the greatest detail. HSV-2 is the leading cause of

genital ulcers worldwide, though most infected persons are

asymptomatic [5]. Shedding is sporadic but frequent [6], and

consists of episodes that are enormously heterogeneous in terms of

duration (1 hour to several weeks), viral titer, morphology, and

symptomatic severity [7]. Individual episodes are notable for

erratic and unpredictable viral trajectories. We have used

mathematical models to describe the general principle that

episodes initiate across regions with wide variability in density of

tissue resident T-cells, and that spatial heterogeneity of immunity

underlies episode variability [8]. However, the complexity and

unpredictability of HSV-2 episode dynamics have precluded

development of clinical tools to explain differences in shedding

phenotype between infected persons [9], or to predict the

subsequent course of disease in an individual over short or long

time frames based on recent shedding data.

These issues are pertinent to many complex systems that exhibit

behavior beyond the predictive capabilities of a priori mathemat-

ical models [10]. One solution to address these problems is to

diminish the complexity of available data by reducing it to its most

fundamental features. In fact, biologic datasets often exhibit

surprisingly low-dimensional structure that can be exploited in

building a posteriori, dimensionally reduced models that are

inclusive of only the natural (dominant) variables. Such dimen-

sionality reduction techniques, which highlight dominant dynamic

features, are being developed for a very broad range of problems

in the physical, engineering and biological sciences. As an

example, continued success of such feature extraction techniques

form the basis for modern applications in computer vision

applications such as face and gesture recognition [11].

One of the most common dimensionality reduction methods is

principal component analysis (PCA) which projects data onto an

orthogonal set of variables or ‘‘modes’’ that subsequently capture
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the most variance in the data set [12]. PCA can identify a small

number of independent and uncorrelated modes within complex

multivariate datasets that explain variability in an existing dataset.

In the case of HSV-2, this technique may identify the fundamental

features underlying complex shedding patterns that are not

discernable with visual inspection of time series data.

The singular value decomposition (SVD), which is at the center

of the PCA reduction, allows the dimensionality of the data to be

determined using least squares fitting approaches. Success of PCA

relies on a relatively small number of modes that dominate and

characterize the data set, such that a high percentage (generally

.90%) of temporal variance in the data is captured by a relatively

simple, low dimensional system. Principal components are

successive modes that explain a decreasing degree of variance in

the data. Once each additional mode contributes a small and

equal degree of variance, additional variables are more likely to

represent statistical ‘‘noise’’ rather than a biologic ‘‘signal’’ which

drives fundamental dynamics of the data. With these concepts in

mind, the dynamics are then projected onto a truncated set of

modes with the aim of faithfully capturing and/or reproducing the

dynamics observed in the entire data set. At this stage, the low-

dimensional nature of the mathematical formulation can be

exploited for control and/or classification of the dynamics.

Here we employ SVD to model, classify and predict the nature

of HSV-2 genital tract shedding. Our results reveal that long-term

shedding patterns cannot be reduced to a manageable number of

variables and as such shedding phenotype cannot be predicted for

an infected person over periods of weeks or months. Short-term

viral behavior within a single episode can be classified with many

fewer variables. We apply our analysis to simulated shedding data

from a mechanistic mathematical model, and identify that the

trajectory of each shedding episode appears to depend at least in

part on spatial immune cell density at the time of episode

initiation, though these parameters are only predictive for

approximately three days. Unfortunately, density of tissue resident

immune cells cannot be routinely measured in the clinic and is less

predictive in our analyses for longer episodes lasting more than 3

days. To explain this lack of predictability, we demonstrate chaotic

dynamics in the shedding data by computing the positive

Lyapunov exponents, which measure the exponential separation

of infinitesimally close trajectories of the underlying model. We

therefore conclude that while mathematical models are extremely

useful for explaining the biology underlying general HSV-2

shedding patterns, their use as prediction tools for infected

individuals is likely to be limited.

Results

HSV-2 shedding patterns
In order to identify fundamental dynamic patterns of HSV-2

infection, we applied Singular Value Decomposition (SVD) on

shedding time series data that captured multiple diverse episodes

of HSV-2 reactivation. HSV-2 infection is notable for frequent,

heterogeneous spikes, or episodes, of shedding. Figure 1 shows

representative shedding curves (left column) from two datasets:

(1a) Clinical data (100 patients, every 24 hour swabs for 60 days,

[7,13]) and (b) Clinical data (25 patients, every 6 hour swabs for

60 days, [14]). Each episode has a unique morphology, peak viral

load and duration, but shares the characteristics of rapid viral

expansion and clearance [14]). Prolonged episodes persist due to

viral re-expansion following a short clearance phase.

Mathematical model simulations
Figure 1c shows representative virologic output from an HSV-

2 simulation model (98 simulated patients, 100 swabs/day or

roughly every 15 minutes, for 60 days). The mathematical model

consists of stochastic differential equations which assume that

episodes are initiated randomly at various sites across the genital

mucosa due to periodic release of HSV-2 from latency, and that

genital tract immunity (which exhibits high spatial heterogeneity as

measured by CD8+ T-cell density) wanes locally between episodes,

while expanding in reference to presence of locally infected cells

[8].

As demonstrated in Figure 2, the model’s spatial assumptions

are achieved with 300 micro-regions arranged in a hexagonal

lattice. Each region is considered a battlefield in a larger war and

the model allows concurrent HSV expansion and containment

within multiple regions [8]. Our equations assume that HSV-2

DNA (Vneu) is released from neurons into genital skin in a

continuous steady rate (y* Vneu) across wide spatial gradients:

virus is randomly introduced into one of 300 regions, reflecting the

wide and complex arborization pattern of neurons which release

HSV-2 into genital mucosa. Episodes are initiated periodically in a

single region when an epithelial cell (S) is infected with Vneu at rate

(bi* Vneu). HSV-2 replicates at rate p in infected cells (I). Cell-

associated HSV-2 (Vi) spreads within a single ulcer to new S with

infectivity (bi* Vi), leading to expansion in viral quantity. Vi

converts to cell-free HSV (Ve) when cells are lysed at rate a, or

killed by CD8+ T-cells (E) at rate (f*E*I). Containment of infected

cells occurs due to expansion of E at rate H*E within each region.

H increases as a function of infected cells and is half maximal

when I = r. E decays at rate = (d*E) between shedding episodes. Ve

initiates new ulcer formation in one of 6 randomly selected

adjacent regions of mucosa according to rate (be* Ve). The free

viral decay rate is (c* Ve).

Parameter values are included in Table 1. These values were

selected following testing of the model against a dataset of 1020

shedding episodes from 14,685 genital swabs performed by 531

study participants [8,13], and allow recapitulation of population

level dynamics of HSV-2 shedding including rate of episodes, early

HSV expansion rate, late decay rate, heterogeneity of episode

Author Summary

Mathematical models are commonly used to better
understand viral infections. Equations are simply rules to
describe behavior of viruses, infected cells and the
immune response, and are tested for their ability to
reproduce serial viral levels in infected persons. Models
provide insights regarding the pace of viral replication and
timing of the immune response. Here we describe Herpes
Simplex Virus-2 (HSV-2), an infection that defies standard
modeling approaches. HSV-2 is sexually transmitted, and
causes recurrent genital ulcers and frequent asymptomatic
genital shedding episodes. Episodes initiate in a seemingly
random fashion. Viral loads are erratic and complex during
single episodes. We developed a mathematical model,
which suggests that in general, shedding variability is due
to heterogeneous density of immune cells in the genital
tract. Yet, our model is unable to predict viral loads over
time in individual patients. Here we employ several
statistical tools to demonstrate that HSV-2 shedding is
highly unpredictable, akin to weather patterns. Based on
available spatial assessments of current viral and immu-
nologic conditions, shedding can only be predicted over a
few days, but not over ensuing weeks. These results have
important clinical implications, and highlight limitations of
attempting to predict outcomes in complex systems with
simple mechanistic models.

Unpredictable HSV-2 Shedding Patterns
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duration and peak viral production, when simulated over many

years. Adjustment of parameter values leads to variability in

episode and shedding rates but no change in the fundamental

pattern of heterogeneous, episodic shedding [9]. Model output is

consistent with clinical observations of widespread spatial spread of

virus [15,16], and localized infiltrates of HSV specific lymphocytes

[17,18], suggesting focal areas of viral replication and immunity,

dispersed in multiple genital tract regions. The model’s stochastic

format, along with the complex nature of HSV-2 shedding data

has precluded attempts to precisely reproduce or predict viral

trajectories in individual infected persons.

We chose to perform SVD on model output for four reasons:

first, we wished to compare dynamics in simulated and empirical

datasets as a metric of mathematical model validation (if SVD

provided similar results when used against empirical and simulated

data); second, using model output allowed data reduction with the

assumption of continuous viral sampling which is not realistic

clinically; third the model allowed us to deconstruct shedding

patterns over periods of times far exceeding our longest clinical

protocols; finally, with the simulation model, we can exert control

over key virologic and immunologic variables which are not easily

measured in human experiments.

Dimension reduction for 2-month shedding patterns
Singular value plots (Figure 1d, e and f) were obtained by

applying SVD on corresponding datasets. Singular values quantify

the percentage of variance of the system captured by a single mode

(variable). The most dominant variables (corresponding to the

largest singular values) accounted for only 13.5, 18.2, and 9.7

percent of the total variance of the three datasets respectively, and

were closely followed by variables with gradually declining

variances. To approximate these datasets to .90% accuracy

required 28, 13 and 55 variables respectively, prohibiting any

significant dimensional reduction. To approximate these datasets

to .50% accuracy required 10, 7 and 12 variables respectively,

prohibiting any significant dimensional reduction. These results

imply that an individual’s episode pattern over a period of two

months is inherently unpredictable, and cannot be summarized

Figure 1. Results of Singular Value Decomposition on longitudinal data that captured multiple diverse episodes. Left column shows
representative shedding curves from single patients: (a) Clinical data (swabs every 24 hours for 60 days), (b) Clinical data (swabs every 6 hours for 60
days), and (c) Modeled data (swabs every 15 minutes for 60 days). Right column (d,e,f) shows plots of singular values for the corresponding datasets
(100, 25 and 98 patients, respectively). For all the three datasets, the most dominant features accounted for a very small percentage (13.5, 18.2, and
9.7 respectively) of the total variance of the system, and were closely followed by other features with gradually declining variances, making
dimensional reduction infeasible. Red and orange bars indicate number of modes at which a total of 50% and 90% variance is achieved.
doi:10.1371/journal.pcbi.1003922.g001
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with a simple set of rules. The unpredictable pattern of shedding

becomes more evident with continuous sampling (more

variables), probably because abrupt, frequent rebounds in viral

levels within single episodes are more commonly detected with

more frequent sampling, and add considerable complexity to the

data (Figure 1c). In Figure 1d–f, each of the first 10 modes

contributes a decreasing amount to variance, whereas beyond

this point each mode contributes an equal amount to variance.

These latter modes are therefore more likely to represent

statistical noise.

Dimension reduction for 10-year shedding patterns
Next, we conducted analysis of longer 10-year model simula-

tions (98 simulated patients, 100 swabs/day or every 15 minutes)

to examine whether more distinct patterns emerged from the

model. We hypothesized that a longer period of sampling may

lower the system’s dimensionality based on the highly structured

predator prey features of our simulation model [8] in which CD8+
T-cells expand as ‘‘predators’’ in response to surges in infected

cells ‘‘prey’’. The most dominant variables accounted for only 12.0

percent of the total variance of this dataset. To approximate these

datasets to .90% accuracy required 14 variables, again prohib-

iting significant dimensional reduction, though dimensionality of

10 years of model output was notably much lower than for 60 days

of model output (55 variables for .90% accuracy).

Figure 2. Spatial mathematical model. (a) Seven of 300 micro-regions are shown to indicate that cell-free virus from a single region can infect
adjacent regions. (b) Model equations. (c) Model diagram indicating viral production, spread and local CD8+ T-cell response.
doi:10.1371/journal.pcbi.1003922.g002

Table 1. Shedding model parameter values.

bi = 6.6*1027 DNA copy days/cell

be = 1.1*10212 DNA copy days/cell

p = 105 DNA copies/cell/day

w = 36 DNA copies/day

c = 15.8/days

H= 7.2/days

d= 1022.6/days

r = 132 infected cells at which h is half maximal

doi:10.1371/journal.pcbi.1003922.t001

Unpredictable HSV-2 Shedding Patterns

PLOS Computational Biology | www.ploscompbiol.org 4 November 2014 | Volume 10 | Issue 11 | e1003922



Dimension reduction for short term shedding patterns
during individual episodes

We next switched focus to individual episodes of viral reactivation.

Many episodes last fewer than 12 hours and are characterized by single

expansion and decay phases and would therefore be easily classified

with a minimal number of variables. Yet, the most clinically important

episodes that are typically associated with lesions are defined by

multiple erratic viral re-expansions and prolonged duration (0.5–3

weeks). In order to understand viral dynamics during these non-

monotonically decaying episodes, we analyzed samples from four

datasets: (a) Clinical data (23 episodes, swabs every 24 hours, [7,13]),

(b) Clinical data (5 episodes, swabs every 6 hours, [14]), (c) Clinical data

Figure 3. Results of Singular Value Decomposition on sets of individual non-monotonically decaying episodes. Left column shows
representative curves from single patients: (a) Clinical data (23 episodes, swabs every 24 hours) (b) Clinical data (5 episodes, swabs every 6 hours), (c)
Clinical data (8 episodes, 10 swabs/day: every 2 hours during the day and 4 hours overnight), and (d) Modeled data (10 episodes, 100 swabs/day).
Right column (e–h) shows plots of singular values for the corresponding datasets. Red and orange bars indicate number of modes at which a total of
50% and 90% variance is achieved.
doi:10.1371/journal.pcbi.1003922.g003
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(8 episodes, 10 swabs/day: every 2 hours during the day and 4 hours

overnight, [8]), and (d) Model simulation data (10 episodes, swabs every

15 minutes, [8]). Figure 3 shows representative curves of non-

monotonically decaying episodes from the four datasets (left column: a,
b, c and d), and plots of singular values obtained by applying SVD on

the corresponding datasets (right column: e, f, g and h). The results

were strikingly different than that for 60-day data that captured

multiple diverse episodes. When SVD was applied to sets of individual

non-monotonically decaying episodes, the most dominant variables

accounted for 48.6, 60.8, 55.4 and 60.9 percent of the total variance of

the 4 datasets respectively. To approximate these datasets to .90%

accuracy required 11, 4, 5 and 6 variables respectively. Low-rank

approximations with 100% accuracy was achieved with only 6 and 9

dominant variables when applied to the every 6 hour (Figure 3f) as

well as the 10 swabs per day episodes (Figure 3g). Figure 4
demonstrates nearly perfect reproduction of single episodes generated

with the mathematical model (Fig. 4a) and with 10 swabs per day

(Fig. 4b) with only the 4 most dominant modes.

The curves for the single most dominant variables had

consistent morphologies across all the 4 datasets (Figure 5),

Figure 4. Low rank approximations for sample episodes from (a) Modeled data (10 episodes, 100 swabs/day) and (b) Clinical data
(8 episodes, 10 swabs/day: every 2 hours during the day and 4 hours overnight) using the four most dominant features obtained
from SVD. For the 3 clinical datasets (different sampling rates) and 1 model simulation dataset, rank-4 approximations were .85% accurate.
doi:10.1371/journal.pcbi.1003922.g004

Unpredictable HSV-2 Shedding Patterns
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indicating relatively low dimensional viral dynamics specific to

non-monotonically decaying episodes. Prominent features

include extremely rapid HSV-2 expansion, a variable plateau

phase of viral load, and relatively slower period of viral

clearance (relative to expansion). Additional modes help

capture the fact that there is never actual a viral steady state,

but instead a series of erratic re-expansions and peaks.

Role of initial CD8+ T-cell densities: Linear discriminant
analysis of mathematical model data

The above results imply that a set of mathematical rules may

indeed predict viral trajectory of single complex episodes. Several

lines of evidence suggest that immunologic conditions at the precise

spatial focus of viral reactivation may determine viral trajectories

within a single episode. Prior modeling demonstrated high sensitivity

Figure 5. Most dominant feature of single representative non-monotonically decaying episodes. (a) Clinical data (swabs every 24 hours),
(b) Clinical data (swabs every 6 hours), (c) Clinical data (10 swabs/day: every 2 hours during the day and 4 hours overnight), and (d) Modeled data
(swabs every 15 minutes). The arbitrary unit is used to demonstrate relative amount of virus. All tracings demonstrate viral expansion, plateau and
clearance phases.
doi:10.1371/journal.pcbi.1003922.g005

Figure 6. Linear Discriminant Analysis. (a) x-axis is T-cell density in the region of episode initiation (T0), (b) x-axis (xi) is the scalar projection value
of ith initial condition ,T1i; T2i; T3i; T4i; T5i; T6i. obtained by projecting onto vector w1 that maximizes Fisher criterion. In both (a) and (b), Class A (0–
2 days) of initial T-cell densities showed maximum separation from the other three classes, indicating strong correlation between initial T-cell
densities and episode severity only for episodes that last for 0–2 days.
doi:10.1371/journal.pcbi.1003922.g006
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of episode severity to initial CD8+ T-cell density in genital mucosa

[19]. These results have been confirmed in animal models in which

initial conditions of infection can be rigorously controlled [20,21].

Unfortunately, it is not possible to directly measure or control

mucosal CD8+ T-cell levels in humans, as the exact site and timing of

a genital reactivation is not predictable, and critical differences in

immune cell density occur over spatial distances of ,100 uM in tissue

[8]. It is therefore necessary to capitalize on our simulation model in

which initial immunologic conditions can be tracked in all spatial

regions throughout the genital tract. To generate hypotheses

regarding the role of the initial spatial immune densities in and

around the region of episode onset in determining episode duration

(and, hence, severity), we classified initial T-cell densities into 4 classes

according to duration (0–2 days, 3–6 days, 7–9 days, and . = 10

days) of the ensuing episodes. We will refer to these as Classes A, B, C,

and D respectively for the sake of brevity.

In stochastic model simulations, episodes randomly initiate in

one of 300 regions, each of which has a certain density of CD8+ T-

cells and is surrounded by six other regions with separate densities.

We attempted to correlate these regional densities with episode

trajectory. Probability density curves of T-cell density in the region

of episode initiation (T0) showed significant separation between

Class A and the other three classes. Class A demonstrated

comparatively higher T-cell densities while Classes B, C, and D

showed considerable overlap in their ranges (Figure 6a). Class C

and D were superimposed.

We next applied Linear Discriminant Analysis (LDA) on initial

T-cell densities in the first ring of six model regions around the

region of episode initiation (T1, T2, T3, T4, T5, and T6). A plot of

probability density curves of the scalar projections obtained from

LDA showed results similar to that when T0 densities were

classified. Class A projections were again well separated from

Classes B, C, and D which again showed overlap (Figure 6b).

Similar results were obtained for 4 such datasets of randomly

chosen samples, indicating that surrounding region T-cell density

can predict rapid HSV containment, but does not readily

differentiate medium from long duration episodes. Table 2
compares results of three different implementations of LDA and

re-emphasizes the results shown in Figure 6b. Misclassification

errors were averaged over 1000 runs with randomly chosen

training and test sets. funLDA and MATLAB’s classify showed

comparable re-substitution and cross validation errors, whereas

dnldLDA had better overall accuracy. For all three implementa-

tions, Class A had lower misclassification error than the other

three classes. The dnldLDA routine achieved ,97% accuracy in

predicting Class A T-cell densities, indicating better separation of

Class A T-cell densities from the other three classes.

Scatter plots of the features (T0, T1, T2, T3, T4, T5, and

T6) explain LDA results. Figure 7a shows grouped scatter

plot of T0 vs. average first ring T-cell densities ((T1+T2+…+
T6)/6) and demonstrates that higher T-cell densities in T0,

and to a lesser extent in the surrounding spatial ring (T1,

T2….T6), are predictive of Class A episodes more so than

Classes B, C, and D. Shorter duration episodes (Class A)

appeared in a cohesive cluster relative to longer duration

episodes (Classes B, C, and D) which had overlapping features.

We used MATLAB’s gplotmatrix routine to generate a matrix

of grouped scatter plots of pairs of these 7 features (T0, T1,…,

T6). All 21 pairwise scatter plots showed similar patterns of

minimal separation between episode classes (Figure 7b),

indicating that T-cell density within single surrounding regions

did not predict episode duration.

We next performed multivariate analysis of variance on the

features using MATLAB’s manova1 routine. Figure 7c shows a

grouped scatter plot of the first two canonical features C1 and C2

obtained by projecting original features onto the eigenvector that

maximized separation between classes. Class A features mostly lied

on the right side of the decision boundary shown in black while

Classes B, C, and D had overlapping canonical features on the left

side of the decision boundary.

Next, we tried to achieve separation between Classes B, C, and

D by using mean of the second ring of T-cell densities ((T7+T8+
…+T18)/12) around the region of episode initiation as our

features for predicting severity of ensuing episodes. Figure 8a re-

emphasizes the overlap amongst Classes B, C, and D when only

T0 and the first ring of T-cell densities were used as features. A

grouped scatter plot of average first ring T-cell densities versus

average second ring T-cell densities also showed similar overlap

amongst Classes B, C, and D (Figure 8b). Grouped scatter plot of

the first two canonical features obtained by multivariate analysis of

variance (MATLAB’s manova1) of the second ring of T-cell

densities is shown in Figure 8c. Though Class D (circles) lied

mostly on one side of the decision boundary, its features

overlapped with Classes B and C.

Table 2. Performance of three different implementations of Linear Discriminant Analysis.

Data Set Misclassification error (%)

Episode type myLDA dnldLDA MATLAB’s classify

Training Set Total 46.13 29.80 44.17

0–2 days 31.88 2.06 34.14

3–6 days 74.80 76.57 73.08

7–9 days 72.03 84.22 60.72

. = 10 days 71.96 89.75 51.67

Test Set Total 47.20 32.32 47.13

0–2 days 32.46 2.72 35.85

3–6 days 75.62 82.46 71.31

7–9 days 75.41 90.75 65.78

. = 10 days 75.09 92.16 67.35

Per class misclassification error was lower in Class A (0–2 days) than in classes B (3–6 days), C (7–9 days) and D (. = 10 days). The dnldLDA routine was .97% accurate in
predicting Class A. Misclassification errors in classes B, C, and D were high for all three routines, re-emphasizing the overlap shown in Figure 6.
doi:10.1371/journal.pcbi.1003922.t002
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Overall, these results suggest that the high T-cell density at

the first site of reactivation and in surrounding regions

generally predicts that viral shedding will be rapidly contained.

However, the distinction between episodes of medium (3–6

days) and long (.6 days) duration cannot be determined even

with simulated data in which spatial immunologic conditions

are accurately identified. This result further highlights the lack

of predictability in viral behavior over time frames exceeding

three days.

Naı̈ve Bayes, support vector machines, and decision trees
Since Classes B, C, and D could not be separated with a linear

decision boundary generated by LDA, we tried various advanced

linear and non-linear classification techniques implemented in

MATLAB. Naı̈ve Bayes classifier is a linear classifier and assumes

independence of features (http://www.mathworks.com/help/

stats/naivebayes.fit.html). Using the CD8+ T-cell densities in the

second ring around the reactivation site as our features, we

attempted to differentiate Classes B, C, and D (medium to long

duration episodes). Table 3 shows error rates for combinations of

two parameters of the naı̈ve Bayes classifier data distribution

model, and prior class probability. Errors were averaged over 1000

runs of randomly selected training and test sets (800 and 200

respectively). The lowest errors rates, obtained with kernel

distribution, were ,33% and ,57% for training and test sets

respectively, indicating poor separation between Classes B, C and

D.

Support Vector Machines are capable of detecting non-linear

decision boundaries between groups of data (http://www.

mathworks.com/help/stats/support-vector-machines-svm.html).

Of all the possible combinations of the parameters for support

vector machines, quadratic, polynomial and Gaussian Radial basis

function performed best on the training set with ,1% error.

However, the test set errors for all of these support vectors were

,50%, indicating that the classifiers were over fitting the training

data. Table 4 shows average training set and test set errors for

various combinations of the parameters for classification between

Classes C and D. Similar misclassification errors were observed

between all the three pairs of classes (B vs. C, C vs. D, and B vs. D).

Classification trees map observations (branches of the tree) about

an item to its target value (leaves of the tree). Classification trees

build flexible decision models and are easy to interpret. We tested a

range of values for the ‘minleaf’ parameter for classification trees in

MATLAB. For each value of the parameter, training set and test

errors were averaged over 1000 randomly chosen training and test

sets. The training set error increased from 0 to 28% as the minimum

number of observations allowed per leaf increased from 1 to 20.

Test set error, on the other hand, remained mostly constant at

,60% for the entire range of the parameter, indicating a shift from

over-fitting to under-fitting without any overall improvement in the

model’s predictive capacity.

Chaos as a mechanism for unpredictable genital HSV-2
viral loads

Because the above linear and non-linear methods of dimension

reduction failed to identify any significantly dominant variables in

either the clinical or the model data, we sought to further

understand the unpredictable nature of HSV2 trajectories. One

potential explanation is chaotic dynamics, which are deterministic

but sensitive to even tiny adjustments in conditions driving

infection. In order to distinguish deterministic chaos from

statistical noise, we computed largest Lyapunov exponents (LLE)

using Rosenstein’s method [22,23]. LLEs represent the largest

exponential divergence over time of initially close state-space

trajectories. A positive LLE suggests chaos.

We used the TISEAN package to compute LLEs for each time

series sample in two clinical sets: (a) 100 patients, every 24 hour

swabs for 60 days [7] and (b) 25 patients, every 6 hour swabs for

60 days [14], as well as (c) model simulation data (98 simulated

patients, 100 swabs/day [8]). Figure 9 shows rate of change in

the natural logarithm of divergence between two neighboring

trajectories for each sample of the corresponding data sets. LLE is

computed as the slope of the best line of fit to these curves. A more

prominent linear region of the curve indicates a more reliable LLE

computation [22]. Figure 10 demonstrates that the LLEs were

positive for every sample in datasets (b) and (c) but negative for a

few samples with only daily sampling (a). Overall, these results

suggest that viral trajectories are deterministic over timespans of

months but cannot be predicted based on extreme sensitivity to

immunologic and virologic conditions at onset of infection.

Discussion

HSV-2 infection is most commonly acquired during adoles-

cence or young adulthood and then proceeds to frequently

reactivate in the human genital tract throughout the lifetime of the

infected host [24]. Most infected persons are asymptomatic, but

shed virus in an episodic and frequent fashion. Even in patients

who do periodically develop viral ulcers, most transmissions occur

during asymptomatic shedding [25]. These factors all coincide to

favor an optimal transmission strategy, and help explain high

global prevalence of HSV-2. Similar factors explain the success of

other human herpes viruses such as EBV and CMV in sustaining

high levels in human populations. In essence, these viruses and

their human hosts have co-evolved over millennia to arrive at a

point of compromise where shedding occurs at consistently high

levels over decades, but mortality rate is extremely low. The

intricate balance between HSV and infected host is further

demonstrated by stable shedding rates within an individual over

the course of decades [26].

Given this highly organized interplay between the virus and

immune system, it is surprising that we did not identify more

definitive, low dimensional patterns of viral shedding using data

reduction techniques such as SVD, particularly given the fact that

population level features of shedding (including episode rate,

expansion and clearance slopes, duration and peak viral load) can

be recapitulated with our relatively simple stochastic differential

equation based model [8]. Our calculation of positive LLEs

demonstrates the fact that shedding patterns in an individual are

not random and follow a deterministic course. However, two

factors make viral load prediction unrealistic. First, the high

dimensionality of the data implies enormous biologic complexity,

both in terms of the immune response and viral factors. Second,

Figure 7. Grouped scatter plots. (a) T-cell density in region of episode initiation (T0) versus mean of the first ring of T-cell densities ((T1+T2+…+
T6)/6). Class A (0–2 days) was characterized by higher T-cell densities than Classes B (3–6 days), C (7–9 days), and D (. = 10 days). Class A features
were well separated in a cluster while Classes B, C, and D had overlapping feature clusters, (b) 2 randomly selected regions from the first ring reveal
less separation among the 4 classes. (c) First 2 canonical features C1 and C2 obtained by projecting original features ,T1; T2; T3; T4; T5; T6. onto the
eigen vector given by MATLAB’s manova1 routine to maximize separation between classes. Black line shows a possible decision boundary with Class
A features mostly clustering on its right side, while Classes B, C, and D showing significant overlap on the left side.
doi:10.1371/journal.pcbi.1003922.g007
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the demonstration of chaos in the data indicates high sensitivity to

temporospatial starting conditions of infection that cannot be

easily measured at fine enough scales for mathematical prediction.

There are numerous comparable situations in which an accurate

and informative set of equations can describe a complex system of

interest, despite the fact that outcomes of relevance demonstrate

enormous sensitivity to initial conditions and/or small shifts in

system parameters. This fact underlies limitations in predicting

long terms trends in weather forecasting [23], networks of

interacting neurons [27], and in this case, interactions between a

chronically reactivating viral pathogen and a multi-faceted,

spatially dynamic human immune system.

The ramifications for HSV-2 infection are that 1) no definitive

links can be made between single episodes and the timing and

severity of subsequent reactivations; 2) no cyclical patterns of

shedding are evident over times frames of several months; 3)

current shedding is not a reliable predictor of subsequent viral

activity; 4) even a detailed spatial understanding of immune cell

density prior to reactivation would only provide accurate estimates

of a reactivation’s severity over approximately 3 days. Moreover,

our results do not suggest any testable hypotheses to explain why

1–2 month shedding patterns may differ within an infected person.

From the standpoint of clinical care, this is disappointing, as

clinicians must continue to rely on imprecise metrics such as

psychological stress as predictive tools for the next severe shedding

episode [28]. Such exposure variables are hard to define,

impossible to forecast, and only weakly predictive of recurrences

and shedding.

If sinusoidal patterns of viral activation had been detected, then

it might be implied that simple predator prey interactions between

immune cells and virus exist within genital mucosa, and that drop

in local immune cell intensity, predictably portends reactivation

within a certain time window. Based on our repeated observations

that T-cells re-accumulate in response to high levels of viral

shedding, and then slowly decay when virus is absent, we believe

that predator prey dynamics do play an important role in

explaining shedding patterns. These dynamics may be obscured in

our current analysis by the complex spatial topology of viral

replication and immune response, which concurrently occurs in

dozens of sites during more serious reactivations. Alternatively,

time delay in CD8+ T-cell predation may be promoting chaotic

dynamics that are difficult to diagnose in our current datasets.

Finally, components of the immune system other than the CD8+

T-cell response are likely to impact infection, but may shift over

different time and distance scales, thereby inducing enormous

complexity into the system.

The lack of definitive patterns of HSV-2 shedding may also

reflect the fact that balance between virus and host evolves over

time scales of years rather than months. Indeed, we identified a

trend of fewer variables necessary to explain the data when we

applied SVD to 10 years rather than 30 days of simulated data.

However, it would be necessary to apply SVD to 10 years of

empirical data to confirm this trend. Moreover, fourteen variables

were still necessary to describe the model simulation data,

implying a reasonably high degree of unpredictability underlying

HSV-2 shedding data, even over long time frames.

Characteristics that determine the outcome of single shedding

episodes are captured with limited number of features. A

fundamental prediction of our simulation models is that CD8+
T-cell density at the micro-anatomic reactivation site determines

extent of local viral replication. This finding has been confirmed in

animal models of infection [20,21], highlighting the importance of

tissue resident CD4+ and CD8+ T-cells in immediately containing

infected cells. More complex features of individual episodes such

as frequent viral re-expansion are also captured with only four

rank approximations. Exploratory analyses based on initial

conditions derived from the spatial mathematical model, suggest

that T-cell density in close proximity to the site of initial HSV-2

reactivation dictates initial viral behavior, though stochastic effects

become increasingly important as episodes progress. As a result,

we cannot discriminate medium duration episodes (3–6 days) from

longer episodes (. = 10 days) based only on initial spatial

immunologic conditions. This is probably because the site and

frequency at which virus seeds new regions of genital skin is

randomly determined both in our model, and in reality.

Our results do not preclude identification of clinical variables

associated with low and high shedding rate in different groups of

patients. For instance, certain genetic signatures predict high

shedding rate, as does cell-mediated immunosuppression in the

form of HIV infection or organ transplantation [29,30]. Interest-

ingly, gender and age are less predictive of shedding rate [13].

Nevertheless, we believe that shedding trajectories will be difficult

to predict over medium to long time frames within each of these

subgroups.

In summary, we employ new tools to explore short, medium

and long-term trends in HSV-2 genital tract shedding. While we

Table 3. Naı̈ve Bayes classifier.

Prior Probabilities Uniform Empirical

Distribution Training set Test set Training set Test set

Normal 47.47 58.00 46.78 57.28

Kernel 33.45 56.98 33.04 57.36

Training set and test set errors are shown for each combination of type of distribution of data and prior class probabilities. Lowest error rate is ,33% for training set and
,57% for test set when kernel distribution is used to model the data.
doi:10.1371/journal.pcbi.1003922.t003

Figure 8. Grouped scatter plots including second ring (T7, T8,…., T18) of T-cell densities for classifying Classes B (3–6 days), C (7–9
days), and D (. = 10 days). (a) T-cell density in region of episode initiation (T0) versus mean of the first ring of T-cell densities ((T1+T2+…+T6)/6)
demonstrates no separation between groups, (b) Mean of the first ring versus mean of the second ring ((T7+T8+…+T18)/12) of T-cell densities
demonstrates no separation between groups. (c) First 2 canonical features C1 and C2 obtained by projecting second ring of T-cell densities onto the
eigen vector given by MATLAB’s manova1 routine to maximize separation between classes. Black line shows a possible decision boundary with Class
D features clustering on its left side, while Classes B, and C show significant overlap on both sides.
doi:10.1371/journal.pcbi.1003922.g008
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reinforce the critical importance of local immunity on short term

shedding trends, our results also highlight that attempts to develop

tools, which predict viral shedding trends over longer durations

must be greeted with caution, and demonstrate that not all

biologic data is easily reduced to manageable parts.

Materials and Methods

Ethics statement
The University of Washington institutional review board

approved all research. All participants provided informed consent

and we conducted all research according to principles of the

Declaration of Helsinki. All primary data included in the

manuscript has been published elsewhere.

Shedding model
Simulations were performed using C++ and R. The model

(Table 1) assumes 300 micro-regions arranged in a hexagonal

lattice and allows concurrent HSV expansion and containment

within multiple regions [8]. Model assumptions and equations are

described in the results and available in Figure 2.

Data classification techniques
Code for all statistical implementations is available https://

github.com/vdhankani/HSVAnalysis. We applied a range of

pattern recognition and classification techniques on shedding time

series data collected in the clinic as well as time series data and

initial T-cell densities generated by simulation. We used MATLAB

implementations for each of these methods. For Linear Discrim-

inant Analysis (LDA), we tested and compared MATLAB’s

implementation, a third-party implementation (dnldLDA:

http://www.mathworks.com/matlabcentral/fileexchange/29673-

lda-linear-discriminant-analysis) and our own implementation

(funLDA).

We applied Singular Value Decomposition (SVD) on shedding

time series data that captured multiple diverse episodes of HSV-2

reactivation. SVD involves least-square fitting to the data in higher

dimensions. It projects data onto an orthogonal set of variables

that subsequently capture the most variance in the data set. The

dynamics are then projected onto a truncated set of variables with

the aim of faithfully capturing and/or reproducing the dynamics

observed in the entire data set.

We applied SVD on clinical as well as modeled time series data

of over 60 days with various sampling rates. When this experiment

did not reveal any promising decomposition in lower dimensions,

we collected model data for over 10 years to test the hypothesis

that longer period of sampling may lower the system’s dimension-

ality based on the highly structured predator prey features of our

simulation model. We also applied SVD on individual complex

episodes of viral reactivation to understand viral dynamics during

these non-monotonically decaying episodes.

In order to gauge the role of local immunity at the reactivation

site in determining the severity of ensuing episodes, we applied

Linear Discriminant Analysis (LDA) on initial CD8+ T-cell

densities derived from the spatial mathematical model. LDA was

used to identify a linear combination of features that characterize

two or more classes within a dataset. It computes an eigenvector

that maximizes Fisher’s quotient by maximizing between-class

variance and minimizing within-class variance. Hence, the classes

show maximum separation when projected onto this eigenvector.

This method is suitable for dealing with continuous independent

variables that are normally distributed and dependent variables

that are categorical.

Multivariate analysis of variance between the 4 classes was also

performed and grouped scatter plots of the first 2 canonical

features were plotted to visualize the relation among the 4 classes.

When the distinction between episodes of medium and long

duration (Classes B, C, and D) could not be determined using the

T-cell densities of only the first ring around the reactivation site,

we applied the same methods to the second ring of T-cell densities

hypothesizing that as the virus spreads out, local immunity in outer

rings might play role in restricting viral growth.

We used LDA to look for linear decision boundaries in the data.

Because LDA is limited in its power to detect non-linear patterns

in complex biological systems, we tried other advanced linear and

non-linear classification techniques to classify medium and long

duration episodes (Classes B, C, and D) using initial CD8+ T-cell

densities. We used a naive Bayes classifier as a simple probabilistic

classifier based on applying Bayes’ theorem with strong (naive)

independence assumptions, i.e. the presence or absence of a

particular feature is unrelated to the presence or absence of any

other feature, given the class variable. For our case, this feature

was CD8+ T-cell density in the second ring of hexagonal regions

surrounding the reactivation site form the feature set. Naı̈ve Bayes

classifiers work well in practice even when the independence

assumption is not valid. With MATLAB’s implementation, one

can specify the distribution to model the data, as well as prior

probabilities of the classes in the data. We tested combinations of

ranges of these two parameters as shown in Table 3. Errors were

averaged over 1000 runs of randomly selected training and test

sets with 80–20% split.

We used support Vector Machines (SVMs) in an attempt to

classify data between exactly 2 classes and do so by finding the

hyperplane with the largest margin that separates all data points of

Table 4. Support vector machines.

Kernel Function Linear Quadratic Polynomial
Gaussian Radial
Basis function

Multilayer
Perceptron Kernel

Method Training Test Training Test Training Test Training Test Training Test

Least Squares 35.43 54.75 0.68 44.08 0 45.85 0.21 49.08 35.58 49.61

Quadratic
Programming

35.36 54.74 0.01 44.22 0 44.50 0.18 48.93 Fails to
converge

Sequential Minimal
Optimization

33.38 55.87 0.88 45.31 0 45.01 1.38 49.67 62.57 56.85

Training set and test set errors are shown for each combination of kernel function and method used to find the separating hyperplane. Training set errors as low as 0%
were achieved with kernel functions of higher degrees and complexities, but test set errors were always .45%, indicating model over-fitting.
doi:10.1371/journal.pcbi.1003922.t004
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Figure 9. Rate of divergence of neighboring trajectories for each time series sample in (A) Clinical data (100 samples, every 24 hour
swabs for 60 days), (B) Clinical data (25 samples, every 6 hour swabs for 60 days), and (C) Model simulation data (98 simulated
samples, 100 swabs/day). A more prominent linear region of the curve indicates a more reliable LLE computation.
doi:10.1371/journal.pcbi.1003922.g009
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one class from those of the other class. The main advantage of

using SVMs for our data comes from their capability of

transforming data using non-linear kernels and finding hypersur-

faces in the kernel space, hence allowing non-linear separation of

classes. We used SVM for pairwise classification of classes B and

C, C and D, and B and D. Five different kernel transformations

(linear, quadratic, polynomial, Gaussian radial basis function, and

multilayer perceptron kernel) and three different methods (least

squares, 2-norm soft margin, sequential minimal optimization) of

finding the separating hyperplane were set as parameters.

Finally, we employed classification trees, which are decision

trees that map observations about an item and this item’s target

value. In these tree structures, leaves represent class labels and

branches represent conjunctions of features that lead to those class

labels. We used MATLAB’s classregtree method to classify the T-

cell densities in the second ring around the region of episode

initiation into classes B, C, and D (http://www.mathworks.com/

help/stats/classregtree.html). An important parameter of classifi-

cation trees is the minimum number of observations a tree leaf

must have. Too few observations per leaf might lead to over-

fitting, and too many lead to under-fitting. We tested a range of

values for this parameter called ‘minleaf’ in MATLAB. For each

value of the parameter, re-substitution and test errors were

averaged over 1000 randomly chosen training and test sets.

Largest Lyapunov exponents to detect chaos
In order to distinguish deterministic chaos from statistical noise,

we computed largest Lyapunov exponents (LLE) using Rosen-

stein’s method [27] which is optimized to compute largest

lyapunov exponents from small time series data. LLEs represent

the largest exponential divergence over time of initially close state-

space trajectories. A positive LLE suggests chaos. We used the

implementation of Rosenstein’s method provided in the TISEAN

[26] package to compute LLEs for each time series sample in

clinical as well as model simulation data.
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