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The genetic background of donor and recipient is an important factor determining the outcome of 

allogeneic hematopoietic stem cell transplantation (allo-HSCT). We applied a whole genome 

analysis to investigate genetic variants - other than HLA class I and II - associated with negative 

outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We 

identified two single nucleotide polymorphisms in BAT2 (A/G) and BAT3 (T/C) genes, SNP 

rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong Linkage 

Disequilibrium between each other (R2=0.92). When considered as single SNP, none of them 

reached a significant association with graft rejection (nominal P < 0.00001 for BAT2 SNP 

rs11538264, and P < 0.0001 for BAT3 SNP rs10484558). Whereas, the BAT2/BAT3 A/C 

haplotype was present at significantly higher frequency in patients who rejected as compared to 

those with functional graft (30.0% vs. 2.6%, nominal P = 1.15×10−8; and adjusted P = 0.0071).

The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent novel 

immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.
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Introduction

Graft versus Host Disease (GvHD) and graft rejection are the main limiting factors for 

successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) to cure 

malignancy or inborn genetic disorders of the hematopoietic system. The improvement of 

HLA molecular typing has allowed the definition of better criteria for compatibility and 

donor selection. A more accurate HLA class I and II matching together with improved graft 

preparations, patient conditioning, and targeted prophylaxis have been essential to decrease 

the incidence of GvHD, especially in the context of malignant diseases. In addition, recent 

studies in large cohorts of non-malignant patients transplanted with unrelated allo-HSCT 

revealed the relevance of allelic and antigenic HLA matching for post-transplant graft 

failure and rejection, nonetheless a high rate of both complications persists especially in the 

non-malignant setting 1-5.

In the last decade, the potential role of polymorphisms in genes encoding for non-HLA 

antigens in predicting HSCT complications has been widely investigated in the attempt to 

identify novel independent risk factors that may permit a more accurate prediction of 

transplant-related complications and help in designing individualized prophylaxis. Single 

nucleotide polymorphisms (SNPs) of cytokines, such as Tumour Necrosis Factor (TNF)-α 

or Interleukin (IL)-10, cytokines receptors, or genes associated with innate immunity (i.e. 

Killer-cell immunoglobulin-like receptors) have been associated with allo-HSCT outcomes 

in patients transplanted with hematopoietic stem cells from related or unrelated HLA-

identical donors 5-9.

To date, allo-HSCT represents the only curative treatment for β-Thalassemic patients 10, 

who still have a lower median life expectancy compared to healthy individuals, despite 
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regular blood transfusions and supportive care. In these patients the incidence of GvHD after 

transplant is typically low thanks to the optimization of transplant composition, 

conditioning, and prophylaxis both in related and unrelated transplants 11. However, the 

success of allo-HSCT for the cure of β-Thalassemia is still hampered by the rate of graft 

rejection that is significantly higher, as compared to patients transplanted for malignancies. 

Several factors have been evoked to explain this difference. Recipient allo-immunization 

due to massive pre-transplant exposure to blood products and absence of chemotherapy 

treatments prior to conditioning contribute to better preserve or even enhance immune 

reactivity in β-Thalassemic patients 12. However, a comprehensive characterization of the 

immunogenetic factors that influence graft rejection in this patient population, as in other 

non-malignant hematologic diseases, is still missing.

In this study, we performed a whole genome association analysis using Affymetrix gene 

chip array technology, which allows to genotype more than 900,000 SNPs. We investigated 

whether specific genetic variants are associated with graft rejection after HLA-related HSCT 

in a cohort of β-Thalassemic patients treated with fairly homogenous transplant protocols.

Materials and Methods

Patients

The present study includes 110 patients who underwent HSCT between 2004 and 2010 from 

a genotypically HLA-identical 12/12 allele-level matched sibling. All patients were affected 

by β-Thalassemia Major and received a myeloablative-conditioning regimen followed by the 

infusion of un-manipulated bone marrow cells. Patients with β-Thalassemia in class 1 or 2 

(according to the Pesaro classification) were given protocol (PC)6, a conditioning regimen 

based on 14 mg/kg Busulfan (Bu) and 200 mg/kg Cyclophosphamide (Cy), or PC6.1, 14 

mg/kg Bu, 200 mg/kg Cy and 10 mg/kg Thiothepa (TT). β-Thalassemic patients in class 3 

(according to the Pesaro classification) were conditioned with PC26 consisting of a pre-

transplant treatment starting at day −45 with 3 mg/Kg Azatioprine (Az), at day −17 with 30 

mg/Kg of Hydroxyurea (HU) and from day −16 to day −12 with 30 mg/m2 Fludarabine 

(Flu), followed by 14 mg/kg Bu and a reduced dose of Cy (160 mg/kg). PC26 MOD was 

equal to PC26, with the addition of 10 mg/kg TT (Table 1). Intravenous Cyclosporin A was 

started at 5 mg/kg from day −2 to day +5, and later reduced to 3 mg/kg until post-transplant 

day 60 when it was tapered off 5% per week and discontinued at 1 year. The desired plasma 

range was 150-250 ng/mL. Intravenous methylprednisolone (MP) was started at 0.5 mg/kg 

at day −1 and stopped 30 days post-transplant. Short methotrexate (MTX), 10 mg/m2 was, 

given intravenously at days 1, 3 and 6 post-transplant with folinic rescue. The study was 

approved by the Ethical Committee of the Policlinico Tor Vergata, Rome and by the Ethical 

Committee of San Raffaele Scientific Institute, Milan. We obtained informed consent from 

patients according to institutional guidelines and to the Helsinki Declaration.

Analysis of donor chimerism after HSCT

Recipient and donor DNA samples, extracted by QIAamp DNA Blood mini Kit (Qiagen, 

Valencia, CA, USA) were typed by short tandem repeats (STR) and amelogenin locus using 

the AmpFISTR Profiler Plus kit (Applera, Foster City, CA, USA). Amplification reactions 
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were carried out using 1-2 ng of input DNA following the manufacturer’s recommendations. 

PCR products were run on an ABI Prism 3130xl Genetic Analyzer (Applera, Foster City, 

CA, USA). Informative loci for post-transplant samples were screened for quantification of 

the donor cell percentage in mixed chimerism (MC). Quantitative determination of 

engraftment was performed using fluorescent PCR primers for human identity markers 

based on the ratio between peak areas of donor and recipient alleles. The mean value 

obtained after performing calculations for each informative STR was considered as the 

percentage of MC.

SNP Genotyping

PBMC from β-Thalassemic patients transplanted with HLA-related HSCT and donors were 

genotyped with the Affymetrix Genome-Wide Human SNP 6.0 Array (Affymetrix, Inc. 

Santa Clara, CA, USA), including probes for more than 906,000 SNPs and for the detection 

of copy number variants (CNVs) 13, according to manufacture’s instructions. Briefly, total 

genomic DNA (500 ng) was digested with Nsp I and Sty I enzymes, ligated to adaptors and 

amplified using a primer that recognizes the adaptor sequence. The amplified DNA was then 

fragmented, labelled and hybridized to oligonucleotide probes attached to the surface of an 

array in a GeneChip Hybridization Oven 640 (Affymetrix, Inc.), followed by washing and 

staining procedures performed on a GeneChip Fluidics Station 450 (Affymetrix, Inc.). 

Arrays were scanned using the GeneChip Scanner 3000 7G (Affymetrix, Inc.).

Sequencing

Two different pairs of primers that amplify the DNA fragments containing the rs11538264 

and the rs10484558 variants were designed to provide 222 bp and 263 bp fragments, 

respectively. The template DNA was amplified in a total volume of 25 μl using standard 

PCR procedures using an annealing primer-specific temperature of 56° C for rs11538264 

and 58° C for rs10484558. The two specific amplification primer pairs were a) 

CTGAGTTGGGTGGAGAGAAG and AGCAATCTTCCCCAGAAATC, b) 

CTCCACTTCTTCTGCCTCCA and CCATGCCTTCAGGGAGTCTA, respectively. PCR 

products were purified using the Agencourt Ampure XP system following the 

manufacturer’s instructions. Sequencing reactions were performed using 10 μl of purified 

PCR products, forward or reverse primers used in PCR reaction and ABI Bigdye terminator 

cycle sequencing kits (Applied Biosystems, Foster City, CA, USA). Sequencing reactions 

were purified using a standard ethanol precipitation and the fluorescent labelled extension 

products were loaded into an ABI 3730 DNA analyzer (Applied Biosystems). To avoid 

errors or artefacts in DNA sequencing, each sample was sequenced on both DNA strands.

Data analysis

The obtained intensity files were analysed with the Affymetrix Power Tools package (APT 

version 1.12.0). Quality Control was performed using the Contrast QC algorithm (CQC), 

carried out with the executable APT-GENO-QC, using the default settings. Eight individuals 

showing CQC values lower than 0.4 were removed from the dataset. Genotypes used for 

association analysis were called using the Birdseed v2 algorithm implemented in the 

executable APT-PROBESET-GENOTYPE, using defaults settings. All samples with a call 
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rate > 90.00 were retained. The all rate of remaining samples was 98.88±1.031, with a 

maximum of 99.804 and a minimum of 94.277. Finally, the adopted algorithm successfully 

called 905,556 SNPs, located on autosomes and sexual chromosomes. Output files were 

converted in PLINK format 14, and annotated with Affymetrix release 31, corresponding to 

Build GCRhv37. In order to create an informative dataset of common autosomal markers, to 

avoid detection of false positive signals of association and to remove SNPs incorrectly 

genotyped, we excluded from 905,556 called markers, SNPs without map references, SNPs 

with call rate < 95%, MAF < 0.05 and out of Hardy-Weinberg Equilibrium (P<10−5). A 

dataset of 617,049 informative autosomal SNPs was identified. All filtering procedures were 

performed with PLINK software 14.

Association tests were performed between patients with rejection (GR) and patients with 

functional graft (FG). At the SNP level, we used the function --fisher of PLINK software, 

and we corrected results for multiple tests with the Bonferroni method. We also used a 

second cut-off of P<10−5 to detect potential associations. At the haplotype level, we used the 

--hap-assoc function to estimate haplotype frequencies with the E.M algorithm 15 and to 

compute χ2 test between cases and controls (Affymetrix, Inc.). With the aim to associate 

candidate SNPs with known and predicted regulatory elements, we used the Regulome 

database 16. Finally, the regression analysis to investigate the influences of covariants on 

transplant outcome (conditioning regimens, Pesaro class risk, and age at transplantation) was 

performed using the function -gml as implemented in the R package 17.

Results

Identification of SNPs differentially expressed in β-Thalassemic patients who reject HLA-
identical HSCT graft

A total of 110 β-Thalassemic patients transplanted from genotypically HLA-identical 12/12 

allele-matched siblings were studied. To define genetic risk factors associated with rejection, 

β-Thalassemia patients who rejected transplants (Graft Rejection, GR, n=15) were compared 

to patients who developed either Complete Chimerism (CC, n=85) or Persistent Mixed 

Chimerism, in which donor and recipient cells stably coexist (PMC, n=10) (Table 1). 

Patients belonging to these two last groups are henceforth referred to as functional graft (FG, 

n=95). Unlike patients who reject the graft, patients who develop CC or PMC are indeed 

disease free and transfusion independent 18.

Initially, SNPs were genotyped and analysed in a first group of 45 transplanted patients (GR, 

n=9 vs. FG, n= 36) using the Affymetrix 6.0 array, allowing the analysis of a total of 

617,049 informative SNPs located on autosomes. After Bonferroni correction for multiple 

tests, (correction for 617,049 test, cut-off P value = 8.1×10−8), no SNPs showed a 

statistically significant difference between GR and FG patients. We then chose a nominal P 

value of <1×10−5 as cut-off to detect potential differences in allele frequency between GR 

and FG patients. Using this criterion, we found 6 SNPs located in chromosomes 1, 2, 6, and 

11 (Table 2, and Figure 1S). In addition to these SNPs, we found also 37 SNPs with a 

nominal P value <1×10−4 (Table 1S).
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SNPs in BAT2 (A/G) and BAT3 (T/C) genes are predominant in β-Thalassemic patients who 
rejected allo-HSCT graft

All but one SNPs with potential differences in allele frequency between GR and FG patients 

(Table 2) were located either in inter-genic regions, in genes with unknown function, or not 

directly associated to immunologic functions. We therefore further characterized this unique 

SNP - rs11538264 (P=4.26×10−6) - located in the BAT2 gene encoding for proline-rich 

coiled-coil 2A protein (PRRC2A) in proximity of the TNF-α and TNF-β loci of 

chromosome 6 in HLA class III region 19. Interestingly, this SNP is in linkage 

disequilibrium (LD) (R2 = 0.86) with the SNP (rs10484558) located in BAT3 gene, at 12.3 

Kb downstream BAT2 gene, encoding for a large proline-rich protein, (BAG6) with a 

nominal P value of 3.01×10−5 (Table S1).

SNP rs11538264 (BAT2) leads to the A or G alleles, whereas SNP rs10484558 (BAT3) leads 

to the C or T alleles, being the allele G for BAT2 and the allele T for BAT3 the most 

represented in human populations, with frequencies greater than 80% in the populations 

analysed 20. In contrast, the A allele of SNP rs11538264 (BAT2) and the C allele of SNP 

rs10484558 (BAT3) were significantly more frequent in the GR (n=9) than the FG (n=36) 

patient group (43.8% vs. 0.00%, and 43.8% vs. 1.8%, respectively). This result is even more 

significant considering that the frequency of the allele A (rs11538264, BAT2) and of the 

allele C (rs10484558, BAT3) was 4.2% in the parents of transplanted β-Thalassemic patients, 

and of 5% in a small (n=10) cohort of independent individuals from the same ethnic group, 

analysed in parallel. These data are in line with the frequencies of the allele A (rs11538264, 

BAT2) and of the allele C (rs10484558, BAT3) reported in databases obtained in wide 

populations (Table S2) 20.

We validated the presence of SNPs rs11538264 and rs10484558 by means of Sanger 

sequencing in 25 patients previously genotyped by microarray, and we extended the analysis 

to additional 65 β-Thalassemic patients who underwent allo-HSCT (n=6, GR and n=59, FG 

patients). The frequency of the allele A (rs11538264, BAT2) and of the allele C 

(rs10484558, BAT3) in this latter population resulted higher in the GR compared to the FG 

patient group, but it did not reach the statistical significance, possibly because numerically 

limited (data not shown). Since these additional transplanted β-Thalassemic patients were 

identical to those analysed in microarrays in terms of disease, ethnicity, and treatment, we 

established the allele and genotype frequencies of the total samples (n=15, GR and n=95, FG 

patients). Overall, GR patients (n=15) carried significantly higher frequencies of the allele A 

of rs11538264 (BAT2) (9/30 (30%) vs. 5/190 (2.6%); P=6.34×10−6; OR=15.86), and of the 

allele C of rs10484558 (BAT3) (9/30 (30%) vs. 6/190 (6.3%); P=1.44×10−5; OR=13.1) 

compared to FG patients (n=95) (Table 3). Furthermore, the respective genotype frequencies 

A/A, A/G, and G/G of the BAT2 - SNP rs11538264, and C/C, C/T, and T/T of BAT3 - SNP 

rs10484558, were differentially represented in the GR compared to the FG patient group, 

being the genotype A/A (BAT2 - SNP rs11538264) and C/C (BAT3 - SNP rs10484558) 

never detected in the FG patients (Table 2).
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The BAT2/BAT3 A/C haplotype is associated with graft rejection after allo-HSCT for β-
Thalassemia

SNP rs11538264 (BAT2) and SNP rs10484558 (BAT3), separated by 12.3 Kb, are in strong 

Linkage Disequilibrium (LD) (R2=0.92 considering the total sample). Haplotypes estimates 

by EM algorithm revealed only three (AC, GC, and GT) of the four possible haplotypes, 

with haplotype AT not found in the present patient cohort and with haplotype GC showing a 

frequency less than 1%. In line with the allele frequency observations, haplotype AC had a 

significantly higher frequency in GR (n=15) compared to FG (n= 95) patients (30.0% (9/30) 

vs. 2.6% (5/190), nominal P=1.15×10−8, adjusted P=0.0071, Table 3). The haplotype 

containing the predominant alleles (GT) had a prevalence of 70.0% (21/30) in GR patients 

and 96.8% (184/190) in FG patients (nominal P=5.94×10−8, adjusted P=0.037, Table 3). To 

associate the identified SNP rs11538264 (BAT2) and SNP rs10484558 (BAT3) with known 

and predicted regulatory DNA elements, we used the RegulomeDB database 16. Results 

indicate SNP rs11538264 as an eQTL (Expression Quantitative Trait Loci) influencing the 

expression level of non-classical HLA-C gene, as reported by 21 (GHSdatabase:http://

genecanvas.ecgene.net/uploads/ForReview/ghs_probe_express030510.zip).

With the aim to test the influence of additional risk factors of rejection, we performed 

regression analysis considering as independent variables: conditioning regimens, Pesaro risk 

class, and age comparing patients with different SNPs. Results were not significant for 

conditioning protocols, age at transplantation and the Pesaro risk class 3, in which the 

majority of the analyzed patients belonged to (n=68, Table 1). Notably, risk class often 

shows a high association with post-transplantation complication and mortality, but in 

regression analyses previously performed rejection was never associated with this specific 

Pesaro risk class10. Based on these analyses, we concluded that patients carrying different 

BAT2 and BAT3 SNPs are similar with respect to other risk factors of rejection after allo-

HSCT.

Discussion

By genome wide analysis we have identified two single nucleotide polymorphisms 

(rs11538264 and rs10484558) in the BAT2 and BAT3 genes, within the HLA class III region, 

in strong linkage disequilibrium, that are statistically associated, at the haplotype level 

(adjusted P=0.0071), with graft rejection after HLA-identical HSCT. For the first time, an 

association between the haplotype AC, of BAT2 and BAT3 genes, and rejection was indeed 

detected after HLA-identical sibling HSCT in β-Thalassemia patients. In addition, 

evaluation of the BAT2/BAT3 SNPs also defines an haplotype (GT) which is significantly, 

although not exclusively, associated with functional grafts.

Both BAT2 and BAT3 belong to the B-associated transcripts; BAT2 encodes a proline-rich 

coiled-coil 2A protein whose function has not yet been determined, and BAT3 encodes a 

large proline-rich protein that acts as regulator of histone H3K4 demethylation, subsequent 

gene transcription 22, and regulation of apoptosis 23-26. More recently, it has been observed 

that the BAT2 transcript, together with interferon (IFN)-γ and TNF-α transcripts, was up-

regulated in peripheral blood mononuclear cells (PBMC) of two patients with an on going 

GvHD after allo-HSCT 27, suggesting a possible role of BAT2 in inflammatory responses 

Piras et al. Page 7

Bone Marrow Transplant. Author manuscript; available in PMC 2015 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://genecanvas.ecgene.net/uploads/ForReview/ghs_probe_express030510.zip
http://genecanvas.ecgene.net/uploads/ForReview/ghs_probe_express030510.zip


after allo-HSCT. Notably, the SNP rs11538264 (A/G) of BAT2 described here is a non-

synonimous variation, causing a VAL1774MET substitution that may impact on the 

biological function of the protein. Our results are strengthened by the evidence that the SNPs 

rs11538264 could be involved in regulation of expression levels of HLA-C in monocytes 21.

BAT3 has recently been shown to be critically involved in regulating HLA class II 

expression 28: IFN-γ induces BAT3 expression that facilitates the nuclear import of the class 

II transactivator (CIITA), with subsequent activation of HLA class II gene expression in 

antigen-presenting cells (APCs). Moreover, BAT3 is primarily expressed by T helper (Th)1 

cells and protects them from cell death 29. Interestingly, BAT2 and BAT3 polymorphisms 

have been associated with increased incidence of type 1 diabetes and have been 

hypothesized to be involved in the inflammatory process of pancreatic beta-cell 

destruction 30, 31. In addition, it has been shown that several isoforms of BAT3 exist and that 

their expression is cell-specific, which may contribute to a specific activity in a given 

cells 32. These findings, together with the described role of BAT3 as chaperone in regulating 

the pattern of HLA class II gene expression in APCs, suggest that BAT3 may be critically 

involved in modulating effector T cell responses.

Although we could not test in our β-Thalassemia patients whether the allelic variant of BAT3 

resulted in an altered protein and function, sequence analysis of the genetic variants and 

bioinformatic analyses with RegRNA 33 and ESEFinder 34 predicted the disruption of an 

exon splicing enhancer, binding site for the splicing factor SRp20, caused by the C allele of 

the rs10484558 SNP (BAT3) 35, and the introduction of two novel binding sites for the 

SRSF1 and SRSF5 splicing factors, respectively. It can thus be hypothesized that alteration 

of the putative enhancer results in an inefficient inclusion of the seventh exon of the BAT3 

transcript encoding the first of the two proline rich regions of the protein, and may limit the 

protein-protein interactions. Future studies are warranted in order to elucidate whether, for 

example, the BAT3 C allele encodes a protein with modulated chaperone activity, which 

may lead to increased HLA class II expression in APCs and/or to enhanced Th1 cell 

activation in the context of allo-HSCT rejection.

In conclusion, by genome wide analysis we have identified two polymorphisms (rs11538264 

and rs10484558) in the BAT2 and BAT3 genes within the HLA class III region, in strong 

LD. The haplotype containing the A allele of SNP rs11538264 (BAT2) and the C allele of 

SNP rs10484558 (BAT3) is associated with graft rejection after HLA-identical sibling HSCT 

in β-Thalassemic patients. In addition to providing a potentially useful indication for 

individualized prophylaxis against rejection in β-Thalassemic patients carrying the relevant 

polymorphisms, the identified haplotype for the BAT genes may represent new molecular 

markers for risk assessment in allo-HSCT also for other non-malignant hematologic diseases 

and, possibly, organ transplantation. An important question to be addressed in future studies 

is whether these polymorphisms are specifically associated with graft rejection after allo-

HSCT in β-Thalassemia or can be also relevant in other clinical settings of allo-HSCT. 

Moreover, it could also be important to test whether the identified BAT2 and BAT3 SNPs 

would be associated to graft rejections after allo-HSCT for other clinical indications or after 

allo-HSCT with different HLA disparities.
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Therefore, the general relevance of these polymorphisms as predictive markers of rejection 

beyond the present context of allo-HSCT in β-Thalassemia, has to be addressed in future 

studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1
Characteristics of HLA-related HSC transplanted β-Thalassemic patients.

Patients n (%)

Male 59 (53.6%)

Female 51 (46.4%)

Age transplantation; years; median (range) 10.5 (2-27)

Conditioning Protocols * n (%)

PC 26 46 (41.8%)

PC 26MOD 24 (21.8%)

PC 6 30 (27.3%)

PC 6.1 10 (9.1%)

Pesaro Class risk n (%)

1 6 (5.4%)

2 36 (32.7%)

3 68 (61.8%)

Transplantation Outcome n (%)

Graft Rejection (GR) 15 (13.6%)

Persistent Mixed Chimerism (FG) 10 (9,1%)

Complete Chimerism (FG) 85 (77.3%)

*
PC26, protocol 26, was a conditioning regiment for β-Thalassemic patients in class 3 (according to the Pesaro classification) consisting of a pre-

transplant treatment starting at day −45 with 3 mg/Kg Azatioprine (Az), at day −17 with 30 mg/Kg of Hydroxyurea (HU) and from day −16 to day 

−12 with 30 mg/m2 Fludarabine (Flu), followed by 14 mg/kg Bu and a reduced dose of Cy (160 mg/kg). PC26 MOD, protocol 26 modified, was a 
conditioning regiment for β-Thalassemic patients in class 3 (according to the Pesaro classification) and was equal to PC26, with the addition of 10 
mg/kg TT. PC6, protocol 6, was a conditioning regimen for β-Thalassemic patients in class 1 or 2 (according to the Pesaro classification) based on 
14 mg/kg Busulfan (Bu) and 200 mg/kg Cyclophosphamide (Cy). PC6.1, protocol 6.1, was a conditioning regimen for β-Thalassemic patients in 
class 1 or 2 (according to the Pesaro classification) based on 14 mg/kg Bu, 200 mg/kg Cy and 10 mg/kg Thiothepa (TT).
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