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ABSTRACT

A substantial number of people who sustain a mild traumatic brain injury report persistent symp-
toms. Most common among these symptoms are headache, dizziness, and cognitive difficulties.
One possible contributor to sustained symptoms may be compromised cerebrovascular regula-
tion. In addition to injury-related cerebrovascular dysfunction, it is possible that prolonged rest
after mild traumatic brain injury leads to deconditioning that may induce physiologic changes in
cerebral blood flow control that contributes to persistent symptoms in some people. There is
some evidence that exercise training may reduce symptoms perhaps because it engages an array
of cerebrovascular regulatory mechanisms. Unfortunately, there is very little work on the degree
of impairment in cerebrovascular control that may exist in patients with mild traumatic brain
injury, and there are no published studies on the subacute phase of recovery from this injury. This
review aims to integrate the current knowledge of cerebrovascular mechanisms that might under-
lie persistent symptoms and seeks to synthesize these data in the context of exploring aerobic
exercise as a feasible intervention to treat the underlying pathophysiology. Neurology®
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GLOSSARY
mTBI 5 mild traumatic brain injury; NO 5 nitric oxide.

Each year in the United States, as many as 3.8 million individuals sustain a mild traumatic brain
injury (mTBI) in sports alone.1 Furthermore, at least 10% of Iraq/Afghanistan veterans have
sustained one or more mTBIs during their military career, and more than a third of them report
persistent symptoms.2 When symptoms persist beyond a month or are present chronically, the
cause of these symptoms is likely multifactorial—and comorbidities such as chronic pain,
depression, traumatic stress, anxiety, substance abuse, and life stress can mimic or exacerbate
these symptoms. It is possible that cerebrovascular dysregulation might underlie initial, suba-
cute, and/or chronic symptoms after mTBI. Moreover, dysregulation could result from the
injury itself, or from subsequent deconditioning due to bed rest, or both. Unfortunately, there
has been very little research on the degree of impairment in cerebrovascular control that may
exist in patients with mTBI, especially in the subacute phase of recovery. This review aims to
integrate the current knowledge of cerebrovascular mechanisms that might underlie postacute
and chronic symptoms in mTBI and seeks to synthesize these data in the context of exploring
aerobic exercise as a feasible intervention to treat the underlying pathophysiology.

Overview. No organ in the body is as dependent as the brain on a steady supply of blood. However, the evo-
lution of the skull to house the brain coupled with 2-legged motion has put fairly complex constraints on the
control of cerebral blood flow, and the brain seems to lack the survival advantage of other organs, such as the
liver or kidney, that are more tolerant to fluctuations in blood flow. Compensatory mechanisms, however,
offset this limited autonomy, ensuring that brain perfusion is well-controlled. These include neurovascular
coupling to increase flow in response to increased neuronal activity and metabolic demand, cerebral
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vasoreactivity to alter flow with changes in carbon
dioxide (CO2) levels, and cerebral autoregulation to
maintain constant flow despite changing perfusion
pressure. Insults to any of these mechanisms may
result in impaired cerebrovascular regulation, and
might underlie some of the pathophysiologic
heterogeneity associated with TBI.

There is some evidence that aerobic exercise train-
ing could reduce persistent symptoms by engaging
the array of mechanisms for cerebrovascular control.
For example, sustained muscle engagement during
exercise leads to cortical activation in motor and sen-
sorimotor areas, increasing cerebral metabolism, and
thus engaging neurovascular coupling3 to increase
flow. Increased CO2 production attendant to aerobic
exercise is accompanied by greater cerebral vasoreac-
tivity4 to regulate flow in response to hyper- and
hypocapnia. In addition, the increases in systemic
pressure with even low-intensity exercise must be
counterregulated by effective cerebral autoregulation5

to constrain flow and prevent overperfusion. Thus,
regular exercise and engagement of these mechanisms
might result in a “training effect” on cerebrovascular
regulation. Moreover, it is known that detraining
(i.e., prolonged inactivity) results in significant defi-
cits in cerebrovascular control,6 and emerging evidence
suggests that exercise training reduces symptoms in
those with mTBI.7,8 Thus, there may be beneficial
adaptations to exercise training that contribute to
symptom reduction via improved cerebrovascular
regulation.

Neurotrauma and cerebrovascular control. Symptoms
similar to those associated with mTBI (altered cogni-
tive function, headache, and dizziness) can arise as a
result of cerebrovascular dysfunction. First, studies
suggest that alterations in neurovascular coupling
may relate to declines in cognitive function. Retired
boxers can show evidence of cerebral hypoperfusion
coupled with neurocognitive dysfunction.9 Second,
individuals with migraine demonstrate excessive in-
creases and decreases in cerebral blood flow in
response to both hyper- and hypocapnia that might
be associated with the development and/or persistence
of headaches.10 Lastly, those with vasovagal syncope,
frequently accompanied by dizziness, can demonstrate
rapid changes in cerebrovascular autoregulation pro-
dromal to frank syncope, such that autoregulation is
virtually lost immediately preceding, during, and after
syncope.11 In fact, there is an association between the
presence of syncope, risk of fainting, and impaired
autoregulation,12 and thus, impaired cerebrovascular
autoregulation may be an important factor underlying
dizziness. Although the mechanisms that underlie
these associations are not well understood, taken
together, available data suggest that dysregulation of

neurovascular coupling, cerebral vasoreactivity, and
cerebral autoregulation could contribute to some of
the chronic symptoms of mTBI, specifically altered
cognitive function, headache, and dizziness.

Neurovascular coupling.Distribution of cerebral flow
is regulated in response to the functional activity in
different brain regions. That is, when activity in a
brain region increases, flow to that region also in-
creases. Evidence indicates that glia, neurons, as well
as blood vessels act as an integrated unit and have a
crucial role in this process. The term neurovascular
unit was coined to highlight the intimate functional
relationships between these cells and their coordi-
nated pattern of reaction to injury. Moreover, because
neuronal activity requires delivery of adequate oxygen
and glucose to specific brain regions, cerebral blood
flow and cerebral metabolic rate are normally cou-
pled. Alterations of this “neurovascular coupling”
can impair the ability of the brain to provide suffi-
cient flow to active regions, leading to neural dysfunc-
tion. Neurovascular coupling could derive from
several mechanisms. Activity-related ion content
shifts, energy substrate changes, or neurotransmitters
themselves can influence vasomotor tone.13 Interneu-
rons may also mediate flow coupling via endings
directly on arterioles and by secreting acetylcholine,
an endothelial-dependent vasodilator.14 Alternatively,
astrocytes directly contact endothelial cells and can
secrete vasodilatory substances, such as epoxyeicosa-
trienoic acid, adenosine, nitric oxide (NO), and
cyclooxygenase-2 metabolites.15 Although the exact
interplay among these potential mechanisms is
unclear, vasodilatory effects in the microcirculation
are insufficient to effectively increase local blood flow.
The vasodilatory signal must be back-propagated to
upstream pial arterioles that offer the greatest resis-
tance to flow. The signal appears to be transmitted
through gap junctions of neighboring endothelial or
smooth vascular muscle cells. The increase in the arte-
rial flow might also induce further dilation as a result
of increased shear stress. Hence, vascular endothelial
function and smooth muscle responsiveness appear
to be critical in transducing the signals into cerebral
flow changes orchestrated to the period of neural
activation.

Data on alterations in neurovascular coupling after
mTBI are limited. Animal data suggest that after
moderate to severe TBI, local cerebral blood flow
decreases, and as a result of these focal impairments,
neurovascular “uncoupling” occurs.16 These altera-
tions are thought to be primarily due to alterations
in neural control17 and endothelial function18 in
the pial vasculature. Unfortunately, there are no com-
parable data in humans. One study showed that cen-
tral acetylcholinesterase inhibitors (which reduce
the clearance of acetylcholine, thereby increasing
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endothelium-dependent acetylcholine availability)
may be a promising treatment to improve vigilance
and attention after moderate to severe TBI in hu-
mans.19 If so, endothelial dysfunction may underlie
impairment in neurovascular coupling after mTBI in
humans. However, this link has not been explored.

Cerebral vasoreactivity. Cerebral blood flow is also
highly sensitive to changes in arterial CO2 level. Cer-
ebrovascular responses to changes in CO2 are primar-
ily mediated via changes in extracellular pH and
subsequent activation of ion channels in the vascular
smooth muscle. This is a key mechanism for cerebro-
vascular control because arterial CO2 can fluctuate
widely from one breath to the next and can change
significantly with everyday stressors, such as moving
from supine to upright postures. Hypercapnia (i.e.,
high CO2) leads to vasodilation and increases in flow,
whereas hypocapnia (i.e., low CO2) leads to vasocon-
striction and decreases in flow. The highly sensitive
flow responses to changes in CO2, termed cerebral
vasoreactivity, is a vital homeostatic function that
helps regulate and maintain central pH. In essence,
elevations in flow with hypercapnia “wash out” CO2

from brain tissue, thereby attenuating the rise in pH,
whereas declines in flow with hypocapnia attenuate
the fall in brain pH. This response is rapid, occurring
with an approximate 6-second delay.20 Links between
systemic endothelial function and cerebral vasoreac-
tivity have been reported,21 indicating a common
pathway between peripheral flow-mediated dilation
and vasoreactivity. However, the mechanism of
action for CO2-mediated blood flow changes has
not been entirely elucidated. Potassium channel acti-
vation may have a role in coordinating vascular tone
in upstream and downstream vessels via endothelial
and vascular smooth muscle effects.22 An alternative
or complementary mechanism is CO2/pH-induced
alterations in vasoactive factors. Key among these
factors is endothelial release of NO. The extent to
which NO acts as obligatory or permissive is
unknown, but it seems to be an essential vasoactive
factor in the response to CO2.23 Thus, similar to neu-
rovascular coupling, endothelial function as well as
smooth muscle responsiveness may be key factors in
cerebral vasoreactivity.

Impaired cerebrovascular response to CO2 has
been shown to predict poor outcomes in patients with
severe TBI.24 CO2 reactivity is compromised in the
initial days postinjury but can return to normal.25 Of
note, a disruption in cerebral vasoreactivity occurs in
the days immediately after a mild cortical impact
injury in animals,26 and this has also been observed
shortly after sports-related concussion in humans.27

However, it remains unknown whether alterations
in cerebral vasoreactivity also relate to the chronic
symptoms after mTBI.

Cerebral autoregulation. A third line of defense, cere-
brovascular autoregulation, counteracts the effects of
arterial pressure fluctuations occurring with everyday
activities. For example, changes in posture can result
in as much as a 50% drop in systolic pressure and pro-
duce vasovagal syncope with brief loss of conscious-
ness if blood flow to reticular brain cells also rapidly
falls. However, this will not occur if effective “auto-
regulation” results in maintained blood flow via cere-
brovascular resistance changes that fully counteract
changes in pressure. Cerebral arteries relax when pres-
sure decreases and constrict when pressure increases
to maintain stable cerebral perfusion. As with neuro-
vascular coupling and cerebral vasoreactivity, the
exact mechanisms are not entirely known, but certain
important effectors have recently been demonstrated.
Autonomic control appears to be a key mechanism
for adequate autoregulation. Ganglionic blockade of
cardiovascular autonomic control reduces the ability
of the cerebral circulation to counterregulate pressure
fluctuations.28 In fact, intact sympathetic function is
critical to normal cerebrovascular responses to
changes in pressure29 and cholinergic control provides
a counterregulatory balance to sympathetic effects.30

In addition, data in humans suggest that myogenic
mechanisms counteract pressure-driven flow31 and
have an important role in regulation of pressure–flow
relations.32 Recent work directly addressed how sym-
pathetic, cholinergic, and myogenic systems work in
concert to shape cerebral autoregulation in healthy
humans, and showed that the 3 mechanisms have
distinct contributions that explain the majority of
cerebral autoregulatory responses.33 Lastly, an
endothelium-dependent NO mechanism may have
a role,34 although this is not consistently found.
Nonetheless, it is likely that adequate function at
the neural, smooth muscle, and endothelial levels is
required for cerebral autoregulation.

Although severity of injury is not a good predictor
of autoregulatory failure,35 compromised cerebral
autoregulation is a significant predictor of poor out-
comes in the acute phase of severe TBI.35 For exam-
ple, Lam et al.36 identified 3 distinct TBI groups with
intact, transient loss, or persistent loss of cerebral
autoregulation; they found that 9 of 11 with persis-
tent loss of autoregulation died and the remaining 2
had severe disability on follow-up. In contrast to the
volume of work on severe TBI, there is very limited
work on the degree of impairment in cerebrovascular
control in patients with mild to moderate TBI, and
no work at all on the subacute phase. Early
after minor cerebral contusion, global cerebral flow
may be reduced, and interhemispheric flow asymme-
tries appear to be common.37 In fact, almost 30% of
patients with mTBI have impaired or absent cerebral
autoregulation within 48 hours of injury.38 One case
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report suggests that very mild injuries may result in
sustained loss of autoregulation39; a patient who expe-
rienced a mild concussion 6 days earlier demonstrated
complete absence of cerebral autoregulation. Although
data are suggestive of a sustained impairment in cere-
brovascular control after mTBI, there have been no
systematic studies exploring a possible compromise in
control mechanisms underlying symptomatology.

Current approaches to acute management, treatment, and

rehabilitation. Currently, clinical management of
mTBIs, particularly those sustained by athletes, con-
sists mainly of physical and cognitive rest during the
acute phase.40–42 A primary rationale for rest, especially
in the first few days after injury, is that the injured brain
is believed to be in a state of neurometabolic crisis43 and
rest might theoretically facilitate recovery. In addition, a
rest period reduces the likelihood of another head injury
during the recovery period. Although there is evidence
in the animal literature that vigorous exercise in the first
few days after brain injury suppresses neuromolecular
markers of neurogenesis and neuroplasticity,44 evidence
showing that rest and restricted physical activity result in
shorter recovery times is limited, and one randomized
clinical trial did not find that rest was associated with
better clinical outcomes after mTBI.45 However, there
are some observational studies suggesting that higher
physical and cognitive activity during the acute recovery
period is associated with greater postacute symptoms in
concussed athletes.46 After the acute recovery phase,
treatment of patients with persistent symptoms focuses
on symptom management via a variety of approaches,
such as medications, physical and vestibular therapy,
and psychologic treatment.42

Increasingly, researchers have encouraged the use
of exercise as primary or adjunctive treatment for chil-
dren, adolescents, and adults who are slow to recover
from mTBI,47 primarily because of the positive effects
of exercise on symptom clusters (e.g., headache,
fatigue, and sleep disturbance) and comorbid condi-
tions (such as depression and anxiety). Although the
biochemical and physiologic impact of mTBI may be
different in children vs adults,48 there is indirect evi-
dence that exercise might be beneficial for those with
persistent or chronic symptoms after mTBI: (1) exer-
cise promotes neuroplasticity and neurogenesis in
both the healthy and injured brain,47 (2) exercise is
associated with direct changes in neurotransmitter
systems,49 and (3) exercise is an effective adjunctive
treatment for depression and anxiety.50 The timing of
exercise as an intervention is likely important: the
optimal time window for exercise may differ depend-
ing on injury characteristics and symptom severity,
and premature exercise may interrupt restorative
mechanisms—at least in animal injury models.44

Unfortunately, the optimal timing for introduction

of exercise after mTBI is not yet known. Nonetheless,
compared with pharmacologic management, exercise
is available at relatively low cost and mostly free of
serious adverse effects. Lastly, several lines of evidence
suggest a beneficial effect of mild- to moderate-
intensity exercise on cerebrovascular function, poten-
tially supporting the utility of exercise training in
patients with persistent symptoms.

Exercise and cerebrovascular control. The responses of
cerebral blood flow to exercise are driven by neural
demand and the marked changes in arterial CO2 ten-
sion and mean arterial pressure. During exercise, in-
creases in cerebral metabolism require increased
delivery of oxygen to the brain. During mild to mod-
erate exercise, cerebral flow increases due to cortical
activation. It is thought that the vasodilation due to
the exercise-induced increase in brain metabolism
overrides vasoconstrictor effects of increased
pressure on the cerebral vasculature.3 However,
exercise-induced elevations in metabolism do not
simply lead to proportional increases in global
cerebral flow. Flow increases up to approximately
60% of maximal effort and returns toward baseline
values at higher exercise intensities51 (see the figure).
This is due to exercise intensity-dependent effects of
CO2 on cerebral flow. Mild to moderate exercise is
associated with a small increase in arterial CO2 that
increases cerebral blood flow52 in concert with
metabolism. However, with intense exercise, there is a
reduction in arterial CO2 because ventilation increases
exponentially with exercise intensity as pH decreases.
Accordingly, intense exercise is accompanied by
decreases in cerebral blood flow that ultimately
interfere with adequate oxygenation of the brain and
contribute to fatigue53 (see the figure). In addition to
the interacting effects of metabolism and CO2, the
mitigating influence of cerebral autoregulation on
cerebral flow during dynamic exercise is considerable.
Elevated cerebral blood flow during exercise cannot be
explained simply by elevated pressure.52 It is important
to note that the large increase in systolic pressure during
intense exercise often exceeds the upper limit of cerebral
autoregulation. Nonetheless, dynamic cerebral
autoregulation appears sufficient to limit the increase
in systolic cerebral blood flow velocity.54 Thus, the
cerebral flow responses to exercise require the
integration of the 3 primary controlling mechanisms:
neurovascular coupling, cerebral vasoreactivity, and
cerebral autoregulation.

Exercise training after mTBI. As noted above, early
management of mTBI consists mainly of physical
and cognitive rest, with some studies suggesting a
benefit.55 Most major guidelines for management of
sport-related concussion call for physical rest acutely
after injury, with graded return to exertion after
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concussion symptoms resolve.41 The limited evidence
behind the recommendation for physical rest, however,
is well recognized.40,41 In fact, after the acute phase, the
introduction of subsymptom threshold exercise appears
safe, and may be beneficial in improving symptoms.8 A
4-week intervention of cycling exercise produced
significant improvement in cognitive function in
patients with TBI,56 but it is unclear whether this was
attributable to exercise per se or the virtual reality
component of this program. Animal models suggest
that exercise can promote neuroplasticity, especially in
mTBI.57 However, as yet, there have been no
prospective trials examining the effects of a controlled
exercise training program on physiologic function and
symptoms in patients with TBI. Other groups of people
have shown improvements in cerebrovascular control
with aerobic exercise training. For example, 7 months
of aerobic training improved cerebral vasoreactivity in
older (.60 years), healthy individuals.58 This may have
functional significance; increases in maximal exercise
capacity relate proportionately to increased cerebral
blood volume in the hippocampus in older
individuals, and increases in flow volume were
reflected in improved cognitive function.59 Therefore,
in adults and older adults with compromised cognitive
function, exercise may demonstrate beneficial effects on
cerebrovascular control that are reflected in cognitive
improvement. However, in young, healthy individuals,

exercise training may not have appreciable effects
on cerebrovascular control, probably because
cardiovascular function is at or near its peak capacity.
Thus, the effectiveness of exercise in reducing
postconcussion symptoms may be different in older
and younger individuals. However, detraining does
result in significant deficits in cerebral regulatory
control. This may be relevant to those who have
sustained mTBIs because prolonged physical rest may
lead to extreme deconditioning and resultant
cardiovascular declines.60 This could exacerbate
impaired cerebral autoregulation; deconditioning has
been shown to reduce cerebral blood flow in humans.
In fact, even a single day of bed rest reduces cerebral
blood flow for a substantial period of time afterward.6

Thus, independent of primary cerebrovascular
dysfunction due to head injury, it seems feasible that
prolonged rest after TBI leads to deconditioning that
may induce physiologic changes in cerebrovascular
control—and these physiologic changes could
contribute to symptoms associated with the
postconcussion syndrome.

Perspectives. Persistent symptoms after mTBI in ath-
letes, civilians, active-duty military service members,
and veterans can be difficult to effectively treat. The
evidence reviewed above suggests that alterations in
cerebrovascular function after mTBI might partially

Figure Cerebral blood flow response to increasing exercise intensity and the engagement and role of the 3
mechanisms that control it

Blood pressure increases proportionally to exercise intensity, engaging autoregulation that serves to maintain constant
flow. However, at mild andmoderate intensities, both metabolic rate and carbon dioxide increase, hence both neurovascular
coupling and cerebrovascular reactivity result in increased cerebral blood flow. With heavy exercise intensities, there is a
pronounced hypocapnia, and so the net result of the 3 controlling mechanisms is a decrease in cerebral blood flow.
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underlie persistent symptoms, and the multifaceted
nature of cerebrovascular function (neurovascular
coupling, vasoreactivity, and autoregulation) and
underlying physiologic mechanisms may contribute to
symptom heterogeneity. For example, it is possible that
potential differences in etiology of mTBI sustained
from different injuries (e.g., sport-related concussion vs
blast injuries) may result in different pathophysiologic
alterations in cerebrovascular regulatory mechanisms,
and thus, in different symptoms. Blast injury is often
characterized by a series of primary (blast wave),
secondary (rotational acceleration as the head moves),
and tertiary (direct contusion/laceration by fragment/
shrapnel) injuries, as opposed to a distinct, solitary,
independent mechanism. Unfortunately, possible
time-limited or persisting alterations in cerebrovascular
function after mTBI remain mostly unknown, and
future studies are needed to fill this gap in our
knowledge.

If persistent symptoms are indeed related to cere-
brovascular dysfunction, targeting this underlying
pathophysiology may provide an additional treatment
strategy. The evidence suggests that active exercise
training may be one such strategy, because the cere-
bral flow responses to exercise require the integration
of the major mechanisms that underlie cerebrovascu-
lar function. While physical rest initially after an
mTBI is currently recommended, preliminary evi-
dence suggests that the introduction of subsymptom
exercise after the acute recovery period is safe.8

Exactly when subsymptom physical activity should
be introduced and which patients might benefit most
are not yet clear. Furthermore, the effect of subsymp-
tom threshold exercise on cerebral blood flow and the
association between cerebral blood flow and postcon-
cussion symptoms, exercise tolerance, neurocognitive
performance, and postural stability remain largely
unknown. Given the evidence outlined above, further
investigations into the effects of concussion on cere-
bral blood flow and the effects of exercise on patients
with mTBI are warranted.
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