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Abstract

Background: Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the
host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs) has great
implication for therapeutics.

Methods: In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features,
including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT.
The three well-known supervised machine learning methods, such as SVM, Naı̈ve Bayes and Random Forest, which are
commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross
validation techniques.

Results: Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and
valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over
Naı̈ve Bayes (37.49%) and Random Forest (55.66%). However the specificity of Naı̈ve Bayes was the highest (99.52%) as
compared with SVM (74%) and Random Forest (89.08%). Overall, the SVM and Random Forest achieved accuracy of 71% and
72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%,
specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E
virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis.
Our proposed model shows that, hepatitis B virus ‘‘C protein’’ binds to membrane docking protein, while ‘‘X protein’’ and ‘‘P
protein’’ interacts with cell-killing and metabolic process proteins, respectively.

Conclusion: The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of
unknown viral proteins (HBV and HEV), interacting partners of host protein were identified using optimised SVM model.
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Introduction

Viral pathogens affect their eukaryotic host partly by interacting

with the proteins of the host cells [1]. Virus-host PPIs are crucial

for better understanding of the mechanisms and pathogenesis of

infectious diseases [2]. Several computational methods have been

proposed to predict protein-protein interactions, but most are

designed for intra-species PPIs and only a few for inter-species

PPIs. Widely used machine-learning methods for PPIs are SVM,

Naı̈ve Bayes and Random forest [3,4,5]. Shen et al. used protein

sequence information to predict human PPIs by employing SVM

with a kernel function and a conjoint triad method, in which the

best model predicted with an average accuracy of 83.90% [6].

Guo et al. predicted yeast PPIs with an accuracy of 88.09% using

auto covariance (AC) and support vector machines (SVM) [7]. In

contrast, Wu et al. predicted yeast PPIs by mining the knowledge

of functional associations from the GO-based annotations [8].

Jansen et al. has developed a Bayesian networks approach to

predict PPIs in yeast [4], while Lin et al. shows that Random

Forest (RF) model may be more effective than Bayesian networks

for predicting PPIs [5]. In addition, a number of computational

methods are also available in order to predict PPIs based on

domain information [9–11]. However, relatively few methods

have so far been proposed to predict interspecies (specifically host-

pathogen) PPIs [3,12–16]. For example, Cui et al. used relative

frequency of amino acid triplets of protein sequence to predict the

interactions between two types of viruses (hepatitis C virus and

human papillomaviruses) and human proteins [3]. Proposed SVM

methods of Cui et al. had an accuracy yield over 80%. Dyer et al.

also proposed a method to predict physical interactions between
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human and HIV proteins based on a number of features, such as

domain profiles, protein sequence k-mers and properties of human

proteins in a human PPI network [12]. At a precision value of

70%, their method achieved recall (sensitivity) values of 40%.

In this paper, we have made an attempt to predict viral-host

(inter-species) PPIs based on three well-known supervised

machine-learning methods, namely SVM, Naı̈ve Bayes and

Random Forest using significantly diverse biological information

like protein sequence, domain-domain associations, disorder

regions, degree and amino-acids composition of viral and human

proteins. The viral-host PPIs dataset were obtained from

VirusMINT, a viral protein interaction database [17]. We have

shown that only four features can able to predict viral-host PPIs

with high degree of accuracy, which is comparable to the existing

prediction models for viral-host PPIs. Furthermore we have shown

that the viral protein amino acids composition (methionine, serine

and valine) plays an important role in viral-host PPIs. An attempt

was made to predict unknown PPIs between hepatitis B virus

(HBV)-human proteins and hepatitis E virus (HEV)-human

proteins using our proposed SVM optimal model. Predicted

significant protein pairs were grouped using hierarchical clustering

analysis (HCA) and validated using gene ontology enrichment

analysis. Overall, the proposed support vector machines (SVM)-

based machine learning technique was able to predict unknown

viral-host protein interaction pairs with reasonable accuracy,

which may be subjected to experimental validation.

Materials and Methods

2.1 Datasets
2.1.1 Data preparation. The dataset used were obtained

from ‘‘VirusMINT: a viral protein interaction database’’ (ftp://

mint.bio.uniroma2.it/pub/virusmint/MITAB/current/2012-10-

26-mint-viruses-binary.mitab26.txt) [17]. VirusMINT database

emphasises on interaction between human and some of the

medically significant viruses: human immunodeficiency virus 1

(HIV-1), simian virus 40 (SV40), hepatitis B virus (HBV), hepatitis

C virus (HCV), papilloma virus. Unique and positive 1,146 viral-

host PPIs were derived from initial 2,707 interactions, after

eliminating 1,224 repetitive interactions (Vprot A-Hprot B and

Hprot B-VprotA) and 337 interacting protein pairs not having any

‘‘InterPro’’ domain hit. Out of these, 1,035 interactions were

found between viral and human proteins and 111 interactions

between viral proteins and proteins of others species including

mouse, rat, dog and bovine. Furthermore, non-redundant

interaction analysis based on the homologous viral proteins

present in training and testing sets showed that 0.77% of the

viral-human PPIs were redundant (shown in Table S1). We used

cd-hit-2d webserver (http://weizhong-lab.ucsd.edu/cdhit_suite/

cgi-bin/index.cgi?cmd=cd-hit-2d) at 85% sequence identity level

to find the homologous proteins present in the training and testing

sets [18]. Since, large numbers of viral-human PPIs were distinct

(99.23%) and there were only few (1,035) viral-human PPIs in the

initial set, we considered all 1,035 positive interactions between the

viral and human proteins as training and testing datasets in our 5-

fold cross-validation study (Table S2).

2.1.2 Negative training and testing dataset. Ben-Hur et al.

[19] proposed that in the case of predicting protein-protein

interactions, a simple uniform random choice of non-interacting

protein pairs yield an unbiased estimate of the true distribution. In

absence of experimentally proven non-interacting protein pairs,

which are considered as an ideal negative dataset, we choose

random 1,035 viral-human protein pairs that were not found in

the positive training and testing datasets in our study as the

negative dataset. In order to avoid prediction bias, we generated a

negative dataset with the same number of viral-human PPIs

(positive:negative = 1:1) as the positive dataset (Table S3).

2.1.3 Blind dataset. 111 positive interactions between viral

and non-human species proteins, which were not used in 5-fold

cross-validation, were considered as a blind dataset to avoid

overfitting problem in building our optimal model for predictions

(Table S4). Non-redundant interaction analysis, based on the

homologous proteins present in the training and blind sets showed

that 8.11% interactions between the viral and non-human species

proteins were redundant (shown in Table S1). Therefore we

removed 9 redundant interactions between the viral and non-

human species proteins from the blind dataset. Like the negative

training and test dataset, 102 negative viral and non-human

species protein pairs were also generated (Table S5).

2.1.4 Independent dataset. In order to predict unknown

viral and human PPIs, we focused on some of the medically

significant viruses, such as hepatitis B and hepatitis E. Instead of

taking all the proteins of hepatitis B, we concentrated on the

proteins of hepatitis B virus genotype C that is prevalent in the

eastern India [20]. Thus, reviewed 4 hepatitis B virus proteins

(genotype C) with InterPro domain hits were obtained from Swiss-

Prot [21]. Begum et al. observed that hepatitis E virus genotype 4

‘e’ is prevalent in the Northern India [22], while Caron et al.

found that genotype 1 of hepatitis E virus is most prevalent in the

Asian countries [23]. Hence, reviewed 3 hepatitis E virus proteins

(genotype 4 ‘e’) and 3 hepatitis E virus proteins (genotype 1) with

InterPro domain hits were retrieved from Swiss-Prot. Reviewed

17,615 human proteins with InterPro domain hits were also

retrieved from Swiss-Prot.

2.2 Machine Learning Techniques (MLT)
We focused on three well-known supervised machine learning

methods, such as SVM, Naı̈ve Bayes and Random Forest that

were used for predicting PPIs [3,4,5].

Table 1. List of best 4 features selected based on categorical regression method.

Features Beta
Bootstrap (1000)
Estimate of Std. Error df F

Sig.
(PValue)

Average domain-domain
association score

0.511 0.016 1.000 982.607 0.000

Virus Methionine 0.070 0.021 1.000 10.911 0.001

Virus Serine 0.106 0.021 1.000 25.838 0.000

Virus Valine 0.094 0.023 1.000 16.829 0.000

doi:10.1371/journal.pone.0112034.t001

Prediction of Viral-Host Protein Protein Interactions
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2.2.1 SVM. Support Vector Machines (SVM)-based method

is defined over a vector space where the problem is to find a

decision surface that maximizes the margin between data points in

the two classes. We have used SVMlight tool provided by T.

Joachims [24], which allows users to select various parameters and

various kernel functions like linear, polynomial, radial basis

function (RBF), sigmoid to find optimal parameters for each task.

2.2.2 Naı̈ve Bayes. Naı̈ve Bayes model computes subsequent

probabilities for a given hypothesis (present/absence) assuming

that the features that describe data instances are conditionally

independent. Its performance is comparable to other supervised

learning methods. We used Waikato Environment for Knowledge

Analysis (WEKA) machine learning tool box to perform Naı̈ve

Bayes classification [25]. Since WEKA does not allow us to select

different parameters set for Naı̈ve Bayes classification, we used the

default parameters set.

2.2.3 Random Forest. Random Forest (RF) classifier

‘‘grows’’ several Decision Trees (DTs) simultaneously where each

node uses a random subset of the features. Each tree in the

Random Forest classifies the new object, and ‘‘votes’’ for that class.

The forest elects the classification based on majority vote (over all

the trees in the forest). We obtained Random Forest (RF) classifier

from the WEKA machine learning tool box. Optimal parameters

were used for evaluation of the method.

2.3 Feature Vectors
We focused on forty-four features of protein pairs to produce

feature vectors (Table S6). First, occurrence frequency of viral-host

domain-domain association was used since domain-domain associ-

ation plays an important role in protein-protein interactions [11].

Second, common domains observed in virus and host proteins were

chosen and represented as binary format [0,1] (absence and

presence of common domain observed in virus and host proteins in

a particular protein pair represented by 0 and 1, respectively).

Third, maximum degree of viral or human protein for a given viral-

human protein pair was selected. Degrees of human proteins were

collected from APID2NET (a Cytoscape plugin) and viral protein

degrees were collected from viral-host PPIs. APID2NET provided

us all possible PPIs from BIND, BioGrid, DIP, HPRD, IntAct and

MINT databases [26]. Fourth, average percentages of disorder

regions of protein pairs were selected, because intrinsically

disordered proteins were found to be implicated in numerous

cellular pro-cesses including signal transduction, transcriptional

regulation and PPIs. We used ‘‘ESpritz: accurate and fast prediction

Table 2. Comparison of performance between selected best 4 features vs all 44 features.

Method All Features Selected Features

Accuracy
(%)

Area under
ROC curve

F1 Score
(%)

Accuracy
(%)

Area under
ROC curve

F1
Score (%)

Naı̈ve Bayes 67.48 0.66 56.72 68.50 0.71 54.35

SVM 68.00 0.72 65.04 71.00 0.73 69.41

Random Forest 71.69 0.77 67.13 72.41 0.76 66.39

doi:10.1371/journal.pone.0112034.t002

Table 3. SVM based performance on testing dataset (5-fold cross-validation) using parameters t = 2 (RBF kernel), and g = 1, c = 0.1,
j = 2.

Threshold Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) MCC

0.8 37 91 64 76 0.32

0.7 46 89 67 78 0.39

0.6 52 85 68 76 0.40

0.5 59 80 69 75 0.42

0.4 67 74 71 72 0.44

0.3 69 70 70 69 0.42

0.2 73 65 69 68 0.41

0.1 76 59 68 65 0.38

0 80 51 66 62 0.35

-0.1 81 46 64 60 0.32

-0.2 83 40 62 58 0.28

-0.3 85 36 60 57 0.26

-0.4 87 29 58 55 0.23

-0.5 89 25 57 54 0.20

-0.6 89 20 54 53 0.15

-0.7 91 16 53 52 0.12

-0.8 91 11 51 51 0.08

doi:10.1371/journal.pone.0112034.t003
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of protein disorder’’ to gather percentage of disorder regions of

proteins [27]. Finally, amino acid compositions of viral and host

proteins were selected as a fifth to twenty-fourth and twenty-fifth to

forty-fourth features of our proposed feature vectors. Since, Roy

et al. proposed that amino acid composition (AAC) monomers

feature is crucial for predicting PPIs [28].

2.4 Infer domain-domain associations
We inferred viral and host domain-domain associations from

interacting protein pairs. Our goal was to find the frequency of a

certain viral and host domain-domain association present in

protein pairs. We collected all protein related ‘‘InterPro’’ domains

from Protein Knowledgebase, UniProtKB (http://www.uniprot.

org/) [21]. After retrieving the ‘‘InterPro’’ domain information, we

computed viral domain-human domain association matrix (rows

and columns represented host and viral domain names, respec-

tively), using similar approach proposed by Sprinzak et al. [29].

The range of domain-domain association varies between 30 and 1,

where 0 represents no association. We tried with two domain-

domain association scores, such as Maximum Domain-Domain

Association Score (MDDAS) and Average Domain-Domain

Association Score (ADDAS). The MDDAS and ADDAS were

calculated using following equations:

MDDAS of protein pair (Pi,Pj)

~Maximum(Nmn) :::::::::::::::::(i)

Where Nmn is the total no: of protein

pairs that contain domain pair dm,dnð Þ:

ADDAS of protein pair Pi,Pj

� �

~Maximum Nmnð Þ=Tij ::::::::::::::::: iið Þ

Where Tij is the all possible domain pairs of protein pair Pi,Pj

� �
:

2.5 Amino acid composition
Amino acid composition is the percentage of each amino acid

present in a protein. Percentage of all twenty natural amino acids

was calculated using the following equations:

Percentage of a min o acid i

~
total no: of a min o acids ið Þ

total no: of a min o acids in proteins
|100%

Where i can be any natural amino acid½ �

2.6 Feature selection
The feature selection was performed by regression for

categorical data method with beta coefficient .0.00 and p-

value,0.05 for selection of best features using SPSS statistical

analysis software, version 20 (SPSS, Chicago, IL, USA). The beta
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coefficient value is a measure of how strongly each ‘‘predictor

variable’’ influences the ‘‘criterion variable’’. The higher beta

coefficient value implies greater impact of the ‘‘predictor variable’’

on the ‘‘criterion variable’’.

2.7 5-fold cross-validation
We used 5-fold cross-validation to estimate performance of all

methods. In 5-fold cross-validation, the dataset has been

partitioned into 5 equally (or nearly equally) sized segments or

folds. Consequently, 5 times of training and testing were

performed such that each time a different fold of the data is

held-out for testing while the remaining four folds are used for

training. The overall performance of a method was calculated

using average performance over five folds.

2.8 Performance measures
2.8.1 Threshold Dependent. Sensitivity (also referred to as

recall), specificity, accuracy, PPV (Positive Prediction Value, also

referred to as precision), Matthew’s correlation coefficient (MCC)

and F1 score were computed on 5-fold cross validation step. All

the performance measures were based on a balanced dataset of 1:1

positive vs. negative examples. Sensitivity, specificity, accuracy,

PPV, MCC and F1 score were calculated by the following

equations:

Sensitivity~
TP

TPzFN
|100%; Specificity~

TN

TNzFP
|100%

Accuracy~
TPzTN

TPzFPzTNzFN
|100%;

PPV~
TP

TPzFP
|100%

MCC~
TP|TN{FP|FN

H TPzFPð Þ| TPzFNð Þ| TNzFPð Þ| TNzFNð Þð Þ

F1~2|
Sensitivity|PPV

SensitivityzPPV
|100%

Where, True Positive TPð Þ : interacting protein pairs correctly

identified as a PPIs:

False Positive FPð Þ : non{interacting protein pairs incorrectly

identified as a PPIs:

True Negative TNð Þ : non{interacting protein pairs correctly

identified as a non{interactingprotein pairs:

Table 5. Comparison of proposed method with other viral-host PPIs prediction methods.

Performance Mesaure Dyer et al. Dataset* Performance Mesaure Cui et al. Dataset*

Dyer et al. [12] Proposed SVM Model Shen et al. [6] Proposed SVM Model Cui et al. [3]

Sensitivity (%) 40.00 87.05 Accuracy (%) 78.00 80.00 82.00

*Partial dataset.
doi:10.1371/journal.pone.0112034.t005

Figure 1. Hierarchical clustering of highly predicted SVM score of HBV-human protein pairs. Hierarchical clustering analysis was done
using TIBCO Spotfire software with complete linkage clustering method, cosine correlation distance measure, average value ordering weight, scale
between 0 and 1 normalization and empty value replace by 0 for both (row and column) dendrogram. The high, average and low SVM predicted
scores are marked in red, white and blue, respectively.
doi:10.1371/journal.pone.0112034.g001
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Figure 2. A network of HBX-human protein interactions predicted by our proposed method. The network visualized by Cytoscape 3.0.2
[35]. The HBX protein is represented by cyan node. The significant gene ontology enriched human proteins are representing by salmon node,
whereas other human proteins are representing by slate grey node.
doi:10.1371/journal.pone.0112034.g002

Table 6. The Gene Ontology Biological Process enrichment analysis on interacting human protein partners of HBV proteins using
DAVID server.

Hepatitis
B virus
protein

GO
term,Biological
Process Human protein

C GO:0022406,membrane docking SCFD1, SCFD2, VPS45, STXBP1, STXBP2, STXBP3

GO:0006835,dicarboxylic acid transport SLC1A4, SLC1A5, SLC1A2, SLC1A3,SLC1A1

GO:0006865,amino acid transport SLC1A4, CPT1B, SLC1A5, SLC1A2,CPT2, SLC1A3, XK, SLC1A1

X GO:0001906,cell killing DEFA6, DEFA5, DEFA4, DEFA3, DEFA1

GO:0009620,response to fungus DEFA6, DEFA5, DEFA4, DEFA3, DEFA1

GO:0006952,defense response YWHAZ, DEFB4A, CD74, IL17C,IL17D, IL17A, IL17B, DEFA6, AOAH, DEFA5, DEFA4, IL17F, DEFA3,
DEFA1

P GO:0051186,cofactor metabolic process NAMPT, ACO2, HMGCR, ACO1,IREB2, GIF, PNP, SOD2, SDHA,GSS, MTHFS, PGLS, PANK2, PANK3,
FXN, PANK1, NARFL, CTNS, NAPRT1, FH

GO:0006732,coenzyme metabolic process NAMPT, ACO2, HMGCR, ACO1, PNP, SOD2, SDHA, GSS, MTHFS, PGLS, PANK2, PANK3, PANK1,
CTNS, NAPRT1, FH

Significant biological process annotation terms were filtered by FDR (false discovery rate) ,0.05.
doi:10.1371/journal.pone.0112034.t006

Prediction of Viral-Host Protein Protein Interactions
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False Negative FNð Þ : interacting protein pairs incorrectly

identified as a non{interactingprotein pairs:
2.8.2 Threshold independent. From Receiver Operating

Characteristic (ROC) plot, area under ROC curve was computed

on 5-fold cross validation step.

2.9 Hierarchical clustering analysis (HCA)
Hierarchical clustering analysis was done using TIBCO Spotfire

software [30]. The input matrix was viral-host SVM prediction

scores obtained from the best optimized model. Following

parameters were used for HCA: complete linkage clustering

method, cosine correlation distance measure, average value

ordering weight, scale between 0 and 1 normalization and empty

value replace by 0 for both (row and column) dendrogram.

2.10 GO Enrichment analysis
The Database for Annotation, Visualization and Integrated

Discovery (DAVID) web server was used to identify significantly

enriched gene ontology (GO) annotation terms in predicted

interacting human protein partners of hepatitis B and E viruses

[31]. We consider only GO biological process annotation terms of

level greater than 2 with significant false discovery rate (FDR)

value,0.05.

Results and Discussion

3.1 Selection of optimal features
We started with 44 features of a specific viral-host protein pair

and tried with different subsets of features in order to achieve

maximum accuracy with nearly equal sensitivity and specificity of

our proposed method (Table S6, S7). Interestingly, we observed

that four features with beta coefficient.0.00 and p-value,0.05

showed reasonably decent accuracy of 71%, sensitivity of 67% and

specificity of 74% in proposed SVM method (shown in Table 1).

As shown in Table 2, selected four features achieved slightly

higher accuracy than all the forty-four features used together.

Although disordered regions play a significant role in protein-

protein interactions, it was not selected as the best feature based on

our feature selection with regression (beta coefficient and p-value).

Methionine residue interacts with aromatic residues and plays a

specific role in stabilization of protein structure and may be

associated with number of mutation and age related diseases [32].

Serine residues are crucial for serine/threonine protein phospha-

tises and control many cell functions [33], while valine residue was

shown to play a vital role in modulating syncytium formation

during infection [34].

3.2 Performance of SVM, NB and RF using 5-fold cross
validation

In order to achieve optimal sensitivity, specificity and accuracy,

we tried different kernels and parameters using SVM. The linear

and polynomial kernel function showed high specificity, but low

sensitivity, whereas the sigmoid kernel function exhibited poor

sensitivity (Table S8). In contrast, the radial basis function (RBF)

showed reasonable sensitivity of 67%, specificity of 74% and

accuracy of 71% as shown in Table 3. We tried with different

parameters in WEKA for Random Forest (shown in Table S9).

SVM had nearly equal sensitivity (67%) and specificity (74%),

whereas Naı̈ve Bayes and Random Forest showed lower sensitivity

(37.49% for NB, 55.66% for RF), but higher specificity (99.52%

for NB, 89.08% for RF) (Table 4). As shown in Table 4, Random

Forest perform better in terms of accuracy, MCC and area under

ROC curve, whereas SVM perform better in terms of sensitivity

and F1 score. We are more concerned about the recall and

precision, since they are directly proportional to the true positives.

As shown in Table 4, recall score of SVM (67%) is better than RF

(55.66%), while precision score of RF (82.26%) is better than SVM

(72%). Therefore we computed the F1 score. F1 score of SVM and

RF shows that, SVM (69.41) performs slightly better than RF

(66.39). Therefore, we used the best SVM model for further study.

3.3 Assessment on blind dataset using SVM based
method

In order to avoid bias in the performance of our proposed

model, we tested it on blind dataset, not used in training or testing.

Consequently, 204 protein pair between viral proteins and non-

human species (mouse, rat, dog, bovine etc.) was considered as a

blind dataset. We used the same parameters and cut-off (threshold)

for each approach. As shown in Table 3, threshold value of 0.4

generated reasonable accuracy on the test dataset using 5-fold

cross-validation technique in our study. At this threshold value,

sensitivity of 64%, specificity of 83%, and accuracy of 74% was

achieved on the blind dataset.

3.4 Comparison with other predictions methods for virus-
host PPIs

Dyer et al. developed a method to predict HIV-human PPIs

using SVM classifier with linear kernel on different combinations

of protein features, including domain profiles, protein sequence k-

mers and properties of human proteins in a human PPI network

[12]. They predicted PPIs with a precision of 70% and a recall

(also referred to as sensitivity) value greater of 40% using a

combination of protein sequence four-mers, protein domains and

PPI network information with 1:25 ratio of positive example (PE)

to negative example. We obtained only 332 positive interactions

instead of 1028 interactions reported by Dyer et al. between

human and HIV proteins [12]. As shown in Table 5, our proposed

method achieved the sensitivity of 87% whereas Dyer et al.

achieved 40%.

Cui et al. worked on a similar problem of HCV-human and

HPV-human PPIs using an SVM model with RBF kernel and

relative frequency of amino acid triplets of a protein sequence.

They have used 11 HCV (lead to 695 interactions) and 9 HPV

proteins (lead to 252 interactions) [3]. From the available datasets

in the supplementary tables, we can extract 1 HCV protein (leads

to 10 positive and 9 negative interactions) and 1 HPV protein

(leads to 9 positive and 7 negative interactions) from Swiss-Prot.

Our proposed method achieved accuracy of 80% on this sparsely

available dataset (shown in Table 5), whereas Shen et al. and Cui

et al. achieved accuracy of 78% and 82%, respectively [3,6].

3.5 Prediction of unknown HBV-human and HEV-human
PPIs

Hepatitis B virus and hepatitis E virus proteins were used in

order to predict unknown viral-human PPIs. All possible

combinations of hepatitis B virus and human protein pairs

(17615 * 4) were predicted by our proposed model (Table S10).

The predicted SVM score greater than 0.58 of hepatitis B virus-

human protein pairs (n = 8411) was used for HCA. As shown in

Figure 1, P0C688 (gene name P) was far apart from the other

three hepatitis B viral proteins, out of which P31868 (gene name S)

and Q81102 (gene name C) are closely associated. Similarly, all

combinations of hepatitis E virus and human protein pairs (17615

* 6) were predicted by the proposed model (Table S11). The highly

predicted SVM score of hepatitis E virus and human protein pairs

were used for HCA. In HEV-host interaction pairs (n = 20,375)
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clustering analysis, Q9IVZ7 (gene name ORF3 and genotype 4)

was far apart from the other five hepatitis E viral proteins, out of

which Q9IVZ8 (gene name ORF2, genotype 4), Q9IVZ9 (gene

name ORF1, genotype 4), P33424 (gene name ORF1, genotype 1)

and P33426 (gene name ORF2, genotype 1) were closely

associated (Figure S1).

Finally, the human proteins present in high confidence (red

area) of hierarchical clustering analysis (Shown in Figure 1 and

Figure S1) were used for further gene ontology enrichment

analysis. The analysis on interacting human protein partners of

hepatitis B virus (Shown in Figure 2 and Figure S2, S3) showed

probable functions of viral ‘‘X protein’’ (UniProtKBId: P0C686),

‘‘C protein’’ (UniProtKBId: Q81102) and ‘‘P protein’’ (Uni-

ProtKBId: P0C688) (shown in Table 6 and full data on Table

S12-S14). As shown in Table 6, HBV ‘‘C proteins’’ probably plays

a significant role in membrane docking, while ‘‘X protein’’ and ‘‘P

protein’’ function in cell killing and modulating metabolic

processes of host proteins, respectively.

Similar study as hepatitis B virus proteins was also done with

hepatitis E virus proteins (Shown in Figure S4-S9), where ORF1

(genotype 1) is probably involved in many biological processes

including regulation of cytoskeleton organization, nitrogen com-

pound biosynthetic process and translation (Shown in Table S15

and full data on Table S16-S21).

Conclusion

Here, we proposed three supervised machine learning-based

techniques for predicting viral-host (across species) PPIs by

incorporating potential biological information of protein pairs

including domain-domain associations score, degree, percentage of

disorder regions and amino acid compositions. Initially, we started

with 44 features and predicted four best features, which were

domain-domain association and methionine, serine and valine

amino acid composition of viral proteins using categorical

regression model (beta coefficient.0.00 and p-values,0.05).

There are biological interpretations of these residues of viral

proteins for their importance in viral-host PPIs. For example,

methionine, serine and valine may be involved in stabilization of

the protein structure, serine/threonine protein phosphatases and

modulating syncytium formation during infection, respectively. It

was observed that Random Forest perform better in terms of

accuracy, MCC and area under ROC curve, while the proposed

SVM method performs better in terms of sensitivity and F1 score.

Performance of the proposed SVM method was evaluated on the

blind dataset of 204 viral-host protein pairs (102 positive and 102

negative viral-host protein pairs), which achieved a sensitivity of

64%, specificity of 83%, and accuracy of 74%. In addition,

unknown HBV-human and HEV-human PPIs were predicted

using optimised SVM model and were grouped by HCA and

further validated by GO enrichment analysis. Hepatitis B virus

interacting human proteins show distinct GO biological process

terms; for example, ‘‘X-protein’’ probably interferes with cell

defence mechanism, whereas ‘‘P-protein’’ binds to metabolic

pathways. The predicted viral-human PPIs give us hint about the

possible role of viral proteins in the pathogenesis process.

Supporting Information

Figure S1 Hierarchical clustering of highly predicted
SVM score of HEV-human protein pairs. Hierarchical

clustering analysis was done using TIBCO Spotfire software with

complete linkage clustering method, cosine correlation distance

measure, average value ordering weight, scale between 0 and 1

normalization and empty value replace by 0 for both (row and

column) dendrogram. The high, average and low SVM predicted

scores are marked in red, white and blue, respectively.

(PDF)

Figure S2 A network of HBC-human protein interac-
tions predicted by our proposed method. The network

visualized by Cytoscape 3.0.2 [35]. The HBC protein is

representing by cyan node. The significant gene ontology enriched

human proteins are representing by salmon node, whereas other

human proteins are representing by slate grey node.

(PDF)

Figure S3 A network of HBP-human protein interac-
tions predicted by our proposed method. The network

visualized by Cytoscape 3.0.2 [35]. The HBP protein is

representing by cyan node. The significant gene ontology enriched

human proteins are representing by salmon node, whereas other

human proteins are representing by slate grey node.

(PDF)

Figure S4 A network of HEORF1 (Genotype 1)-human
protein interactions predicted by our proposed method.
The network visualized by Cytoscape 3.0.2 [35]. The HEORF1

(Genotype 1) protein is representing by cyan node. The significant

gene ontology enriched human proteins are representing by

salmon node whereas other human proteins are representing by

slate grey node.

(PDF)

Figure S5 A network of HEORF2 (Genotype 1)-human
protein interactions predicted by our proposed method.
The network visualized by Cytoscape 3.0.2 [35]. The HEORF2

(Genotype 1) protein is representing by cyan node. The significant

gene ontology enriched human proteins are representing by

salmon node whereas other human proteins are representing by

slate grey node.

(PDF)

Figure S6 A network of HEORF3 (Genotype 1)-human
protein interactions predicted by our proposed method.
The network visualized by Cytoscape 3.0.2 [35]. The HEORF3

(Genotype 1) protein is representing by cyan node. The significant

gene ontology enriched human proteins are representing by

salmon node whereas other human proteins are representing by

slate grey node.

(PDF)

Figure S7 A network of HEORF1 (Genotype 4)-human
protein interactions predicted by our proposed method.
The network visualized by Cytoscape 3.0.2 [35]. The HEORF1

(Genotype 4) protein is representing by cyan node. The significant

gene ontology enriched human proteins are representing by

salmon node whereas other human proteins are representing by

slate grey node.

(PDF)

Figure S8 A network of HEORF2 (Genotype 4)-human
protein interactions predicted by our proposed method.
The network visualized by Cytoscape 3.0.2 [35]. The HEORF2

(Genotype 4) protein is representing by cyan node. The significant

gene ontology enriched human proteins are representing by

salmon node whereas other human proteins are representing by

slate grey node.

(PDF)

Figure S9 A network of HEORF2 (Genotype 4)-human
protein interactions predicted by our proposed method.
The network visualized by Cytoscape 3.0.2 [35]. The HEORF2
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(Genotype 4) protein is representing by cyan node. The significant

gene ontology enriched human proteins are representing by

salmon node whereas other human proteins are representing by

slate grey node.

(PDF)

Table S1 Statistic of homologous protein present in the
training and testing sets as well as from the blind
datasets.
(XLSX)

Table S2 Positive interactions dataset used in this study
to build optimal model for prediction. The positive

interactions dataset used in the study were obtained from

VirusMINT.

(XLSX)

Table S3 Negative interactions dataset used in this
study to build optimal model for prediction. The negative

interactions dataset used in the study were chosen using random

protein pairs which are not found in interacting protein pairs.

(XLSX)

Table S4 Positive interactions dataset used in this study
as a positive blind dataset. The positive blind dataset used in

the study were obtained from VirusMINT.

(XLSX)

Table S5 Negative interactions dataset used in this
study as a negative blind dataset. The negative blind dataset

used in the study were chosen using random protein pairs which

are not found in interacting protein pairs (positive blind dataset).

(XLSX)

Table S6 All 44 input features.
(XLSX)

Table S7 SVM performance measures based on differ-
ent subsets of features. Optimal parameters were used for

respective subset of features.

(XLSX)

Table S8 Several SVM kernel-wise performance mea-
sures (sensitivity and specificity) on different models.
Optimal parameters and threshold were used for respective kernel.

In Model 1, 1st, 2nd, 3rd and 4th folds were used for training and 5th

fold was kept for testing. In Model 2, 1st, 2nd, 3rd and 5th folds were

used for training and 4th fold was left out for testing. In Model 3,

1st, 2nd, 4th, 5th folds were used for training and 3rd fold for testing.

In Model 4, 1st, 3rd, 4th, 5th folds were used for training and 2nd

fold was used for testing. In Model 5, 2nd, 3rd, 4th, 5th folds were

used for training and 1st fold was kept aside for testing.

(XLSX)

Table S9 Different parameters used in Random Forest
using WEKA.
(XLSX)

Table S10 Predicted scores of HBV-human protein-
protein association by proposed optimal model.
(XLSX)

Table S11 HEV-human protein-protein association pre-
dicted scores by proposed optimal model.
(XLSX)

Table S12 GO enrichment analysis on interacting
human protein partners of HBV X proteins using DAVID
server. Significant biological process terms were chosen by

PValue,0.05.

(XLSX)

Table S13 GO enrichment analysis on interacting
human protein partners of HBV C proteins using DAVID
server. Significant biological process terms were chosen by

PValue,0.05.

(XLSX)

Table S14 GO enrichment analysis on interacting
human protein partners of HBV P proteins using DAVID
server. Significant biological process terms were chosen by

PValue,0.05.

(XLSX)

Table S15 GO enrichment analysis on interacting
human protein partners of HEV proteins using DAVID
server. Significant biological process annotation terms were filter

by FDR (false discovery rate),0.05.

(XLSX)

Table S16 GO enrichment analysis on interacting
human protein partners of HEV ORF1 (Genotype 1)
proteins using DAVID server. Significant biological process

terms were chosen by PValue,0.05.

(XLSX)

Table S17 GO enrichment analysis on interacting
human protein partners of HEV ORF2 (Genotype 1)
proteins using DAVID server. Significant biological process

terms were chosen by PValue,0.05.

(XLSX)

Table S18 GO enrichment analysis on interacting
human protein partners of HEV ORF3 (Genotype 1)
proteins using DAVID server. Significant biological process

terms were chosen by PValue,0.05.

(XLSX)

Table S19 GO enrichment analysis on interacting
human protein partners of HEV ORF1 (Genotype 4)
proteins using DAVID server. Significant biological process

terms were chosen by PValue,0.05.

(XLSX)

Table S20 GO enrichment analysis on interacting
human protein partners of HEV ORF2 (Genotype 4)
proteins using DAVID server. Significant biological process

terms were chosen by PValue,0.05.

(XLSX)

Table S21 GO enrichment analysis on interacting
human protein partners of HEV ORF3 (Genotype 4)
proteins using DAVID server. Significant biological process

terms were chosen by PValue,0.05.

(XLSX)
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