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Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progres-
sive disease of increasing public health concern. In 
western populations the disease has an estimated 
prevalence of 20%-40%, rising to 70%-90% in obese 
and type Ⅱ diabetic individuals. Simplistically, NAFLD 
is the macroscopic accumulation of lipid in the liver, 
and is viewed as the hepatic manifestation of the met-
abolic syndrome. However, the molecular mechanisms 
mediating both the initial development of steatosis and 
its progression through non-alcoholic steatohepatitis 
to debilitating and potentially fatal fibrosis and cir-
rhosis are only partially understood. Despite increased 
research in this field, the development of non-invasive 
clinical diagnostic tools and the discovery of novel 
therapeutic targets has been frustratingly slow. We 
note that, to date, NAFLD research has been domi-
nated by in vivo  experiments in animal models and hu-
man clinical studies. Systems biology tools and novel 
computational simulation techniques allow the study 
of large-scale metabolic networks and the impact of 
their dysregulation on health. Here we review current 
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systems biology tools and discuss the benefits to their 
application to the study of NAFLD. We propose that a 
systems approach utilising novel in silico  modelling and 
simulation techniques is key to a more comprehensive, 
better targeted NAFLD research strategy. Such an ap-
proach will accelerate the progress of research and 
vital translation into clinic.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Research into non-alcoholic fatty liver disease 
(NAFLD) is dominated by human clinical studies and 
the use of animal models. We postulate that the wider 
use of systems biology approaches, incorporating novel 
modelling and simulation strategies, will yield greater 
insights into the mechanisms underlying NAFLD pro-
gression. Such insights are essential to the development 
of non-invasive diagnostic tools and novel therapies.
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NON-ALCOHOLIC FATTY LIVER DISEASE
Non-alcoholic fatty liver disease (NAFLD) is considered 
to be the hepatic manifestation of  the metabolic syn-
drome and a leading cause of  liver-related morbidity and 
mortality in both adult and paediatric patients[1,2]. The 
metabolic syndrome is associated with abdominal obesity, 



high blood pressure, hypertriglyceridemia, hyperglycaemia 
and low high-density lipoprotein cholesterol levels[3]. Both 
the metabolic syndrome and NAFLD are associated with 
increased risk of  cardiovascular disease (CVD) and type 
Ⅱ diabetes[4], leading to increased morbidity and mortal-
ity. Importantly, NAFLD is a growing public health issue, 
with diagnosis increasing dramatically in the last two de-
cades. NAFLD is now estimated to affect 20%-30% of  
adults in western populations, with an increased occur-
rence (70%-90%) in obese individuals, type Ⅱ diabetics 
and has also been linked with type Ⅰ diabetes[6,7].

NAFLD is a progressive inflammatory disease begin-
ning with the macroscopic accumulation of  fat in the liv-
er (> 5%-10% by weight) in the absence of  high alcohol 
intake or hepatitis[5,8], termed simple steatosis (SS) (Figure 
1). SS causes no significant increase in liver related com-
plications, and is widely accepted as a ‘benign’ adaptation 
to lipid loading in the liver. However, approximately 47% 
of  individuals with SS will progress to non-alcoholic 
steatohepatitis (NASH), characterised by inflammatory 
infiltration of  the liver and low-level fibrosis[9]. NASH 
is associated with a significantly increased risk of  liver-
related complications, hepatocellular carcinoma (HCC) 
and is an independent risk factor of  CVD. Both SS and 
NASH are considered reversible through weight-loss, 
changes in diet and increased physical activity. However, 
approximately 25%-30% of  individuals with NASH will 
develop irreversible fibrosis leading to cirrhosis, severe 
liver-related morbidity, high risk of  HCC and the need 
for liver transplantation[10].

In addition to the increased morbidity and mortality, 

there is a high financial cost associated with overweight/
obesity related diseases and their clinical management, 
estimated at £3.2bn per annum in the United Kingdom 
alone[11].

A major clinical challenge and research focus is the 
lack of  robust non-invasive diagnostic tools for NAFLD. 
The population prevalence of  the disease can still only be 
estimated since the only reliable method of  disease stag-
ing and monitoring is though invasive liver biopsy. Al-
though considered the gold standard, biopsy is prone to 
variations in both sampling and in evaluation by patholo-
gists[12]. Ultrasonography and magnetic resonance imaging 
techniques are being developed for disease staging, but 
are presently unable to monitor/stage the inflammatory 
stages of  the disease or require validation[7,13]. This lack 
of  a reliable, non-invasive method for diagnosing, staging 
or monitoring NAFLD, means individuals are often only 
diagnosed incidentally, presenting with either elevated liv-
er enzymes or a fatty liver on ultrasound in combination 
with the associated metabolic risk factors (e.g., abdominal 
obesity, type Ⅱ diabetes). As such, diagnosis may be de-
layed, complicating treatment and damaging prognosis. In 
addition, a major concern to both patients and clinicians 
is the fact that following diagnosis, the most successful 
treatment options are limited to lifestyle changes. While 
statins, insulin-sensitizing drugs and bile acids have been 
investigated in NAFLD treatment, no effective, targeted 
drug therapies are currently available[14,15]. 

To develop novel biomarkers and effective therapeutic 
interventions, it is imperative to establish a better under-
standing of  the mechanisms that underlie the pathology 
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Figure 1  Progression and stages of non-alcoholic fatty liver disease. Livers, representing macroscopic changes with inserted micrographs of histological sec-
tions; collagen fibres stained with Masson’s trichrome stain (blue). Arrows represent disease progression/regression (dashed). 



and progression of  NAFLD. To this end, there has been 
an increasing research effort focused on this disease, with 
a greater than seven fold increase in the number of  pub-
lications specifically investigating NAFLD and NASH in 
the last decade (Figure 2). Despite this increase however, 
our understanding of  the molecular mechanisms underly-
ing NAFLD pathogenesis remains modest.

Systems approaches have been widely adopted in 
many fields of  biological research, but nutritional sci-
ences does still not exploit the full potential of  the tools 
available[16,17]. Currently, NAFLD research is dominated 
by the use of  human patient studies and in vivo animal 
models, predominantly mouse and rat (Figure 2). Irre-
spective of  the species used, in vivo animal models can 
be divided into three categories; feeding models, gene 
deficient/knockout models and combinations models; 
these have been extensively reviewed in the literature[18,19]. 
Research using in vitro models and/or systems biology ap-
proaches represented less than 7% of  published NAFLD 
research in 2012. The relatively low usage of  in vitro mod-
els may reflect a concern that in vitro approaches cannot 
accurately reproduce complex disease phenotypes such 
as NAFLD. However, such a belief  ignores the recent 
advances in cell culture techniques allowing the enhance-
ment of  the ‘in vivo like’ phenotypes in vitro. Improved 
culturing of  hepatocytes, and the other cell types in the 
liver, continues to be discussed in the literature and is an 
active area of  method development[18,20,21]. For example, 
three-dimensional cell culture strategies can now greatly 
enhance the way that cells polarise in culture, a feature 

vital to the function of  hepatocytes in vivo[22-24]. The use 
of  co-culture experiments permits analyses of  cell-cell 
signalling and metabolic networks,in particular between 
the different cell types that comprise the liver, other tis-
sues or even with the gut microflora[18,25,26]. In addition 
to a limited use of  in vitro techniques to study NAFLD, 
the negligible use of  systems biology tools grossly under 
represents the ever-increasing array of  tools for studying 
such cell networks. Within recent years there has been 
an explosion in systems biology tools for the study of  
complex biological networks[27-34]. Applied to the human 
organism, it has already proven to be an invaluable tool 
in understanding disease etiology, drug discovery and 
toxicology[35-39]. Indeed, systems tools have already begun 
to offer insight into the mechanisms of  fatty liver disease; 
Sookoian et al[40] used a combination of  data mining and 
network analysis tools to identify shared mechanistic 
pathways between non-alcoholic and alcoholic-fatty liver 
disease. While this generated novel insights, it only begins 
to scratch the surface of  available in silico modelling and 
network simulation tools.

Given the impact that systems approaches have made 
in the understanding and treatment of  other diseases, we 
posit that an increased application of  these approaches 
towards NAFLD would reap similar rewards. 

Systems biology approaches
Systems biology should not be considered as a discipline 
in and of  itself, or merely as the computational branch 
of  molecular biology. Systems biology is an approach to 
studying biological systems as a whole. Under pinning 
this is the principle that the key to understanding and 
predicting the behaviour of  any biological systems and its 
response to the environment is the understanding of  the 
networks that determine these responses[16,41,42]. Under-
standing how all the different cellular and tissue networks 
are interconnected in the context of  the whole (human) 
organism and be able to predict network behaviours, is the 
ultimate goal of  systems biology. However, work in this 
burgeoning field has typically considered either metabolic, 
signalling or gene regulatory networks independently. 

Biological research has classically adopted a reduc-
tionist approach to the study of  biological networks, 
identifying their component parts and the interactions be-
tween them that account for the observed properties of  
the sub-system under study. This ‘bottom-up’ approach 
is based on the assumption that a system, regardless of  
its size and complexity, is the sum of  its component 
parts. The emergence of  the high throughput, ‘‘omics’’ 
technologies, has generated the data needed to describe 
networks on a much larger scale than previously possible. 
This has led to the development of  “top-down” model-
ling approaches that infer relationships between network 
components that change in the same way following per-
turbation of  the system of  interest. 

The issue with the ‘bottom-up’ approach is that in or-
der to simulate a network, intimate knowledge of  its com-
ponents, their connectivity and interaction is required. To 
model quantitatively, kinetic parameters must be pains-
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Figure 2  Non-alcoholic fatty liver disease publications and distribution of 
research. Graph shows the number of journal articles published (as listed on 
PubMed) between 2002 and 2012 focused on non-alcoholic fatty liver disease; 
pie chart shows the distribution of models/approaches (human, in vivo, in vitro, 
systems approach) used in research published during 2012.
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in the successes of  similar projects, such as the virtual 
heart that feed into the virtual physiological human 
(VPH) initiative[41,49].

Genome-scale networks
The sequencing and functional annotation of  genomes 
has provided the foundation for ‘reconstruction’ of  bio-
logical networks at the genome-scale. This reconstruction 
process has been described as a both a ‘top-down’ and a 
‘bottom-up’ approach, however, it is more accurately de-
scribed as a ‘middle-out’ process, incorporating data from 
multiple sources to reconstruct the best possible network 
model. In principle, genome-scale network reconstruction 
is possible for all biological networks; signalling, gene-
regulatory or metabolic[50]. However, the overwhelming 
majority of  large-scale reconstructions that have been 
generated have been genome scale metabolic networks 
(GSMN). This has been due, in part, to the fact that large 
datasets generated from high-throughput techniques in 
transcriptomics, proteomics and metabolomics can all be 
applied to the reconstruction of  metabolic networks, as 
well as the extensive historical biochemical data generated 
through the study of  metabolic reactions[31,51].

Essentially, GSMN reconstructions are comprehen-
sive structured databases of  the metabolic reactions and 
metabolites of  a given organism. The database is first 
built based on the annotated genome sequence, but this 
is then supplemented with knowledge of  biochemical re-
actions, physiological data and high-throughput datasets. 
Until relatively recently, metabolic network reconstruc-
tion has been predominately of  single-cell organisms due 
to the availability and relative simplicity of  their genomes; 
the Escherichia coli (K12-strain) genome was first published 
in 1997 and contains approximately 4000 genes[52], while 
the human genome sequence wasn’t completed until 
2003 and encodes approximately 21000 protein coding 
genes[53]. The process of  network reconstruction is both 
labour and resource intensive, the time required increas-
ing with the size and complexity of  the target organism’s 
genome. For instance, Recon1, one of  the first published 
reconstructions of  the human metabolic network, took 
a team of  6-8 individuals two years to complete[31,54]. 
Currently, it is not possible to completely automate the 
reconstruction of  high quality networks. Moreover, 
since reconstructions begin with an annotated genome 
sequence of  the target organism, it is important to note 
these annotated genome sequences use a combination of  
manual and automated curation, are incomplete and are 
continuously updated[55]. Indeed, our understanding of  
the function of  much of  the genome is evolving and an 
area of  continued intensive research. The result of  this is 
that GSMN reconstruction is an iterative process requir-
ing extensive manual curation.

Metabolism is of  particular interest because its dis-
ruption may be the cause or as a result of  a given disease 
state. As such, metabolites are commonly used as bio-
markers for disease diagnosis and monitoring; for exam-
ple high blood glucose levels in diabetes or cholesterol as 
a marker of  increased CVD risk[42,51]. Ironically no such 

takingly determined for each reaction and interaction in a 
given system. In many cases, such data is unavailable and 
often impossible to determine accurately with current ex-
perimental technologies. Furthermore, to determine such 
parameters for large-scale networks would be exorbitantly 
costly in terms of  time and resources. On the other hand, 
the difficulty with the ‘top down’ approach is that while it 
allows us to study networks at a much larger scale, it does 
so at the cost of  quantitative detail. While coverage of  a 
given network is superior in terms of  network coverage 
and data points generated, any insight into the mecha-
nisms mediating the observed behaviour of  the system is 
purely inferential. The precise nature of  any mechanistic 
interactions would need to be confirmed through more 
targeted experimental, ‘bottom-up’ methods. Considering 
the limitations of  these two approaches, a more compre-
hensive strategy is to combine both into a ‘‘middle-out’’ 
approach[43,44]. In such an approach, the best ‘‘bottom-up’’ 
models would be integrated with larger ‘‘top-down’’ mod-
els generated through high throughput ‘‘-omic’’ datasets, 
generating a global model with improved predictivity due 
to the constraints imposed through highly detailed quan-
titative information.

Strategies for modelling the liver in silico 
Second to the brain, the liver is, arguably, the most 
complicated organ in the human body, with an array of  
diverse and essential functions. Macroscopically, the hu-
man liver is described as four lobes; the right, left, quad-
rate and caudate. Despite the livers diverse functionality, 
the microscopic architecture of  the liver is remarkably 
uniform, regardless of  the direction from which the tis-
sue is sectioned. This uniformity of  structure makes 
understanding and modelling the architecture of  the 
liver, relatively, easier. Indeed, there has been some excel-
lent progress in modelling the structural architecture and 
microvasculature in silico[45]. Although the microscopic ar-
chitecture of  the liver may be uniform, the functional be-
haviour across the liver is not[46]. This varies greatly with 
blood/flow, oxygenation, cell polarity and is dynamically 
regulated in response to extracellular and intracellular 
cues. The hepatocyte is the primary cell type of  the liver, 
accounting for 60% of  the cells in the liver, 80% of  the 
parenchymal volume and responsible for the synthesis of  
90% of  expressed liver proteins[24,47]. However, it is im-
portant to remember that there are many other cell types 
within the liver (e.g., hepatic stellate cells, kupffer cells), all 
of  which contribute to the overall functional behaviour 
of  the liver. Thus, to fully understand liver function (and 
dysfunction) it is important to study the interrelationship 
of  these cells types.

Modelling of  liver functionality at either the mac-
roscopic and microscopic scale is the aim of  several 
groups around the world, with perhaps the largest con-
sortium being the German-based virtual liver network 
(VLN), which aims to model the liver at all spatial, tem-
poral, metabolic and regulatory levels utilising a range 
of  experimental and computational approaches[22,48]. The 
potential impact of  such tissue-level models can be seen 
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biomarkers have been validated for NAFLD despite its 
extensive disruption of  metabolism however, promising 
metabolomics research is on-going[56]. Two major global 
reconstructions of  human metabolism were published in 
2007; Recon1 and The Edinburgh model[54,57,58]. Recently, 
Recon1 has been extensively updated, Recon2, through 
a collaborative effort to generate the best possible hu-
man GSMN[59]. There has also been reconstruction of  a 
number of  mouse GSMNs[60-62], important for the trans-
lation of  data from this widely exploited model species 
back into humans. The obvious issue with these models 
is that they are based upon the entire genome and are not 
tissue-specific. Automated computational methods have 
been proposed using transcriptomic datasets to tailor 
these whole-organism models into tissue-specific GSMN 
reconstructions[63-65]. While this approach can generate 
working models, manual curation remains essential to 
reconstruct high quality networks. Table 1 shows a sum-
mary of  published human GSMNs and tissue specific 
metabolic networks; this is not intended as an exhaustive 
list and does not include work by groups generating nu-
merous cell and tissue specific networks using computa-
tional reconstruction methods[59,64,66].

Two liver/hepatocyte specific GSMNs were published 
concurrently: one employing an automated reconstruc-
tion strategy, the other an exhaustive manual curation of  
transcript, protein, biochemical and physiological data, 
HepatoNet1; a comprehensive reconstruction of  hepato-
cyte metabolism. Comprised of  2539 reactions and 777 
individual metabolites, this model has the potential to be 
a tremendous resource for NAFLD research. As well as 
the liver itself, a number of  other tissues of  particular rel-

evance to NAFLD (i.e., heart, adipocyte, pancreas, intes-
tine, kidney) have been published increasing the potential 
for GSMNs to impact NAFLD research. Methods allow-
ing the interconnectivity of  metabolism between tissues 
to be explored have already been developed[71]. Bordbar 
et al[80] integrated the metabolic networks of  the human 
adipocyte, hepatocyte and myocytes integrating data from 
obese and obese type Ⅱ diabetics.

Analysis of metabolic network reconstructions
Although reconstruction itself  can provide insight into 
the properties of  a network, the biologist wants to be 
able to understand and ultimately predict, the impact of  
perturbations on the system through simulations. Typi-
cally for GSMNs this has been done through constraint-
based flux balance analysis (FBA), a fundamental tool for 
interrogating metabolic networks. In short, FBA solves 
the mathematical, stoichiometrically balanced, expression 
of  a metabolic network reconstruction constrained based 
on experimental data sets[81]. For example, a GSMN re-
construction may be constrained using “omics” data to 
reflect the gene-expression profile of  a specific tissue 
or of  a specific gene knockout (i.e., the reaction is con-
strained to 0). However, as a direct result of  its underly-
ing assumptions FBA has some inherent disadvantages 
that are of  critical importance if  we are to gain insight 
into liver disease. The development of  FBA has been in 
the context of  studying single cell organisms; mathemati-
cally, FBA defines an ‘‘objective function’’, essentially a 
sum of  reactions that is solved to optimise flux towards 
a biological output, characteristic of  the organism under 
study. For microorganisms this is commonly defined as 
an increase in ‘‘biomass’’ (i.e., growth). However, healthy 
mammalian adult organs typically maintain tissue size and 
density; although cells divide and turnover ‘‘biomass’’ is 
maintained. Moreover, definition of  a single objective 
function for a tissue as functionally diverse as the liver is 
almost impossible. Furthermore, basic FBA assumes that 
gene expression is at steady-state and is unable to account 
for dynamic gene regulatory responses to environmental 
perturbation. Given the numerous functions of  the liver 
and the fact that these multiple functions occur simulta-
neously and are dynamically regulated in response to the 
environment, the scope of  standard FBA for NAFLD 
research is limited.

Modelling regulation of the metabolic network
Broadly, the modelling of  signalling networks can be 
divided into two classes; the first analyses the structure 
and connectivity of  the network to provide insight into 
its dynamics. The second uses experimentally deter-
mined kinetic parameters as well as network connectivity 
to model dynamic properties of  the network[28,50]. It has 
been suggested that the only possible way to successfully 
model the regulatory mechanisms of  human whole cell 
metabolism is through the use of  fully mechanistic/ki-
netic models[22]. While a number of  kinetic models have 
been published, these have been of  small sub-networks 
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Table 1  Published human and tissue/cell specific metabolic 
network reconstructions

Human metabolic networks Ref.

Recon1 [54]
EHMN (Edinburgh human metabolic network) [57]
HumanCyc [67]
Recon2 [59]
KEGG [68]
Tissue/cell type
   Liver/hepatocyte [69,70]
   Brain [71,72]
   Kidney [72-74]
   Heart [72,75,76]
   Erythrocytes [77]
   Alveolar macrophages [78]
   Adipocyte [79]
   Muscle [72]
   Placenta [72]
   Lung [72]
   Pancreas [72]
   Testis [72]
   Spleen [72]
   Ovary [72]
   Prostate [72]
   Colon [72]
   Small intestine [72]
   Thymus [72]
   Skeletal muscle [65]
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of  metabolism. The quantity of  data that would be re-
quired, to generate such a model on a whole-cell scale 
would require an untenable amount of  computational 
and financial resources.

A number of  modified FBA approaches have been 
published attempting to address some of  its limitations 
and enhance its suitability for simulating dynamic mam-
malian networks. Currently, qualitative models of  regula-
tory processes can be integrated with FBA of  metabolic 
networks using a quasi-steady-state simulation method. 
This ‘regulatory FBA’ (rFBA) uses Boolean rules to ex-
press the regulatory relationships between the genes of  
a network[82]. This allows representation of  gene expres-
sion/repression, but does not represent transcription and 
translation processes or mechanistic details about the na-
ture of  regulatory molecules, such as protein, RNA, pro-
tein complexes, post translational modification. Although 
rFBA allows the simulation of  gene regulation, this simu-
lation is synchronous with all events in the regulatory 
network occurring at the same rate. Furthermore, the 
results of  rFBA, as with conventional FBA are determin-
istic, producing a deterministic network solution at every 
time-step of  the simulation. Two additional approaches, 
integrated FBA (iFBA)[83] and integrated dynamic FBA 
(idFBA)[84], utilize ordinary differential equations for sim-
ulation of  sub-networks (e.g., signalling pathways) where 
kinetic quantitative data are available. However the use of  
these tools for human systems is limited given both the 
increased scale of  genome complexity and the lack of  
such quantitative data.

We have recently published a novel strategy quasi 
steady state Petri nets (QSSPN)[29]. This approach uses 
Petri nets (PNs)[85] to represent gene regulatory and sig-
nalling networks and couples this to FBA of  GSMNs, 
extending the size and the detail at which models that 
can be qualitatively simulated. Although PNs have previ-
ously been used to model cell signalling[86], this is the first 
time that it has been coupled to FBA allowing dynamic 
regulation of  metabolism at the genome scale. The use 
of  PNs readily allows the representation of  gene expres-
sion at the level of  the genome, transcript and protein 
level, using existing conventions, and permits incorpora-
tion of  kinetic parameters across the model as they be-
come available. Our approach also addresses the issue of  
single deterministic results. The QSSPN method incor-
porates stochastic elements that allow non-deterministic 
simulation and Monte Carlo sampling of  multiple simu-
lation outcomes. Simply put, this allows the researcher 
to predict the probability of  a particular behaviour or 
whether a particular behaviour is possible within the 
model. Unlike rFBA, QSSPN also permits multiple ac-
tivation levels and variable rates of  activation across the 
signalling network. As a result, the signalling network is 
modelled asynchronously, a fundamental property of  bi-
ological systems and key to the modelling of  oscillations, 
activation and repression of  constitutively expressed 
genes. We validated the QSSPN strategy modelling regu-
lation of  bile acid metabolism and are currently model-
ling the network response to lipid loading in hepato-

cytes. The ability to computationally examine genotype-
phenotype relationships and generate predict probable 
system behaviours resulting from network dysregulation, 
promises novel insight into NAFLD pathogenesis in the 
future.

CONCLUSION
GSMNs represent current state of  the art in modelling 
large-scale networks and studying complex interactions 
associated with disease. Efforts by ourselves and others 
aim to model the liver at all spatial, temporal, metabolic 
and regulatory levels utilising a range of  experimental 
and computational approaches in an overall systems ap-
proach. Increasingly the ‘low hanging fruit’ of  biomarker 
and therapeutic target discovery has been picked and the 
identification of  future targets will require a more com-
prehensive understanding of  the underlying molecular 
mechanisms. This can only be achieved through the use 
of  advanced strategies combining novel computational 
approaches and experimental techniques. While systems 
biologists aim to have computationally modelled 90% 
of  the human organism by 2038[38], NAFLD represents 
a complex, multifactorial and urgent disease burden, the 
elucidation of  which would benefit from existing sys-
tems tools rather than a solely reductionist approach. We 
believe that a ‘middle-out’ approach incorporating an it-
erative cycle of  model reconstruction, simulation, experi-
mental design and model refinement represents the best 
strategy to research in NAFLD and metabolic disease. 
We would further argue that such a strategy is best suited, 
not to purely kinetic modelling strategies, but to novel in 
silico modelling approaches that can model metabolism, 
gene expression, regulation and signalling at a qualitative 
level, but are capable of  integrating kinetic parameters as 
available. NAFLD and the metabolic syndrome emerge 
as the product of  a myriad of  genetic, dietary and en-
vironmental factors and understanding the relative and 
mechanistic contribution of  these is vital. These are the 
diseases of  the 21st century and we will require 21st cen-
tury approaches to develop our understanding and subse-
quent treatments.
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